III. Electronic Noise

1. Why? 2

2. What Determines Resolution? 4

3. Basic Noise Mechanisms and Characteristics 7
 Thermal Noise in Resistors 8
 Shot Noise 10
 Derivation of thermal noise spectral density 11
 Derivation of shot noise spectral density 14
 Low Frequency Noise 17
 Noise Bandwidth vs. Signal Bandwidth 18
 “Noiseless” Resistances 21

Correlated Noise 24

4. Noise in Amplifiers 25
 Amplifier Noise Model 26
 Amplifier Noise Matching 31
 Noise Measures (noise resistance, temperature and energy) 36
 S/N with Capacitive Signal Sources 42
 Charge-Sensitive Preamplifier Noise vs. Detector Capacitance 48
 Strip Detector Noise Model 51
 Quantum Noise Limits in Amplifiers 52
Resolution and Electronic Noise

Resolution: the ability to distinguish signal levels

1. Why?

a) Recognize structure in amplitude spectra

 Comparison between NaI(Tl) and Ge detectors

b) Improve sensitivity

Signal to background ratio improves with better resolution

(signal counts in fewer bins compete with fewer background counts)

1. What determines Resolution?

1. Signal Variance >> Baseline Variance

\[\text{Signal Variance} \gg \text{Baseline Variance} \]

\[\text{Electronic (baseline) noise not important} \]

Examples:
- High-gain proportional chambers
- Scintillation Counters with High-Gain PMTs

 e.g. 1 MeV γ-rays absorbed by NaI(Tl) crystal

Number of photoelectrons:

\[N_{pe} \approx 8 \times 10^4 [\text{MeV}^{-1}] \times E_\gamma \times QE \approx 2.4 \times 10^4 \]

Variance typically:

\[\sigma_{pe} = N_{pe}^{1/2} \approx 160 \quad \text{and} \quad \sigma_{pe} / N_{pe} \approx 5 - 8\% \]

Signal at PMT anode (assume Gain= 10^4):

\[Q_{\text{sig}} = G_{\text{PMT}} N_{pe} \approx 2.4 \times 10^8 \text{ el and} \]

\[\sigma_{\text{sig}} = G_{\text{PMT}} \sigma_{pe} \approx 1.2 \times 10^7 \text{ el} \]

whereas electronic noise easily < 10^4 el
2. Signal Variance \ll Baseline Variance

Electronic (baseline) noise critical for resolution

Examples:
- Gaseous ionization chambers (no internal gain)
- Semiconductor detectors

e.g. in Si: Number of electron-hole pairs $N_{ep} = \frac{E_{dep}}{3.6 \text{ eV}}$

Variance $\sigma_{ep} = \sqrt{F \cdot N_{ep}}$ (where F = Fano factor ≈ 0.1)

For 50 keV photons: $\sigma_{ep} \approx 40 \text{ el} \Rightarrow \sigma_{ep} / N_{ep} = 7.5 \cdot 10^{-4}$

Obtainable noise levels are 10 to 1000 el.
Baseline fluctuations can have many origins ...

- pickup of external interference
- artifacts due to imperfect electronics
 ...
 etc.,

but the (practical) fundamental limit is electronic noise.
2. Basic Noise Mechanisms and Characteristics

Consider n carriers of charge e moving with a velocity v through a sample of length l. The induced current i at the ends of the sample is

$$i = \frac{n e v}{l}$$

The fluctuation of this current is given by the total differential

$$\langle di \rangle^2 = \left(\frac{ne}{l} \langle dv \rangle \right)^2 + \left(\frac{ev}{l} \langle dn \rangle \right)^2,$$

where the two terms are added in quadrature since they are statistically uncorrelated.

Two mechanisms contribute to the total noise:

- velocity fluctuations, e.g. thermal noise
- number fluctuations, e.g. shot noise
 - excess or “1/f“ noise

Thermal noise and shot noise are both “white” noise sources, i.e.

$$\frac{dP_{\text{noise}}}{df} = \text{const.}$$
1. Thermal Noise in Resistors

The most common example of noise due to velocity fluctuations is the thermal noise of resistors.

Spectral noise power density vs. frequency f: \[\frac{dP_{\text{noise}}}{df} = 4kT \] k = Boltzmann constant
\[T = \text{absolute temperature} \]

since $P = \frac{V^2}{R} = I^2R$
\[R = \text{DC resistance} \]

the spectral noise voltage density
\[\frac{dV^2_{\text{noise}}}{df} \equiv e_n^2 = 4kTR \]

and the spectral noise current density
\[\frac{dI^2_{\text{noise}}}{df} \equiv i_n^2 = \frac{4kT}{R} \]

The total noise depends on the bandwidth of the system,
For example, the total noise voltage at the output of a voltage amplifier with the frequency dependent gain $A_v(f)$ is
\[v_{on}^2 = \int_{0}^{\infty} e_n^2 A_v^2(f) \, df \]

Note: Since spectral noise components are not correlated, one must integrate over the noise power.
Total noise increases with bandwidth.

