II. Signal Formation and Detection Thresholds

1. Detector Models	2
Direct and Indirect Detection	3
Detector Functions	5
Example Detector Models	6
2. The signal	13
Elementary Excitations Band structure in crystals	14
Detector Sensitivity	20
Signal fluctuations – the Fano factor	25
3. Signal Formation	30
Example: semiconductor detectors	31
Formation of a High-Field Region	34
Charge Collection	51
Time Dependence of the Signal Current	58
Induced charge – Ramo's theorem	60
4. Signal Acquisition	77
Amplifier Types	77
Active Integrator – Charge-Sensitive Amplifiers	81
Calibration	83
Realistic Charge-Sensitive Amplifiers	84
Input Impedance of a Charge-Sensitive Amplifier	88
Time Response of a Charge-Sensitive Amplifier	89
Appendix: Equivalent Circuits	91

II. Signal Formation and Detection Thresholds

1. Detector Models

We consider detectors that provide electrical signal outputs.

To extract the amplitude or timing information the electrical signal is coupled to an amplifier, sent through gain and filtering stages, and finally digitized to allow data storage and analysis.

Optimal signal processing depends on the primary signal.

The signal can be

- a continuously varying signal
- a sequence of pulses, occurring
 - periodically
 - at known times
 - randomly

All of these affect the choice of signal processing techniques.

First steps in signal processing:

- Formation of the signal in the detector (sensor)
- Coupling the sensor to the amplifier

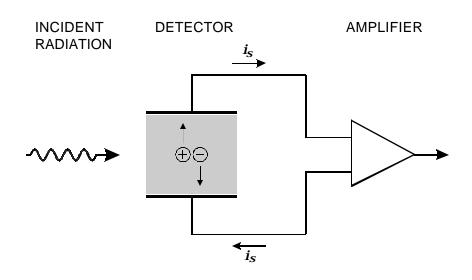
Detectors use either

- direct detection or
- indirect detection

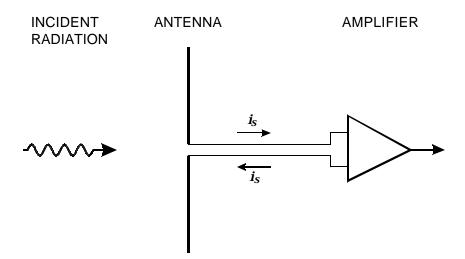
Examples:

1. Direct Detection

a) ionization chamber (>eV photons, charged particles)

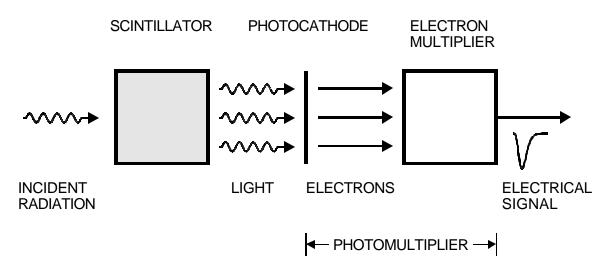


b) RF measurement (kHz ... THz), e.g. CMB



2. Indirect Detection

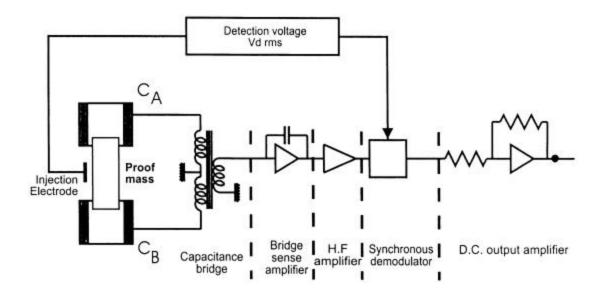
a) scintillation detector



b) gravity wave detector

Motion of proof mass measured by capacitive sensor.

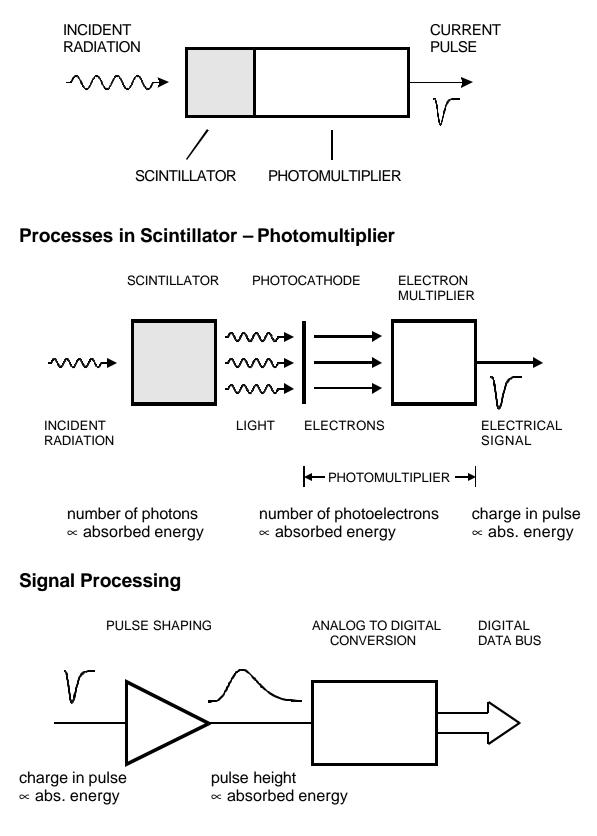
Schematic of LISA position sensor:



Capacitive sensors readily achieve sensitivities <100 pm.

Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

Detector Functions

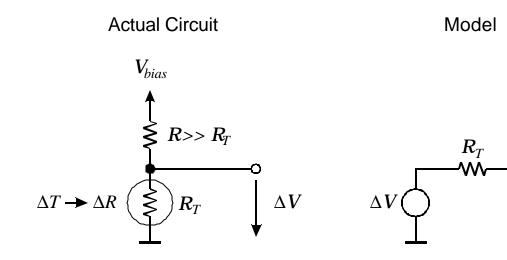


Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

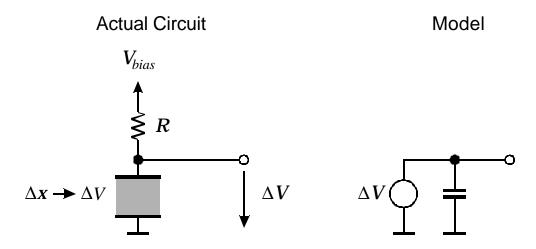
Example Detector Models

Although detectors take on many different forms, one can analyze the coupling to the amplifier with simple models.

1. Thermistor detecting IR radiation



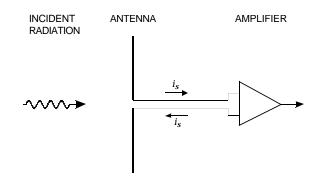
2. Piezoelectric Transducer



Helmuth Spieler LBNL

Ô

3. Radio Antenna



To derive the equivalent circuit apply the reciprocity principle, i.e. analyze the antenna as a radiator driven by an RF generator.