Total noise is the integral over the shaded region.

\[S/N \] increases as noise bandwidth is reduced until signal components are attenuated significantly.
2. Shot noise

A common example of noise due to number fluctuations is “shot noise”, which occurs whenever carriers are injected into a sample volume independently of one another.

Example: current flow in a semiconductor diode
(emission over a barrier)

Spectral noise current density:

\[i_n^2 = 2eI \]

\(e = \) electronic charge
\(I = \) DC current

A more intuitive interpretation of this expression will be given later.

Note: Shot noise does not occur in “ohmic” conductors. Since the number of available charges is not limited, the fields caused by local fluctuations in the charge density draw in additional carriers to equalize the total number.
Noise Spectral Densities

Spectral Density of Thermal Noise (Johnson Noise)

Two approaches can be used to derive the spectral distribution of thermal noise.

1. The thermal velocity distribution of the charge carriers is used to calculate the time dependence of the induced current, which is then transformed into the frequency domain.

2. Application of Planck’s theory of black body radiation.

The first approach clearly shows the underlying physics, whereas the second “hides” the physics by applying a general result of statistical mechanics. However, the first requires some advanced concepts that go well beyond the standard curriculum, so the “black body” approach will be used.

In Planck’s theory of black body radiation the energy per mode

\[\bar{E} = \frac{h\nu}{e^{h\nu/kT} - 1} \]

and the spectral density of the radiated power

\[\frac{dP}{d\nu} = \frac{h\nu}{e^{h\nu/kT} - 1} \]

i.e. this is the power that can be extracted in equilibrium.
At low frequencies $h\nu \ll kT$:

$$\frac{dP}{dv} \approx \frac{h\nu}{\left(1 + \frac{h\nu}{kT}\right)^2} = kT,$$

so at low frequencies the spectral density is independent of frequency and for a total bandwidth B the noise power that can be transferred to an external device

$$P_n = kTB.$$

To apply this result to the noise of a resistor, consider a resistor R whose thermal noise gives rise to a noise voltage V_n. To determine the power transferred to an external device consider the circuit

The dotted box encloses the equivalent circuit of the resistive noise source.
The power dissipated in the load resistor R_L

$$\frac{V_{nL}^2}{R_L} = I_n^2 R_L = \frac{V_n^2 R_L}{(R + R_L)^2}$$

The maximum power transfer occurs when the load resistance equals the source resistance $R_L = R$, so

$$V_{nL}^2 = \frac{V_n^2}{4}.$$

Since the maximum power that can be transferred to R_L is kTB,

$$\frac{V_{nL}^2}{R} = \frac{V_n^2}{4R} = kTB$$

$$P_n = \frac{V_n^2}{R} = 4kTB$$

and the spectral density of the noise power in the resistor

$$\frac{dP_n}{dv} = 4kT.$$
Spectral Density of Shot Noise

If an excess electron is injected into a device, it forms a current pulse of duration τ. In a thermionic diode τ is the transit time from cathode to anode, for example. In a semiconductor diode τ is the recombination time. If these times are short with respect to the periods of interest $\tau \ll 1/f$, the current pulse can be represented by a δ pulse. The Fourier transform of a delta pulse yields a “white” spectrum, i.e. the amplitude distribution in frequency is uniform

$$\frac{dI_{n,pk}}{\sqrt{df}} = 2q_e$$

Within an infinitesimally narrow frequency band the individual spectral components are pure sinusoids, so their rms value

$$i_n \equiv \frac{dI_n}{\sqrt{df}} = \frac{2q_e}{\sqrt{2}} = \sqrt{2}q_e$$

If N electrons are emitted at the same average rate, but at different times, they will have the same spectral distribution, but the coefficients will differ in phase. For example, for two currents i_p and i_q with a relative phase φ the total rms current

$$\langle i^2 \rangle = (i_p + i_q e^{i\varphi})(i_p + i_q e^{-i\varphi}) = i_p^2 + i_q^2 + 2i_p i_q \cos \varphi$$
For a random phase the third term averages to zero
\[
\left\langle \dot{i}^2 \right\rangle = \dot{i}_p^2 + \dot{i}_q^2 ,
\]
so if \(N \) electrons are randomly emitted per unit time, the individual spectral components simply add in quadrature
\[
i_n^2 = 2Nq_e^2
\]
The average current
\[
I = Nq_e ,
\]
so the spectral noise density
\[
i_n^2 \equiv \frac{dI_n^2}{df} = 2q_e I .
\]
Another derivation utilizes Carson’s theorem.

If a single pulse has the amplitude $A(t)$ and its Fourier transform

$$P(f) = \int_{-\infty}^{\infty} A(t) \exp(-i\omega t) dt,$$

then a random sequence of pulses occurring at a rate r has the spectral power distribution

$$S(f) = 2r |P(f)|^2.$$

Shot noise can be represented as a sequence of delta pulses, whose spectrum is white, so the pulse sequence also has a white spectrum.

Since the rate $r = \frac{I}{q_e}$, the spectral density of shot noise

$$i_n^2 = 2q_e I$$

⇒ The spectral distribution of a DC signal carries information of the signal’s origin.
Low Frequency Noise

In a semiconductor, for example, charge can be trapped and then released after a characteristic lifetime τ. The spectral density for a single lifetime

$$S(f) \propto \frac{\tau}{1 + (2\pi f \tau)^2}.$$

For $2\pi f \tau \gg 1$: $S(f) \propto \frac{1}{f^2}$.

However, several traps with different time constants can yield a “1/f” distribution:

Traps with three time constants of 0.01, 0.1 and 1 s yield a 1/f distribution over two decades in frequency.

Low frequency noise is ubiquitous – must not have 1/f dependence, but commonly called 1/f noise.

Spectral power density:

$$\frac{dP_{\text{noise}}}{df} = \frac{1}{f^\alpha} \quad \text{(typically } \alpha = 0.5 - 2)$$

![Graph showing spectral power density vs. frequency with lines for different time constants $\tau = 1, 0.1, 0.01$.](image-url)
Noise Bandwidth vs. Signal Bandwidth

Consider an amplifier with the frequency response \(A(f) \). This can be rewritten as \(A(f) \equiv A_0 G(f) \), where \(A_0 \) is the maximum gain and \(G(f) \) describes the frequency response.

For example, for the simple amplifier described above

\[
A_v = g_m \left(\frac{1}{R_L} + i \omega C_o \right)^{-1} = g_m R_L \frac{1}{1 + i \omega R_L C_o}
\]

and using the above convention \(A_0 \equiv g_m R_L \) and \(G(f) \equiv \frac{1}{1 + i (2\pi f R_L C_o)} \).

If a “white” noise source with spectral density \(e_{ni} \) is present at the input, the total noise voltage at the output is

\[
v_{no} = \sqrt{\int_0^\infty e_{ni}^2 |A_0 G(f)|^2 df} = e_{ni} A_0 \sqrt{\int_0^\infty G^2(f) df} \equiv e_{ni} A_0 \sqrt{\Delta f_n}
\]

\(\Delta f_n \) is the “noise bandwidth”.

Note that, in general, the noise bandwidth and the signal bandwidth are not the same.

If the upper cutoff frequency is determined by a single \(RC \) time constant, as in the “simple amplifier”, the signal bandwidth \(\Delta f_s = f_u = \frac{1}{2\pi RC} \) and the noise bandwidth \(\Delta f_n = \frac{1}{4RC} = \frac{\pi}{2 f_u} \).
Noise Bandwidth and Low Frequency (1/f) Noise

For a spectral noise density

\[P_{nf} = \frac{S_f}{f} \]

and a corresponding voltage density

\[\varepsilon_{nf}^2 = \frac{A_f}{f} \]

the total noise integrated in a frequency band \(f_1 \) to \(f_2 \) is

\[\varepsilon_{nf}^2 = \int_{f_1}^{f_2} \frac{A_f}{f} \, df = A_f \log \left(\frac{f_2}{f_1} \right) \]

Thus, for a 1/f spectrum the total noise depends on the ratio of the upper to lower cutoff frequency.

Since this is a power distribution, the voltage or current spectral density changes 10-fold over a 100-fold span in frequency.

Frequently, the 1/f noise corner is specified: frequency where 1/f noise intercepts white noise. Higher white noise level reduces corner frequency, so lower noise corner does not equate to lower 1/f noise.
Independent noise contributions add in quadrature (additive in noise power)

\[v_{n,tot} = \sqrt{\sum_i v_{ni}^2} \]

Both thermal and shot noise are purely random.

\[\Rightarrow \text{amplitude distribution is Gaussian} \]

\[\Rightarrow \text{noise modulates baseline} \]

\[\Rightarrow \text{baseline fluctuations superimposed on signal} \]

\[\Rightarrow \text{output signal has Gaussian distribution} \]

Measuring Resolution

Inject an input signal with known charge using a pulse generator set to approximate the detector signal shape (possible ballistic deficit).

Measure the pulse height spectrum.

- peak centroid \(\Rightarrow \) signal magnitude
- peak width \(\Rightarrow \) noise (FWHM= 2.35 rms)
“Noiseless” Resistances

a) Dynamic Resistance

In many instances a resistance is formed by the slope of a device’s current-voltage characteristic, rather than by a static ensemble of electrons agitated by thermal energy.

Example: forward-biased semiconductor diode

Diode current vs. voltage

\[I = I_0 \left(e^{qV/kT} - 1 \right) \]

The differential resistance

\[r_d = \frac{dV}{dI} = \frac{kT}{q_e I} \]

i.e. at a given current the diode presents a resistance, e.g. 26 Ω at \(I = 1 \) mA and \(T = 300 \) K.