Radiated field

For simplicity assume the dipole length is a half wavelength $\lambda/2$. The angular distribution of the radiated power (see J.D. Jackson, Classical Electrodynamics)

$$\frac{dP}{d\Omega} = \frac{I^2}{2pc} \frac{\cos^2\left(\frac{p}{2}\cos\Theta\right)}{\sin^2\Theta}$$

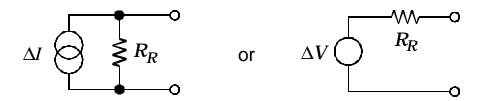
At the feed point the power fed to the dipole

$$P = I^2 R_{\rm R}$$

which is equal to the radiated power

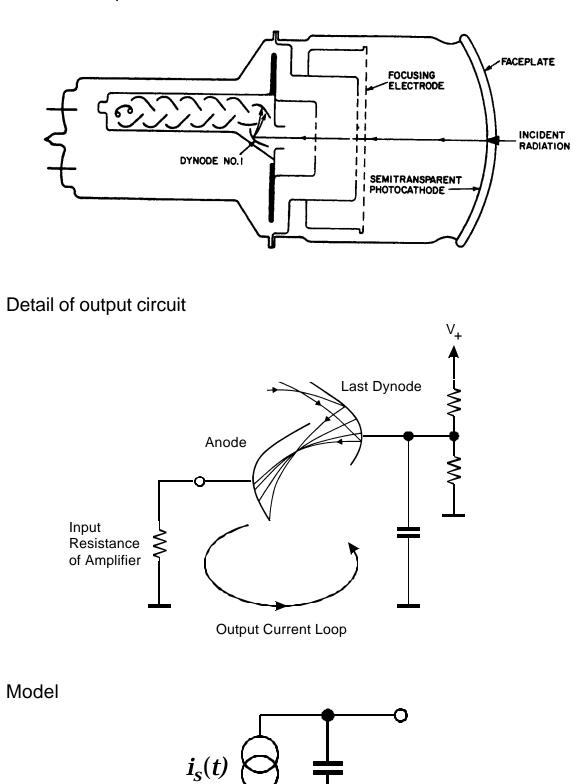
$$P = \int_{0}^{2p} \frac{dP}{d\Omega} d\Omega$$

i.e. the dipole appears as a resistance, so the equivalent circuit



Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

4. Photomultiplier Tube

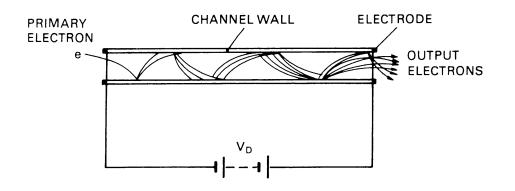


Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

5. Channeltrons and Microchannel Plates

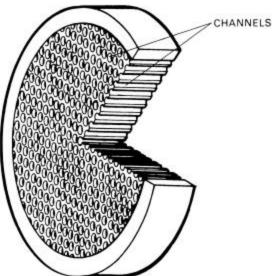
Channel electron multiplier

The inside of a glass capillary is coated with a secondary electron emitter that also forms a distributed resistance. Application of a voltage between the the two ends sets up a field, so that electrons in the structure are accelerated, strike the wall, and form secondaries.



Channel electron multipliers are used individually ("channeltrons"), with tube diameters of ~1 mm, and in arrays called "micro-channel plates", which combine many small channels of order 10 μm diameter in the form of a plate.

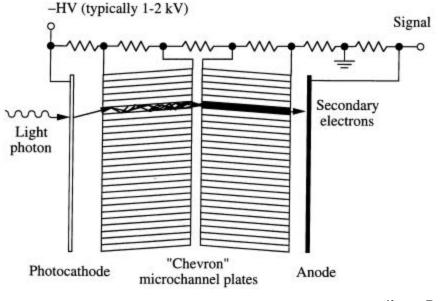
Microchannel plates are fabricated by stretching bundles of glass capillaries and then slicing the bundle to form



(Hamamatsu Photonics)

2... 5 cm diameter plates of several hundred microns thickness.

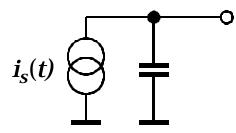
Microchannel plates are compact and fast. Transit time dispersion is < 1 ns due to the small dimensions of an individual channel. Pairs of microchannel plates can be combined to provide higher gain.



Connection scheme of a photon detector using microchannel plates

(from Derenzo)

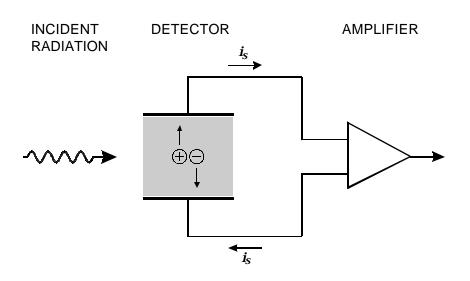
Model:



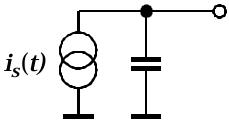
The shunt capacitor represents the capacitance between the exit face of the MCP and the anode.

6. Ionization Chamber

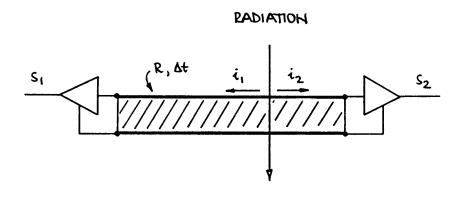
semiconductor detectors (pad, strip, pixel electrodes) gas-filled ionization or proportional chambers, ...



Model:

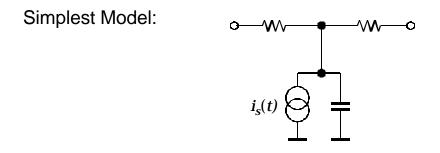


7. Position-Sensitive Detector with Resistive Charge Division

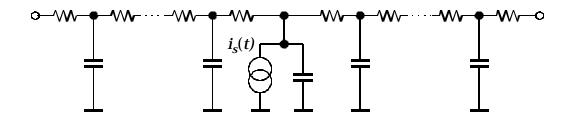


Electrode is made resistive with low-impedance amplifiers at each end. The signal current divides according to the ratio of resistances presented to current flow in the respective direction

$$\frac{i_1(x)}{i_2(x)} = \frac{R_2(x)}{R_1(x)}$$



Depending on the speed of the amplifier, a more accurate model of the electrode includes the distributed capacitance:



The Signal

Any form of elementary excitation can be used to detect the radiation signal.

An electrical signal can be formed directly by ionization.

Incident radiation quanta impart sufficient energy to individual atomic electrons to form electron-ion pairs (in gases) or electron-hole pairs (in semiconductors and metals).

Other detection mechanisms are

Excitation of optical states (scintillators)

Excitation of lattice vibrations (phonons)

Breakup of Cooper pairs in superconductors

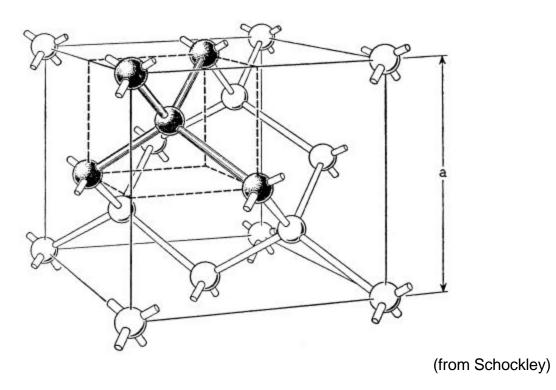
Formation of superheated droplets in superfluid He

Typical excitation energies

Ionization in gases	~30 eV
Ionization in semiconductors	1 – 5 eV
Scintillation	~10 eV
Phonons	meV
Breakup of Cooper Pairs	meV

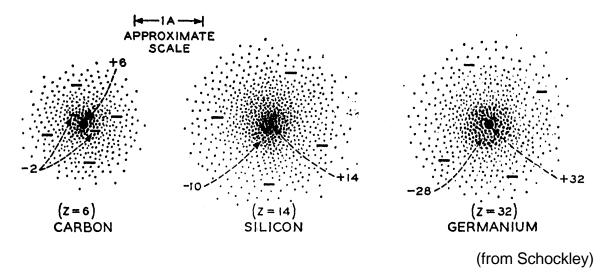
Band Structure in Crystals

Example: Lattice structure of diamond, Si, Ge ("diamond lattice")

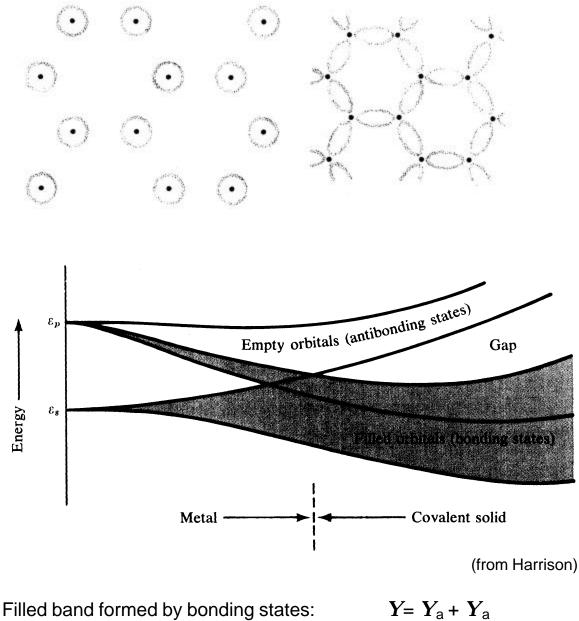


dimension a:	lattice constant	Diamond: Ge: Si:	3.56 Å 5.65 Å 5.43 Å

Extent of wavefunctions of typical constituent atoms:



When isolated atoms are brought together to form a lattice, the discrete atomic states shift to form energy bands:



(Y_a = wavefunction of individual atom)

uu

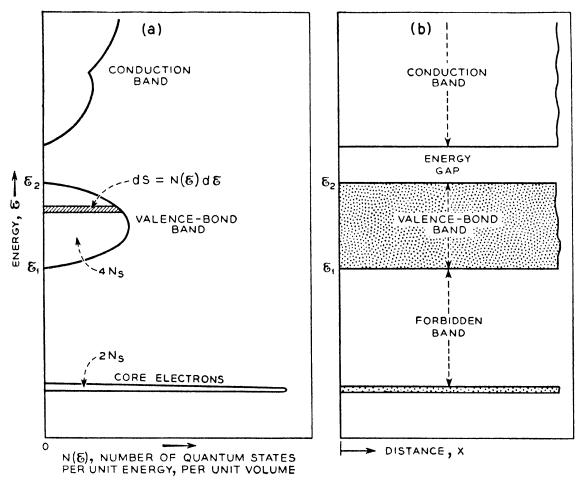
Empty band formed by anti-bonding states: $Y = Y_a - Y_a$

(vanishing occupancy at mid-point between atoms)

Each atom in the lattice contributes its quantum states to each band:

The number of quantum states in the band is equal to the number of states from which the band was formed.

The bands are extended states, i.e. the state contributed by an individual atom extends throughout the crystal.

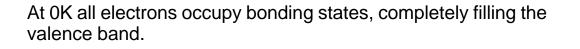


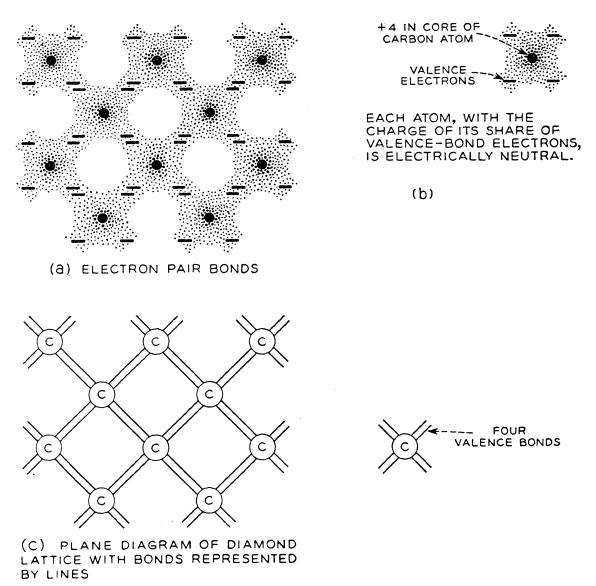
Energy band structure

(from Schockley)

Typical band gaps (valence - conduction band)

Ge	0.7 eV	GaAs	1.4 eV
Si	1.1 eV	Diamond	5.5 eV





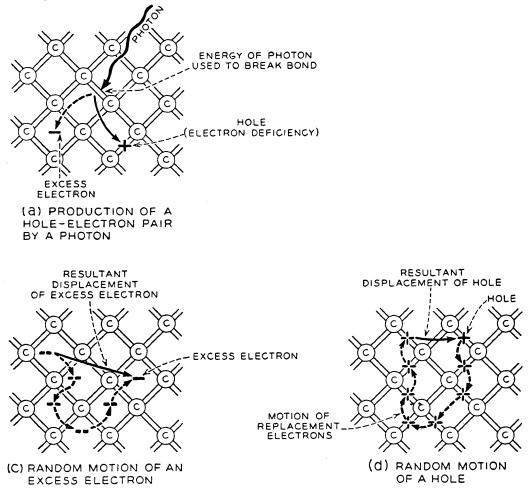
(from Schockley)

If an electric field is applied to the crystal, no current can flow, as this requires that the electrons acquire energy, which they can't, as no higher energy states are available in the valence band. If energy is imparted to a bond by incident radiation, for example a photon, the bond can be broken,

- exciting an electron into the conduction band and
- leaving back a vacant state in the valence band, a "hole".

The electron can move freely in its extended state.

The hole can be filled by an electron from a nearby atom, thereby moving to another position.



The motion of the electron and hole can be directed by an electric field.

Holes can be treated as positive charge carriers just like the electrons, although they tend to move more slowly as hole transport involves sequential transition probabilities (the wavefunction overlap of the hole and its replacement electron).

Ionization energy in solids is proportional to the band gap

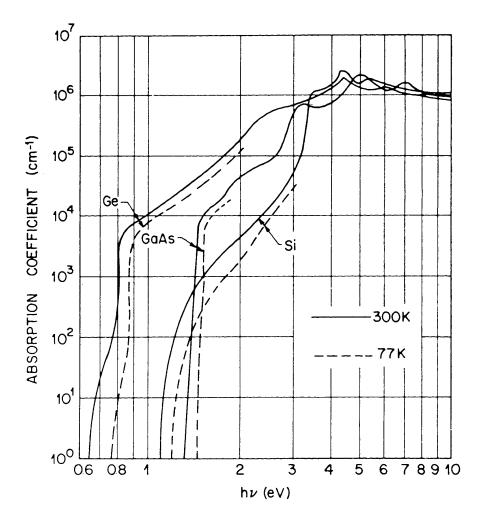
small band gap	Þ	~ conductor	
		electric field small	
		DC current >> signal current	
large band gap	Þ	insulator	
		high electric field	
		small signal charge + small DC current	
		example: diamond	
moderate band gap	Þ	semiconductor	
		high electric field	
		"large" signal charge small DC current, but " <i>pn</i> -junction" required.	
		examples: Si, Ge, GaAs	

Although phonons have been represented as a penalty that increases the ionization energy, as mentioned above they are another form of elementary excitation that can be used to measure the signal.

More about this in the final lecture.

Detector Sensitivity

Example: Ionization signal in semiconductor detectors



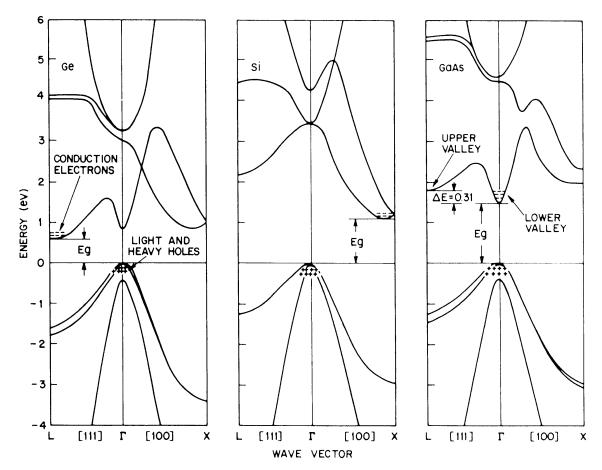
(from Sze)

Detection threshold = energy required to produce an electron-hole pair \approx band gap

In indirect bandgap semiconductors (Si), additional momentum required: provided by phonons

Band Structure

Energy of the conduction and valence band edges vs. wave vector (momentum)

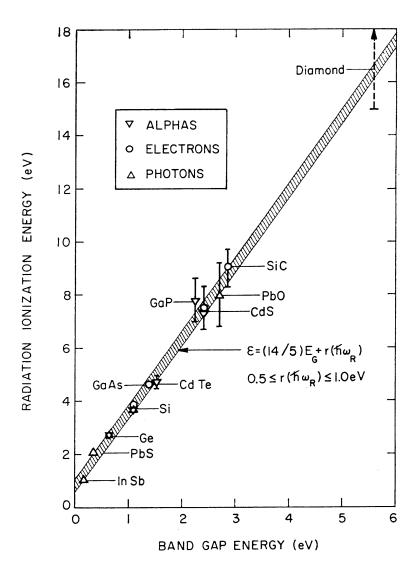


Note that in Si and Ge the minimum of the conduction band is offset from the maximum of the valence band.