Note that two diodes can have different charge carrier concentrations, but will still exhibit the same dynamic resistance at a given current, so the dynamic resistance is not uniquely determined by the number of carriers, as in a resistor.

There is no thermal noise associated with this “dynamic” resistance, although the current flow carries shot noise.
b) Radiation Resistance of an Antenna

Consider a receiving antenna with the normalized power pattern \(P_n(\theta, \phi) \) pointing at a brightness distribution \(B(\theta, \phi) \) in the sky. The power per unit bandwidth received by the antenna

\[
w = \frac{A_e}{2} \iint B(\theta, \phi) P_n(\theta, \phi) d\Omega
\]

where \(A_e \) is the effective aperture, i.e. the “capture area” of the antenna. For a given field strength \(E \), the captured power \(W \propto EA_e \).

If the brightness distribution is from a black body radiator and we’re measuring in the Rayleigh-Jeans regime,

\[
B(\theta, \phi) = \frac{2kT}{\lambda^2}
\]

and the power received by the antenna

\[
w = \frac{kT}{\lambda^2} A_e \Omega_A.
\]

\(\Omega_A \) is the beam solid angle of the antenna (measured in rad\(^2\)), i.e. the angle through which all the power would flow if the antenna pattern were uniform over its beamwidth.
Since \(A_x \Omega_A = \lambda^2 \) (see antenna textbooks), the received power

\[
\omega = kT
\]

The received power is independent of the radiation resistance, as would be expected for thermal noise.

However, it is not determined by the temperature of the antenna, but by the temperature of the sky the antenna pattern is subtending.

For example, for a region dominated by the CMB, the measured power corresponds to a resistor at a temperature of \(~3\text{K}\), although the antenna may be at 300K.

c) Active Resistances

As derived in Chapter II, the input impedance of a charge-sensitive amplifier at high frequencies appears resistive.

The resistive component is the result of a (noiseless) feedback component – the feedback capacitor – the amplifier’s gain and phase shift.

If as a thought experiment a noiseless amplifier is used, the input will present a noiseless resistance.

In practice, it is possible to synthesize resistances \(R_i \) with noise less than \(e_{nR}^2 = 4kTR_i \) (“cooled resistance”).
Correlated Noise

Generally, noise power is additive:

\[P_{n,\text{tot}} = P_{n1} + P_{n1} + \ldots \]

However, in a coherent system (i.e. a system that preserves phase), the power often results from the sum of voltages or currents, which is sensitive to relative phase.

For two correlated noise sources \(N_1 \) and \(N_2 \) the total noise

\[N = N_1^2 + N_2^2 + 2CN_1N_2 \]

where the correlation coefficient \(C \) can range from \(-1\) (anti-correlated, i.e. identical, but 180° out of phase) to \(+1\) (fully correlated).

For uncorrelated noise components \(C = 0 \) and then individual current or voltage noise contributions add in quadrature, e.g.

\[V_{n,\text{tot}} = \sqrt{\sum_i V_{ni}^2} \]
4. Noise in Amplifiers

Consider a chain of two amplifiers (or amplifying devices), with gains A_1 and A_2, and input noise levels N_1 and N_2.

A signal S is applied to the first amplifier, so the input signal-to-noise ratio is S / N_1.

At the output of the first amplifier the signal is A_1S and the noise A_1N.

Both are amplified by the second amplifier, but in addition the second amplifier contributes its noise, so the signal-to-noise ratio at the output of the second amplifier

$$\left(\frac{S}{N} \right)^2 = \frac{(SA_1A_2)^2}{(N_1A_1A_2)^2 + (N_2A_2)^2} = \frac{S^2}{N_1^2 + \left(\frac{N_2}{A_1} \right)^2}$$

$$\left(\frac{S}{N_1} \right)^2 = \left(\frac{S}{N_1} \right)^2 \frac{1}{1 + \left(\frac{N_2}{A_1N_1} \right)^2}$$

The overall sign-to-noise ratio is reduced, but the noise contribution from the second-stage can be negligible, provided the gain of the first stage is sufficiently high.

\Rightarrow In a well-designed system the noise is dominated by the first gain stage.
Amplifier Noise Model

The noise properties of any amplifier can be described fully in terms of a

- voltage noise source

and

- current noise source.

at the amplifier input. Typical magnitudes are $\text{nV} / \sqrt{\text{Hz}}$ and $\text{fA} ... \text{pA} / \sqrt{\text{Hz}}$.

Here the magnitude of the noise sources is characterized by the spectral density.

The noise sources do not have to physically present at the input. Noise also originates within the amplifier. Assume that at the output the combined contribution of all internal noise sources has the spectral density e_{no}. If the amplifier has a voltage gain A_V, this is equivalent to a voltage noise source at the input $e_n = e_{no} / A_V$.

It is convenient to express the input noise in terms of spectral density, so that the effect of amplifier bandwidth can be assessed separately.
Assume that a sensor with resistance R_S is connected to an amplifier with voltage gain A_V and an infinite input resistance, so no current flows into the amplifier.

The input noise current i_n flows through the source resistance R_S to yield a noise voltage $i_n R_S$, which adds to the thermal noise of the source resistance and the noise voltage of the amplifier.

All terms add in quadrature, since they are not correlated.

The total noise voltage at the input of the amplifier

$$e_{ni}^2 = 4kTR_S + e_n^2 + (i_n R_S)^2$$

and at the output of the amplifier

$$e_{no}^2 = (A_V e_{ni})^2 = A_V^2 \left[4kTR_S + e_n^2 + (i_n R_S)^2 \right]$$

The signal-to-noise ratio at the amplifier output

$$\left(\frac{S}{N} \right)^2 = \frac{A_V^2 V_S^2}{A_V^2 \left[4kTR_S + e_n^2 + (i_n R_S)^2 \right]}$$

is independent of the amplifier gain and equal to the input S/N, as both the input noise and the signal are amplified by the same amount.
In the preceding example the amplifier had an infinite input resistance, so no current flowed into the amplifier. Is the signal-to-noise ratio affected by a finite input resistance?

The signal at the input of the amplifier

$$V_{si} = V_s \frac{R_i}{R_s + R_i}$$

The noise voltage at the input of the amplifier

$$e_{ni}^2 = (4kTR_s + e_n^2)\left(\frac{R_i}{R_i + R_s}\right)^2 + i_n^2 \left(\frac{R_i R_s}{R_i + R_s}\right)^2$$

where the bracket in the i_n^2 represents the parallel combination of R_i and R_s.
The signal-to-noise ratio at the output of the amplifier

\[
\left(\frac{S}{N} \right)^2 = \frac{A_v^2 V_{Si}^2}{A_v^2 e_{ni}^2} = \frac{V_s^2 \left(\frac{R_i}{R_s + R_i} \right)^2}{\left(4kTR_s + e_{n_i}^2 \right) \left(\frac{R_i}{R_i + R_s} \right)^2 + i^2_n \left(\frac{R_i R_s}{R_i + R_s} \right)^2}
\]

\[
\left(\frac{S}{N} \right)^2 = \frac{V_{S\theta}^2}{\left(4kTR_s + e_{n_i}^2 \right) + i^2_n R_s^2},
\]

is the same as for an infinite input resistance.

This result also hold for a complex input impedance, i.e. a combination of resistive and capacitive or inductive components.

\[\Rightarrow \quad S/N \text{ independent of amplifier input impedance.}\]

The noise sources can be correlated, for example

\[e_n^2 = e_{n_1}^2 + e_{n_2}^2 + 2Ce_{n_1}e_{n_2}\]

Then, in the above example, if the input noise voltage and current are correlated, the input noise voltage

\[e_{n_i}^2 = 4kTR_s + e_{n_i}^2 + i^2_n + 2Ce_i n R_s\]
The total noise at the output is obtained by integrating over the spectral noise power \(P_n(f) \propto e_{no}^2(f) \).

The frequency distribution of the noise is determined both by the spectral distribution of the input noise voltage and current and by the frequency response of the amplifier.

\[
v_{no}^2 = \int_{0}^{\infty} e_{no}^2(f) df = \int_{0}^{\infty} e_{ni}^2(f) |A_V|^2 df
\]

The amplifier gain factor is shown as magnitude squared, as in general the amplifier has a frequency-dependent gain and phase, so it is a complex number.
Amplifier Noise Matching

The current noise contribution of the amplifier depends on the source resistance

\[e_{ni}^2 = 4kTR_S + e_n^2 + (i_nR_S)^2 \]

Consider the total noise power in the input circuit. The source resistance contributes \(4kT\Delta f_n\) and the power due to the amplifier’s input noise voltage and current depends on the source resistance.

\[P_n = \left(4kT + \frac{e_n^2}{R_S} + i_n^2R_S \right) \Delta f_n \]

The total power attains a minimum for \(R_S = \frac{e_n}{i_n}\).

This condition does not depend on the source contributing noise, so it is determined by the properties of the amplifier alone.

Note that this derivation assumes a real (rather than a reactive) source, since for a capacitive or inductive source the phase difference between current and voltage yields zero power.

In certain cases this matching condition does apply to capacitive or inductive sources, but for other reasons.
A common measure of amplifier noise is the “Noise Factor” F, which is the ratio of the total noise to the thermal noise of the sensor.

$$F = \frac{e^2_{ni}}{4kTR_S} = 1 + \frac{e^2_n + (i_n R_S)^2}{4kTR_S} = 1 + \frac{e^2_n}{4kTR_S} + \frac{i^2_n R_S}{4kT}$$

The noise factor assumes a minimum when $R_S = \frac{e_n}{i_n}$, which minimizes the total noise power as shown above.