⇒ Promotion of an electron from the valence to the conduction band using an energy equal to the minimum gap spacing requires additional momentum transfer 21

b) high energy quanta ($E \gg E_g$)

It is experimentally observed that the energy required to form an electron-hole pair exceeds the bandgap.



C.A. Klein, J. Applied Physics **39** (1968) 2029

Why?

When particle deposits energy one must conserve both energy and momentum

momentum conservation not fulfilled by transition across gap \Rightarrow excite phonons

16 Ga As 0.06 то Ge Si 14 LO 0.05 12 FREQUENCY V (10¹² Hz) 10 0.04 то LO 8 003 3 LÒ то ENERGY ENERGY 6 LA TA ĹA 0.01 2 TA ___0 __0 0 1.0 0 ī.0 0 [100] -[001] -[100] -REDUCED WAVE NUMBER q/q MAX

Phonon energy vs. momentum (wavevector k)

In a semiconductor ionization detector ~60% of the deposited energy goes into phonon excitation.

Instead of detecting electron-hole pairs, detect heat or phonons

Energy scale: 10 meV

 \Rightarrow lower energy threshold

Another possibility: Breakup of Cooper pairs in superconductors

The energy gap 2Δ is equivalent to the band gap in semiconductors.

Absorption of energy >2 Δ can break up a Cooper pair, forming two quasiparticles, which can be detected.

The gap energy is typically of order 1 meV.

Signal Fluctuations in a Scintillation Detector

Example: Scintillation Detector - a typical NaI(TI) system (from Derenzo)

511 keV gamma ray

B

25000 photons in scintillator

ß

15000 photons at photocathode

ß

3000 photoelectrons at first dynode

ß

3⁻10⁹ electrons at anode

2 mA peak current

Resolution of energy measurement determined by statistical variance of produced signal quanta.

$$\frac{\Delta E}{E} = \frac{\Delta N}{N} = \frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$$

Resolution determined by smallest number of quanta in chain, i.e. number of photoelectrons arriving at first dynode.

In this example

$$\frac{\Delta E}{E} = \frac{1}{\sqrt{3000}} = 2\% \text{ r.m.s.} = 5\% \text{ FWHM}$$

Typically 7 - 8% obtained, due to non-uniformity of light collection and gain.

Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

Fluctuations in the Signal Charge: the Fano Factor

The mean ionization energy exceeds the bandgap for two reasons

- 1. Conservation of momentum requires excitation of lattice vibrations
- 2. Many modes are available for the energy transfer with an excitation energy less than the bandgap.

Two types of collisions are possible:

- a) Lattice excitation, i.e. phonon production (with no formation of mobile charge).
- b) Ionization, i.e. formation of a mobile charge pair.

Assume that in the course of energy deposition

 N_x excitations produce N_P phonons and

 N_i ionization interactions form N_O charge pairs.

On the average, the sum of the energies going into excitation and ionization is equal to the energy deposited by the incident radiation

$$E_0 = E_i N_i + E_x N_x$$

where E_i and E_x are the energies required for a single excitation or ionization.

Assuming gaussian statistics, the variance in the number of excitations

$$\mathbf{s}_x = \sqrt{N_x}$$

and the variance in the number of ionizations

$$\boldsymbol{s}_i = \sqrt{N_i}$$

For a single event, the energy E_0 deposited in the detector is fixed (although this may vary from one event to the next).

If the energy required for excitation E_x is much smaller than required for ionization E_i , sufficient degrees of freedom will exist for some combination of ionization and excitation processes to dissipate precisely the total energy. Hence, for a given energy deposited in the sample a fluctuation in excitation must be balanced by an equivalent fluctuation in ionization.

$$E_x \Delta N_x + E_i \Delta N_i = 0$$

If for a given event more energy goes into charge formation, less energy will be available for excitation. Averaging over many events this means that the variances in the energy allocated to the two types of processes must be equal

$$E_i \boldsymbol{s}_i = E_x \boldsymbol{s}_x$$
$$\boldsymbol{s}_i = \frac{E_x}{E_i} \sqrt{N_x}$$

From the total energy $E_i N_i + E_x N_x = E_0$

$$N_x = \frac{E_0 - E_i N_i}{E_x}$$

yielding

$$\boldsymbol{s}_{i} = \frac{E_{x}}{E_{i}} \sqrt{\frac{E_{0}}{E_{x}} - \frac{E_{i}}{E_{x}}} N_{i}$$

Since each ionization leads to a charge pair that contributes to the signal

$$N_i = N_Q = \frac{E_0}{\boldsymbol{e}_i}$$

where e_i is the average energy loss required to produce a charge pair,

$$\boldsymbol{s}_{i} = \frac{E_{x}}{E_{i}} \sqrt{\frac{E_{0}}{E_{x}} - \frac{E_{i}}{E_{x}} \frac{E_{0}}{\boldsymbol{e}_{i}}}$$
$$\boldsymbol{s}_{i} = \sqrt{\frac{E_{0}}{\boldsymbol{e}_{i}}} \cdot \sqrt{\frac{E_{x}}{E_{i}} \left(\frac{\boldsymbol{e}_{i}}{E_{i}} - 1\right)}$$

The second factor on the right hand side is called the Fano factor *F*.

Since s_i is the variance in signal charge Q and the number of charge pairs is $N_Q = E_0 / e_i$

$$\boldsymbol{s}_{\mathcal{Q}} = \sqrt{FN_{\mathcal{Q}}}$$

In Silicon

$$E_x = 0.037 \text{ eV}$$

 $E_i = E_g = 1.1 \text{ eV}$
 $e_i = 3.6 \text{ eV}$

for which the above expression yields F = 0.08, in reasonable agreement with the measured value F = 0.1.

The variance of the signal charge is smaller than naively expected

$$\boldsymbol{s}_{Q} \approx 0.3 \sqrt{N_{Q}}$$

A similar treatment can be applied if the degrees of freedom are much more limited and Poisson statistics are necessary.

However, when applying Poisson statistics to the situation of a fixed energy deposition, which imposes an upper bound on the variance, one can not use the usual expression for the variance

$$\operatorname{var} N = \overline{N}$$

Instead, the variance is

$$\overline{\left(N-\overline{N}\right)^2} = F\overline{N}$$

as shown by Fano [1] in the original paper.

An accurate calculation of the Fano factor requires a detailed accounting of the energy dependent cross sections and the density of states of the phonon modes. This is discussed by Alkhazov [2] and van Roosbroeck [3].

References:

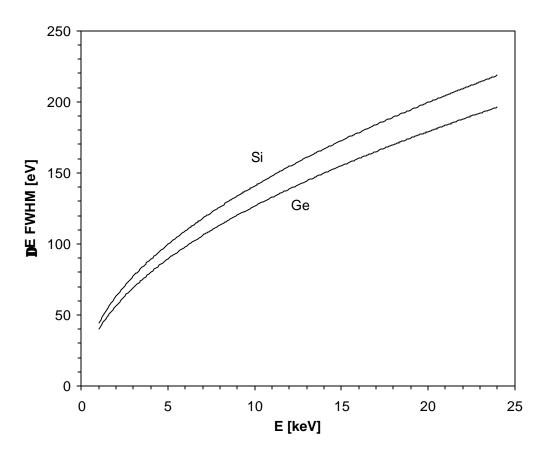
- 1. U. Fano, Phys. Rev. 72 (1947) 26
- 2. G.D. Alkhazov et al., NIM 48 (1967) 1
- 3. W. van Roosbroeck, Phys. Rev. 139 (1963) A1702

Intrinsic Resolution of Semiconductor Detectors

$$\Delta E = 2.35 \cdot \boldsymbol{e}_i \sqrt{FN_Q} = 2.35 \cdot \boldsymbol{e}_i \sqrt{F\frac{E}{w}} = 2.35 \cdot \sqrt{FE}\boldsymbol{e}_i$$

Si: $\boldsymbol{e}_i = 3.6 \text{ eV}$ $F = 0.1$
Ge: $\boldsymbol{e}_i = 2.9 \text{ eV}$ $F = 0.1$

Intrinsic Resolution of Si and Ge Detectors



Detectors with good efficiency for this energy range have sufficiently small capacitance to allow electronic noise of $\sim 100 \text{ eV FWHM}$, so the variance of the detector signal is a significant contribution.