The noise factor is frequently expressed in dB as the “Noise Figure”

$$NF = 10 \log_{10} F.$$

In a matched system with a resistive source

$$F_{opt} = 1 + \frac{e_n i_n}{2kT}$$
This principle of “noise matching” must be applied with caution.

1. Power is not always the relevant measure.

 Sometimes the noise voltage is most important. Minimum noise voltage e_{ni} always obtains with $R_s = 0$.

2. Merely increasing the source resistance will increase the total input noise e_{ni} without improving the signal-to-noise ratio. The advantage of noise matching only obtains when both the signal and the effective source resistance are modified simultaneously, for example by a transformer.
Noise matching with a transformer

The sensor is coupled to the amplifier through a transformer with the turns ratio $N = N_S / N_P$.

Assume unity coupling in the transformer. Then the sensor voltage appearing at the secondary

$$V_{SS} = NV_S$$

The thermal noise of the sensor at the secondary

$$e_{nSS}^2 = N^2 4kTR_S$$

Because the transformer also converts impedances, the source resistance appears at the secondary as

$$R_{SS} = N^2 R_S$$
Thus, the signal is increased, but so is the noise contribution due to the input noise current.

\[e_{ni}^2 = 4kTR_S N^2 + e_n^2 + R_S^2 N^4 i_n^2 \]

and the signal-to-noise ratio

\[
\left(\frac{S}{N} \right)^2 = \frac{V_S^2 N^2}{4kTR_S N^2 + e_n^2 + R_S^2 N^4 i_n^2} = \frac{V_S^2}{4kTR_S + \frac{e_n^2}{N^2} + N^2 R_S i_n^2}
\]

which attains a maximum for

\[R_S N^2 = \frac{e_n}{i_n} \].
Other Noise Measures

Besides the noise factor or noise figure discussed above, other noise measures are used that are more appropriate to other applications.

a) Noise Resistance

The noise resistance is equal to the resistance whose thermal noise is equal to the noise of the amplifier

\[4kTR_n = e_n^2 + i_n^2R_S^2, \]

so

\[R_n = \frac{e_n^2 + i_n^2R_S^2}{4kT}. \]

b) Noise Temperature

The noise temperature is the temperature for which the thermal noise of the source resistance is equal to the amplifier noise

\[T_n = \frac{e_n^2 + i_n^2R_S^2}{4kR_S}, \]

\[T_n = \frac{e_n^2}{4kR_S} + \frac{i_n^2R_S}{4k}. \]
Minimum noise temperature obtains when

\[
\frac{e_n^2}{4kR_S} = \frac{i_n^2R_S}{4k}
\]

\[
R_S = \frac{e_n}{i_n}.
\]

Then

\[
T_N = \frac{e_n^2}{4k} \frac{i_n}{e_n} + \frac{i_n^2}{4k} \frac{e_n}{i_n}
\]

\[
T_N = \frac{e_n i_n}{2k}
\]

For a sensor at temperature \(T_S \) matched to an amplifier with noise temperature \(T_N \), the total noise voltage

\[
e_{n,\text{tot}}^2 = 4kT_S R_S + 4kT_N R_S
\]

\[
e_{n,\text{tot}}^2 = 4k(T_S + T_N) R_S,
\]

i.e. the noise temperatures add.
c) Noise Energy

The optimum noise temperature translates directly to the concept of noise energy as a measure of low-noise amplifying devices.

\[E_n = e_n i_n \]

Examples:

- Bipolar transistor
 \[E_n \approx 10^{-21} \text{ J} \]

- Field Effect Transistors
 \[E_n \approx 10^{-23} - 10^{-24} \text{ J} \]

- SQUID
 \[E_n \approx 10^{-25} \text{ J at 1 MHz and 4K} \]
 \[E_n \approx 10^{-28} \text{ J at 1 kHz and 4K} \]

The noise energy is an indicator of the potential noise performance of a device – exploiting it, however, depends on the practicality of noise matching. In FETs, for example, this is only possible in special cases.
d) Signal Equivalent Noise Measures

It is often convenient to express the noise level in terms of the signal quantity of interest.

1. Noise Equivalent Power

For example, in a system that measures power, one can express the noise in terms of Noise Equivalent Power (NEP), which is equal to the signal input power for which the signal-to-noise ratio is one.

If the signal-to-noise ratio S/N is known for a given input power P_{signal}

$$NEP = \frac{P_{\text{signal}}}{(S/N)}$$

or, if the noise current is and the responsivity are known

$$NEP = \frac{\text{Noise Current} \left[\text{A}/\sqrt{\text{Hz}} \right]}{\text{Current Responsivity} \left[\text{A}/\text{W} \right]}$$
2. Equivalent Noise Charge

Similarly, detector readout systems that measure signal charge can be characterized in terms of Equivalent Noise Charge, i.e. the signal charge that yields a signal-to-noise ratio of one.

For a given detector material, the signal charge can be translated into absorber energy, so the noise can be expressed in terms of energy, i.e. eV or keV.

For an ionization energy E_i

$$\Delta E_n = E_i \cdot ENC$$
Continuous Signals vs. Individual Pulses

Consider a semiconductor detector detecting visible light.

At low intensities, where the mean time between successive photons is much longer than the collection time, the detector signal consists of individual pulses.

As the light intensity increases, so does the photon rate. At some point the signals from individual photons overlap and the detector output appears as a continuous current.

The average current of a sequence of pulses $i(t)$ of duration T occurring at a rate R

$$i_{av} = R \int i(t) dt$$

If each individual pulse has a DC component, the DC component of the pulse train will grow as the rate increases.

Each individual pulse has a characteristic Fourier spectrum. Since this is a linear superposition process, the sum of all pulses has the same frequency spectrum as an individual pulse.

⇒ signal-to-noise can be analyzed using either pulses or continuous signals.

If a filter is chosen to optimize the signal-to-noise ratio for a single pulse, it will also optimize S/N at high rates.

However, the need to resolve individual pulses or measure their amplitude accurately adds an additional constraint that modifies the choice of filter at high rates.
S/N with Capacitive Signal Sources

Equation:

\[i_{\text{sig}}(t) \]

Diagram:

- **Detector**
 - Capacitor \(C_d \)
- **Amplifier**
 - Resistor \(R_i \)
- **Equivalent Circuit**
 - Capacitor \(C_d \)
 - Resistor \(R_i \)
Equivalent Circuit

The speed of the amplifier does not have to match the speed of the sensor signal.

Initially charge is integrated on the sensor capacitance.

As the amplifier responds, the signal is transferred to the amplifier.
Assume an amplifier with constant noise. Then signal-to-noise ratio (and the equivalent noise charge) depend on the signal magnitude.

The pulse shape registered by amplifier depends on the input time constant RC_{det}.

Assume a rectangular detector current pulse of duration T and magnitude I_s.

Equivalent circuit

\[
\begin{align*}
\text{DETECTOR} & \quad \text{AMPLIFIER} \\
\begin{array}{c}
\text{detector} \quad C \quad v_{\text{in}} \\
\text{input current to amplifier} \quad i_{\text{in}}
\end{array}
\end{align*}
\]

Input current to amplifier

\[
\begin{align*}
0 \leq t < T : \quad & i_{\text{in}}(t) = I_s \left(1 - e^{-t/RC} \right) \\
T \leq t \leq \infty : \quad & i_{\text{in}}(t) = I_s \left(e^{T/RC} - 1 \right) \cdot e^{-t/RC}
\end{align*}
\]
At short time constants $RC \ll T$ the amplifier pulse approximately follows the detector current pulse.

As the input time constant RC increases, the amplifier signal becomes longer and the peak amplitude decreases, although the integral, i.e. the signal charge, remains the same.
At long time constants the detector signal current is integrated on the detector capacitance and the resulting voltage sensed by the amplifier

\[V_{in} = \frac{Q_{\text{det}}}{C} = \int \frac{i_s dt}{C} \]

Then the peak amplifier signal is inversely proportional to the total capacitance at the input, i.e. the sum of

detector capacitance,
input capacitance of the amplifier, and
stray capacitances.
Maximum signal vs. capacitance

At small time constants the amplifier signal approximates the detector current pulse and is independent of capacitance.

At large input time constants ($RC/T > 5$) the maximum signal falls linearly with capacitance.

\Rightarrow For input time constants large compared to the detector pulse duration the signal-to-noise ratio decreases with detector capacitance.

Caution when extrapolating to smaller capacitances:
If $S/N = 1$ at $RC/T = 100$, decreasing the capacitance to $1/10$ of its original value ($RC/T = 10$), increases S/N to 10. However, if initially $RC/T = 1$, the same 10-fold reduction in capacitance (to $RC/T = 0.1$) only yields $S/N = 1.6$.

\[\text{PEAK SIGNAL} \]
\[\text{NORMALIZED TIME } \text{RC}/T \]
Charge-Sensitive Preamplifier – Noise vs. Detector Capacitance

In a voltage-sensitive preamplifier

- noise voltage at the output is essentially independent of detector capacitance,
 i.e. the equivalent input noise voltage \(v_{ni} = v_{no} / A_v \).
- input signal decreases with increasing input capacitance, so signal-to-noise ratio depends on detector capacitance.

In a charge-sensitive preamplifier, the signal at the amplifier output is independent of detector capacitance (if \(C_i \gg C_d \)).

What is the noise behavior?

- Noise appearing at the output of the preamplifier is fed back to the input, decreasing the output noise from the open-loop value \(v_{no} = v_{ni} A_v \).
- The magnitude of the feedback depends on the shunt impedance at the input, i.e. the detector capacitance.