At energies >100 keV the detector sizes required tend to increase the electronic noise to dominant levels.

3. Signal Formation

First, we'll discuss direct signal conversion, i.e. the ionization signal and return to phonon detection and the breakup of Cooper pairs towards the end of the lecture series.

Example: Semiconductor Diodes

This allows us to introduce several key (and universal) concepts, but it also lays the groundwork for discussing microelectronics and noise mechanisms.

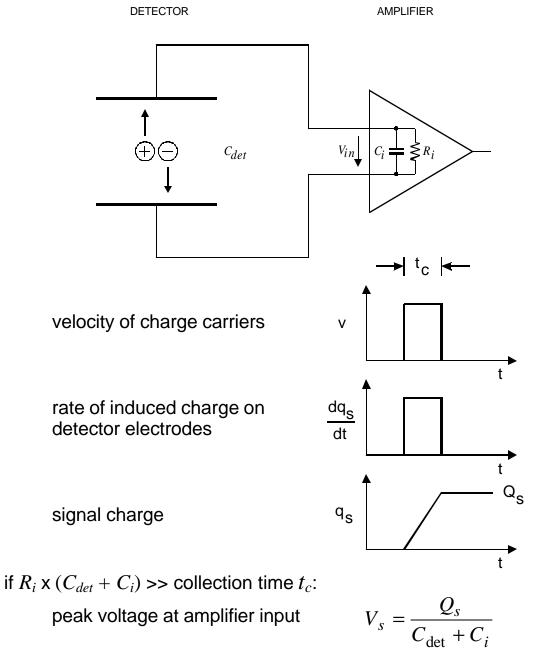
Semiconductor Detectors - Basic Operation

Semiconductor Detectors are Ionization Chambers

Detection volume with electric field

Energy deposited
 positive and negative charge pairs

Charges move in field
 external electrical signal



Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

Ionization chambers can be made with any medium that allows charge collection to a pair of electrodes.

Medium can be gas liquid solid

Crude comparison of relevant properties

	gas	liquid	solid
density	low	moderate	high
atomic number Z	low	moderate	moderate
ionization energy e	moderate	moderate	low
signal speed	moderate	moderate	fast

Desirable properties:

low ionization energy

- **D** 1. increased charge yield dq/dE
 - 2. superior resolution

$$\frac{\Delta E}{E} \propto \frac{1}{\sqrt{N}} \propto \frac{1}{\sqrt{E / \boldsymbol{e}_i}} \propto \sqrt{\boldsymbol{e}_i}$$

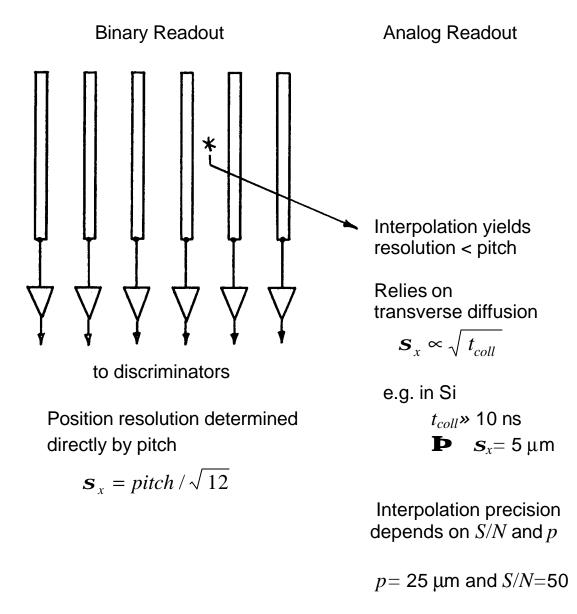
high field in detection volume

- Þ
 - 1. fast response
 - 2. improved charge collection efficiency (reduced trapping)

In addition to energy measurements, semiconductor detectors allow precision position sensing.

Resolution determined by precision of micron scale patterning of the detector electrodes (e.g. strips on 50 μ m pitch).

Two options:



 \mathbf{P} 3 – 4 μm resolution

In the first part of this section we discussed the magnitude of the signal charge and its fluctuations. Now we consider how the signal is extracted.

To form a current that can be measured in the external circuit, the signal charge carriers must be brought into motion. This is done by establishing a field in the detection volume. Increasing the field will sweep the charge more rapidly from the detection volume.

Formation of a High-Field Region

The conduction band is only empty at 0K.

As the temperature is increased, thermal excitation can promote electrons across the band gap into the conduction band.

Pure Si: carrier concentration ~ 10^{10} cm⁻³ at 300K (resistivity ~ 400 k\Omega cm)

Since the Si lattice comprises 5 ⁻ 10²² atoms/cm³, many states are available in the conduction band to allow carrier motion.

In reality, crystal imperfections and minute impurity concentrations limit Si carrier concentrations to $\sim 10^{11}$ cm⁻³ at 300K.

This is too high for use in a simple crystal detector.

A crystal detector is feasible with diamond, but the charge yield is smaller due to the larger band gap.

High-field region with low DC current in semiconductors is most easily achieved utilizing a p-n junction.

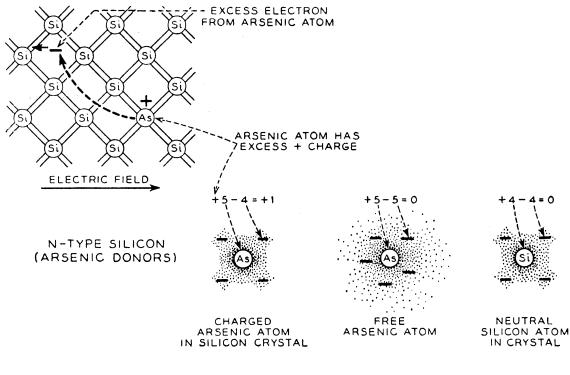
D Introduction of impurities to control conductivity.

Doping

The conductivity of semiconductors can be controlled by introducing special impurities.

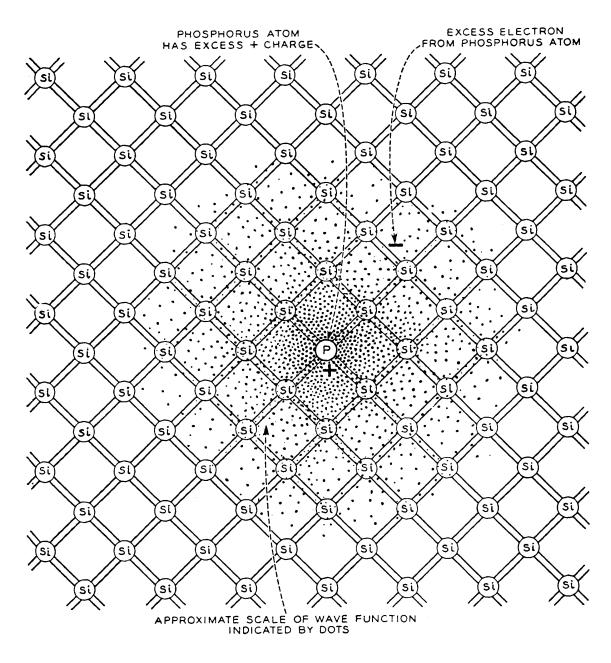
required concentrations: $\sim 10^{12} - 10^{18} \text{ cm}^{-3}$

Replacing a silicon atom (group 4 in periodic table, i.e. 4 valence electrons) by an atom with 5 valence electrons, e.g. P, As, Sb, leaves one valence electron without a partner.



(from Schockley)

Since the impurity contributes an excess electron to the lattice, it is called a donor.



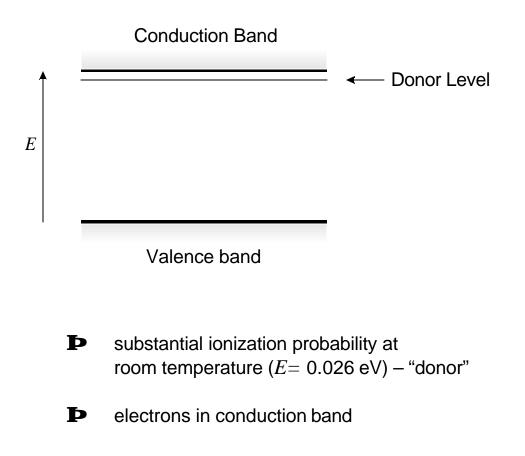
The wavefunction of the dopant atom extends over many neighbors.

(from Schockley)

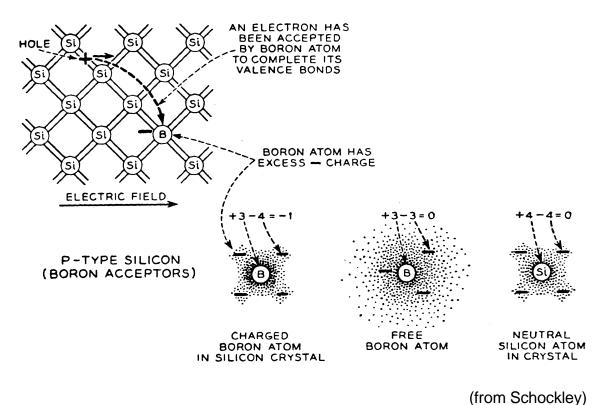
The excess electron is only loosely bound, as the coulomb force is reduced by the dielectric constant e of the medium (e = 12 in Si).

$$E_i(lattice) \propto \frac{E_i(atom)}{e^2}$$

The bound level of this unpaired electron is of order 0.01 eV below the conduction band (e.g. for P: E_c - 0.045 eV).



Conversely, introducing a group 3 atom (B, AI, Ga, In) leaves a Si valence electron without a partner.



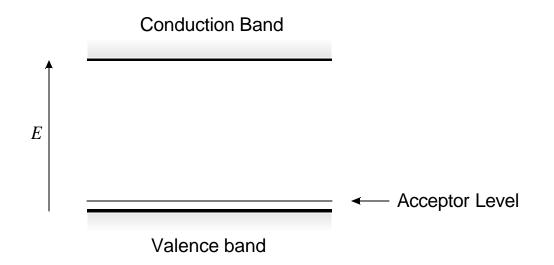
(),

To close its shell the B atom "borrows" an electron from a lattice atom in the vicinity.

This type of dopant is called an "acceptor".

The "borrowed" electron is bound, but somewhat less than other valence electrons since the B nucleus only has charge 3.

This introduces a bound state close to the valence band, also of order 0.01 eV from the band edge.



For example, a B atom in Si forms a state at E_v + 0.045 eV.

Again, as this energy is comparable to kT at room temperature, electrons from the valence band can be excited to fill a substantial fraction of these states.

The electrons missing from the valence band form mobile charge states called "holes", which behave similarly to an electron in the conduction band, i.e. they can move freely throughout the crystal.

Since the charge carriers in the donor region are electrons, i.e. negative, it is called "*n*-type".

Conversely, as the charge carriers in the acceptor region are holes, i.e. positive, it is called "p-type".

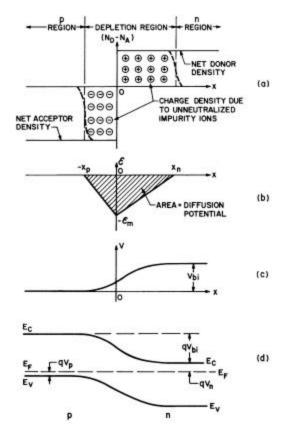
p-*n* Junction

Consider a crystal suitably doped that a donor region and an acceptor adjoin each other, a "p-n junction".

Thermal diffusion will drive holes and electrons across the junction. Although the p and n regions were originally electrically neutral, as electrons diffuse from the n to the p region, they uncover their respective donor atoms, leaving a net positive charge in the n region.

This positive space charge exerts a restraining force on the electrons that diffused into the p region, i.e. diffusion of electrons into the p region builds up a potential. The diffusion depth is limited when the space charge potential exceeds the available energy for thermal diffusion.

The corresponding process also limits the diffusion of holes into the n-region.



(from Sze, Physics of Semiconductor Devices)

The diffusion of holes and electrons across the junction leads to a region free of mobile carriers – the "depletion region", bounded by conductive regions, which are n- and p-doped, respectively.

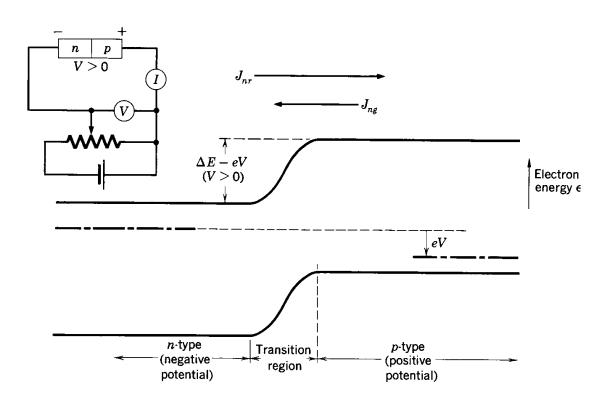
Strictly speaking, the depletion region is not completely devoid of mobile carriers, as the diffusion profile is a gradual transition.

Nevertheless, since the carrier concentration is substantially reduced, it is convenient to treat the depletion zone as an abrupt transition between bulk and 0 carrier concentration.

Furthermore, the formation of the two adjacent space charge regions builds up a potential barrier between the n and p regions, which impedes the further flow of charge.

The magnitude of this potential barrier is typically 50 – 90% of the band-gap, depending on relative doping levels.

This represents the situation in thermal equilibrium. By application of an external potential, two distinctly different non-equilibrium modes can be established. a) positive potential applied to the p region negative potential applied to the n region



(from Kittel, Introduction to Solid State Physics)

The externally applied voltage reduces the potential barrier, allowing increased charge transfer across the junction.

Electrons flowing from the *n*-region across the junction are replenished from the external voltage supply and large current flow is possible.

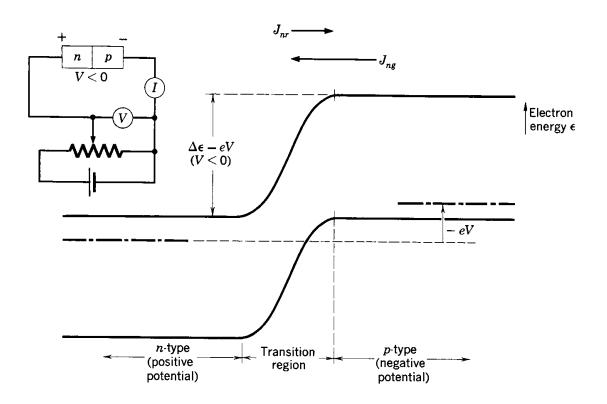
Diode current vs. voltage

$$I = I_0(e^{q_e V/kT} - 1)$$

Shockley equation

Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

b) negative potential applied to the p region positive potential applied to the n region



(from Kittel, Introduction to Solid State Physics)

This arrangement increases the potential barrier across the junction, impeding the flow of current.

The p-n junction is asymmetric with respect to current flow (diode).

a) forward bias positive supply connection ® p negative supply connection ® n	
Iarge current flow	
b) reverse bias positive supply connection (R) <i>n</i> negative supply connection (R) <i>p</i>	
small current flow	
-5 -5 -5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	RD
10 ⁴ 10 ³ 	ARD

(from Sze, Physics of Semiconductor Devices)

10

5 qlvl/kT

Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

10

Since the depletion region is a volume with an electric field, it by itself could be used as a radiation detector.