Note, that although specified as an equivalent input noise, the dominant noise sources are typically internal to the amplifier. Only in a fed-back configuration is some of this noise actually present at the input. In other words, the primary noise signal is not a physical charge (or voltage) at the amplifier input, to which the loop responds in the same manner as to a detector signal.

\(\Rightarrow S/N \) at the amplifier output depends on feedback.
Noise in charge-sensitive preamplifiers

Start with an output noise voltage v_{no}, which is fed back to the input through the capacitive voltage divider $C_f - C_d$.

$$v_{no} = v_{ni} \frac{X_{C_f} + X_{C_d}}{X_{C_d}} = v_{ni} \frac{1}{\omega C_f} + \frac{1}{\omega C_d}$$

$$v_{no} = v_{ni} \left(1 + \frac{C_d}{C_f}\right)$$

Equivalent input noise charge

$$Q_{ni} = \frac{v_{no}}{A_Q} = v_{no} C_f$$

$$Q_{ni} = v_{ni} \left(C_d + C_f\right)$$

Signal-to-noise ratio

$$\frac{Q_s}{Q_{ni}} = \frac{Q_s}{v_{ni}(C_d + C_f)} = \frac{1}{C} \frac{Q_s}{v_{ni}}$$

Same result as for voltage-sensitive amplifier, but here

- the signal is constant and
- the noise grows with increasing C.

Radiation Detectors and Signal Processing - III. Electronic Noise

Helmuth Spieler
LBNL
As shown previously, the pulse rise time at the amplifier output also increases with total capacitive input load C, because of reduced feedback.

In contrast, the rise time of a voltage sensitive amplifier is not affected by the input capacitance, although the equivalent noise charge increases with C just as for the charge-sensitive amplifier.

Conclusion

In general

- optimum S/N is independent of whether the voltage, current, or charge signal is sensed.

- S/N cannot be *improved* by feedback.

Practical considerations, i.e. type of detector, amplifier technology, can favor one configuration over the other.
Strip Detector Model for Noise Simulations

Noise coupled from neighbor channels.

Analyze signal and noise in center channel.

Includes:
 a) Noise contributions from neighbor channels
 b) Signal transfer to neighbor channels
 c) Noise from distributed strip resistance
 d) Full SPICE model of preamplifier

See Spieler, *Semiconductor Detector Systems* for discussion of noise cross-coupling

Measured Noise of Module:

- p-strips on n-bulk, BJT input transistor

Simulation Results:
 - 1460 el (150 µA)
 - 1230 el (300 µA)

⇒ Noise can be predicted with good accuracy.
Quantum Noise Limits in Amplifiers

What is the lower limit to electronic noise?

Can it be eliminated altogether, for example by using superconductors and eliminating devices that carry shot noise?

Starting point is the uncertainty relationship

$$\Delta E \Delta t \geq \frac{\hbar}{2}$$

Consider a narrow frequency band at frequency ω. The energy uncertainty can be given in terms of the uncertainty in the number of signal quanta

$$\Delta E = \hbar \omega \Delta n$$

and the time uncertainty in terms of phase

$$\Delta t = \frac{\Delta \varphi}{\omega},$$

so that

$$\Delta \varphi \Delta n \geq \frac{1}{2}$$

We assume that the distributions in number and phase are Gaussian, so that the equality holds.
Assume a noiseless amplifier with gain G, so that n_1 quanta at the input yield

$$n_2 = Gn_1$$

quanta at the output.

Furthermore, the phase at the output ϕ_2 is shifted by a constant relative to the input.

Then the output must also obey the relationship

$$\Delta\phi_2 \Delta n_2 = \frac{1}{2}$$

However, since $\Delta n_2 = G\Delta n_1$ and $\Delta\phi_2 = \Delta\phi_1$:

$$\Delta\phi_1 \Delta n_1 = \frac{1}{2G},$$

which is smaller than allowed by the uncertainty principle.
This contradiction can only be avoided by assuming that the amplifier introduces noise per unit bandwidth of

\[\frac{dP_{no}}{d\omega} = (G-1)\hbar \omega , \]

which, referred to the input, is

\[\frac{dP_{ni}}{d\omega} = \left(1 - \frac{1}{G} \right) \hbar \omega \]

If the noise from the following gain stages is to be small, the gain of the first stage must be large, and then the minimum noise of the amplifier

\[\frac{dP_{ni}}{d\omega} = \hbar \omega \]

At 2 mm wavelength the minimum noise corresponds to about 7K.

This minimum noise limit applies to phase-coherent systems. In systems where the phase information is lost, e.g. bolometers, this limit does not apply.

For a detailed discussion see C.M. Caves, Phys. Rev. D 26 (1982) 1817-1839
H.A. Haus and J.A. Mullen, Phys. Rev. 128 (1962) 2407-2413