• The width of the depletion region is increased by reverse bias.

Depletion width and electric field in p-n junction

Assume a reverse bias voltage V_b and that the potential changes only in the direction perpendicular to the *n*-*p* interface. Poisson's equation is then

$$\frac{d^2 V}{dx^2} + \frac{Nq_e}{e} = 0 \tag{1}$$

where N is the dopant concentration and q_e the electron charge.

Consider an abrupt junction where charge densities on the *n* and *p* sides are $N_d q_e$ and $N_a q_e$, respectively.

If the limits of the depletion region are x_n on the *n*-side and x_p on the *p*-side, after two successive integrations one obtains on the *n*-side

$$\frac{dV}{dx} = -\frac{q_e N_d}{e} (x - x_n)$$
(2)

and

$$V = -\frac{q_e N_d}{\boldsymbol{e}} \frac{x^2}{2} + \frac{q_e N_d x x_n}{\boldsymbol{e}} + V_j$$
(3)

where V_i is the potential at the metallurgical junction. For $x = x_n$

$$V(x_{n}) = V_{b} = \frac{q_{e}N_{d}x_{n}^{2}}{2e} + V_{j}$$
(4)

and the contribution of the n-region to the total reverse bias potential becomes

$$V_b - V_j = \frac{q_e N_d x_n^2}{2\boldsymbol{e}} \,. \tag{5a}$$

Correspondingly, in the p-region

$$V_j = \frac{q_e N_a x_p^2}{2\boldsymbol{e}}$$
(5b)

and the total potential becomes

$$V_{b} = \frac{q_{e}}{2\boldsymbol{e}} (N_{d} x_{n}^{2} + N_{a} x_{p}^{2}) .$$
 (6)

Due to overall charge neutrality

$$N_d x_n = N_a x_p \tag{7}$$

and

$$V_{b} = \frac{q_{e}}{2\boldsymbol{e}} \left(1 + \frac{N_{a}}{N_{d}} \right) N_{a} x_{p}^{2} = \frac{q_{e}}{2\boldsymbol{e}} \left(1 + \frac{N_{d}}{N_{a}} \right) N_{d} x_{n}^{2} .$$
 (8)

The depletion widths on the n- and p-side of the junction are

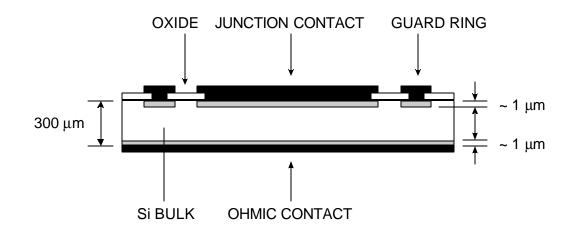
$$x_{n} = \sqrt{\frac{2eV_{b}}{q_{e}N_{d}(1+N_{d}/N_{a})}} ; \quad x_{p} = \sqrt{\frac{2eV_{b}}{q_{e}N_{a}(1+N_{a}/N_{d})}}$$
(9)

and the total depletion width becomes

$$W = x_n + x_p = \sqrt{\frac{2\mathbf{e}V_b}{q_e} \frac{N_a + N_d}{N_a N_d}}$$
(10)

Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

Detector diodes are usually asymmetrically doped. The starting material (bulk) is lightly doped and the junction is formed by diffusing or ion-implanting a highly doped layer.



The external connection to the lightly doped bulk is made by an additional highly doped layer of the same type (non-rectifying, "ohmic" contact).

• The depletion region then extends predominantly into the lightly doped bulk.

Other details:

The guard ring isolates the wafer edge (saw cut) from the active region.

In the gap between the detector electrode and the guard ring it is critical to provide a neutral interface at the silicon surface to prevent formation of a conductive path.

This is best accomplished by oxide passivation (SiO₂).

If, for example, $N_a >> N_d$, the depletion region extends predominantly into the *n*-side and the total depletion width is

$$W \approx x_n = \sqrt{\frac{2\mathbf{e}V_b}{q_e N_d}} . \tag{11}$$

The doping concentration is commonly expressed in terms of resistivity

$$\boldsymbol{r} = (\boldsymbol{m} q_e N)^{-1},$$

because this is a readily measurable quantity. The parameter m describes the relationship between the applied field and carrier velocity (to be discussed later).

Using resistivity the depletion width becomes

$$W = \sqrt{2 e m_n r_n V_b} . \tag{12}$$

Note that this introduces an artificial distinction between the n- and p-regions, because the mobilities **m** for electrons and holes are different.

Since the mobility of holes is approximately 1/3 that of electrons, p-type material of a given doping concentration will have 3 times the resistivity of n-type material of the same concentration.

As discussed earlier, even in the absence of an external voltage electrons and holes to diffuse across the junction, establishing a "built-in" reverse bias voltage V_{bi} . If we take this inherent bias voltage into account, $V_b \equiv V_b + V_{bi}$ and one obtains for the one-sided junction

$$W \approx x_1 = \sqrt{\frac{2\boldsymbol{e}(V_b + V_{bi})}{q_e N_d}} = \sqrt{2\boldsymbol{e}\boldsymbol{m}_n \boldsymbol{r}_n (V_b + V_{bi})}.$$

For example, in *n*-type silicon (V_b in volts and r in Ω cm)

$$W = 0.5 \,\mathbf{m}n \ge \sqrt{\mathbf{r}(V_b + V_{bi})}$$

and in *p*-type material

$$W = 0.3 \, \mathbf{m}n \ge \sqrt{\mathbf{r}(V_b + V_{bi})}$$

The depleted junction volume is free of mobile charge and thus forms a capacitor, bounded by the conducting p- and n-type semiconductor on each side.

The capacitance is

$$C = \mathbf{e} \frac{A}{W} = A \sqrt{\frac{\mathbf{e} q_e N}{2(V_b + V_{bi})}}$$

For bias voltages $V_b >> V_{bi}$

$$C \propto \frac{1}{\sqrt{V_b}}$$

In technical units

$$\frac{C}{A} = \frac{\mathbf{e}}{W} \approx 1 \, [\text{pF/cm}] \, \frac{1}{W}$$

A diode with 100 μ m thickness has about 1 pF/mm².

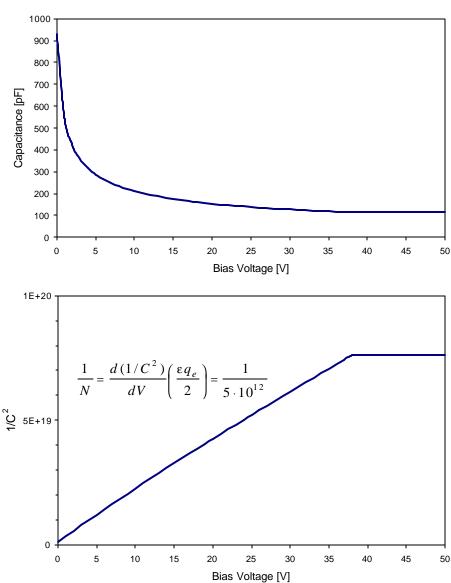
Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

The capacitance vs. voltage characteristic of a diode can be used to determine the doping concentration of the detector material.

$$\frac{C}{A} = \sqrt{\frac{\mathbf{e} \ q_e N}{2(V_b + V_{bi})}}$$

In a plot of $(A/C)^2$ vs. the detector bias voltage V_b the slope of the voltage dependent portion yields the doping concentration N.

Example: Si pad detector, A= 1 cm², 100 μ m thick



Capacitance vs. Voltage

Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

Charge Collection

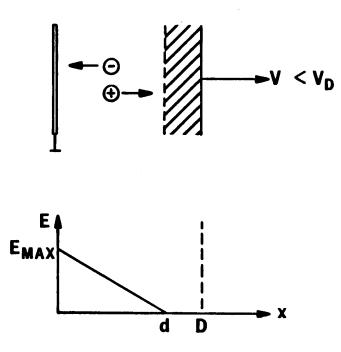
Mobile electrons and holes formed by radiation move under the influence of the electric field in the junction.

Although electrons and holes move in opposite directions, their contribution to the signal current is of the same polarity.

The time required for a charge carrier to traverse the sensitive volume is called the collection time.

Using the depletion width eq. 13 one can rewrite eq. 2 for the electric field

$$E(x) = \frac{2(V_b + V_{bi})}{W} \left(\frac{x}{W} - 1\right)$$
(14)



The detector bulk is completely depleted of mobile charge when W=d, the thickness of the substrate. This occurs at the externally applied depletion voltage

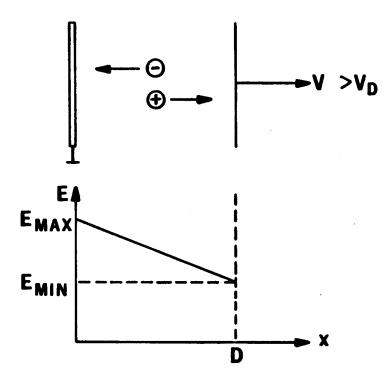
$$V_{d} = \frac{q_{e} N_{d} W^{2}}{2e} - V_{bi} \quad .$$
 (15)

The field drops linearly from its maximum value at the junction to zero at the opposite contact.

Increasing the bias voltage beyond this value adds a uniform field due to the voltage beyond depletion, yielding a distribution

$$E(\mathbf{x}) = \frac{2V_{di}}{W} \left(1 - \frac{\mathbf{x}}{W}\right) + \frac{V_b - V_{di}}{W}$$
(16)

where $V_{di} \equiv V_{d+}V_{bi}$ has been defined as the internal depletion voltage.



First consider a detector operated at partial depletion $V_b < V_d$. The field

$$E(\mathbf{x}) = -\frac{q_e N_d}{e} (W - \mathbf{x}) \equiv E_0 (W - \mathbf{x})$$
(17)

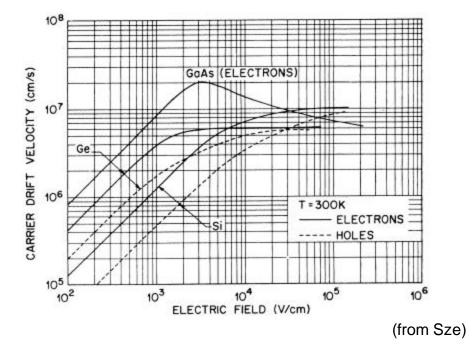
The local velocity of a charge carrier

$$\mathbf{v}(\mathbf{x}) = \mathbf{m}E(\mathbf{x}) = \mathbf{m}E_0(W - \mathbf{x}) \tag{18}$$

Note that the velocity does not depend on the time during which the charge carrier is accelerated, as in normal ballistic motion, since the charge carrier also interacts with the crystal lattice, exciting lattice vibrations (phonons). Since the characteristic times for phonon excitation are much smaller than the transport times, the carrier is always in equilibrium with the lattice, so the velocity is only a function of the electric field, at every position in the depletion region.

In Si at 300K the mobility at low fields is 1350 cm²/Vs for electrons and 480 cm²/Vs for holes.

The mobility is constant up to about 10^4 V/cm, but then increased phonon emission reduces the energy going into electron motion, so the mobility decreases. At high fields $E > 10^5$ V/cm the mobility $\mathbf{m} \propto 1/E$ and carriers attain a constant drift velocity of 10^7 cm/s.



Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

The time required for a charge originating at x_0 to reach a point x is

$$t(x) = \int_{x_0}^{x} \frac{1}{v(x)} dx = \frac{1}{mE_0} \int_{x_0}^{x} \frac{1}{W-x} dx = -\frac{1}{mE_0} \left[\ln(W-x) \right]_{x_0}^{x}$$
$$t(x) = -\frac{1}{mE_0} \ln \frac{W-x}{W-x_0} = \frac{e}{mq_e N_d} \ln \frac{W-x}{W-x_0}$$
(19)

Consider a hole drifting toward the high-field region and collected at the *p*-electrode x= 0. Using the hole mobility m_p eq. 19 yields

$$t(x_0) = -\frac{1}{m_p E_0} \ln \frac{W}{W - x_0} = \frac{e}{m_p q_e N_d} \ln \frac{W}{W - x_0}$$
(20)

,

If we define a characteristic collection time

$$\boldsymbol{t}_p \equiv \frac{\boldsymbol{e}}{\boldsymbol{m}_p \boldsymbol{q}_e \boldsymbol{N}_d}$$

then

$$t(x_0) = t_p \ln \frac{W}{W - x_0}$$
(20a)

For example, $t(x_0=0.5W)=0.7 t_p$ and $t(x_0=0.95W)=3.0 t_p$.

For the electrons drifting toward the low-field electrode x=W, eq. 19 does not yield a solution. However, it can be rewritten to yield the position as a function of time

$$x(t) = W - (W - x_0) e^{-t/t_n}$$
(21)

where t_n has been defined analogously to t_p . For a charge originating at the metallurgical junction $x_0 = 0$ and drifting toward x = W

$$x(t) = W(1 - e^{-t/t_n})$$
 (22)

In this simple picture, a charge drifting toward the low field region is never collected (in reality this is accomplished by diffusion), although after a time $t = 3t_n$ the carrier will have traversed 95% of the detector. Note that in a partially depleted detector the collection time constants t_n and t_p are independent of the applied bias voltage (and depletion thickness), but determined only by the doping concentration of the bulk material and the carrier mobility. t_n is numerically equal to the dielectric relaxation time of the *n*-type bulk

$$t = re = e_{Si} e_0 r = 1.05 \left[\frac{ns}{k\Omega \cdot cm} \right] r$$
(23)

In *n*-type silicon of 10 k Ω ·cm resistivity t_n = 10.5 ns and t_p = 31.5 ns, and typical collection times in partially depleted detectors are about 30 and 90 ns, respectively.

The collection time can be reduced by operating the detector at bias voltages exceeding the depletion voltage. The field distribution was given in eq. 16, which can be rewritten as

$$E(x) = E_0 \left(1 - \frac{x}{W} \right) + E_1$$
(24)

This yields a collection time

$$t(x) = \int_{x_0}^{x} \frac{1}{v(x)} dx = \frac{1}{m} \int_{x_0}^{x} \frac{1}{E_0 \left(1 - \frac{x}{W}\right) + E_1} dx$$
$$t(x) = -\frac{W}{mE_0} \left[\ln(E_0 + E_1 - E_0 \frac{x}{W} \right]_{x_0}^{x}$$

$$t(x) = \frac{W}{mE_0} \ln \frac{E_0 + E_1 - E_0 \frac{X}{W}}{E_0 + E_1 - E_0 \frac{X_0}{W}}.$$
 (25)

Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

For holes originating at $x_0 = W$ and drifting to the *p*-electrode x = 0

$$t_{cp} = \frac{W}{m_p E_0} \ln\left(1 + \frac{E_0}{E_1}\right).$$
(26a)

The corresponding result obtains for electrons originating at $x_0 = 0$ and drifting to the *n*-electrode x = W

$$t_{cn} = \frac{W}{m_n E_0} \ln\left(1 + \frac{E_0}{E_1}\right).$$
(26b)

For large overbias $E_1 >> E_0$,

$$\ln\left(1+\frac{E_0}{E_1}\right) \approx \frac{E_0}{E_1}$$

and

as expected for a uniform field.

Rewritten in terms of voltages, eqs. 26a and 26b become

 $t_{cp} = \frac{W^2}{2m_p V_{di}} \ln\left(\frac{V_b + V_{di}}{V_b - V_{di}}\right)$

 $t_{cp} = \frac{W}{m_p E_1}$

and

$$t_{cn} = \frac{W^2}{2m_n V_{di}} \ln\left(\frac{V_b + V_{di}}{V_b - V_{di}}\right)$$
(27)

Example:

For *n*-type silicon of 10 k Ω -cm resistivity, a detector thickness of 300 μ m, and a reverse bias voltage V_b = 60V= 2 V_d (i.e. E_0 =2.10³ and E_1 =10³ V/cm)

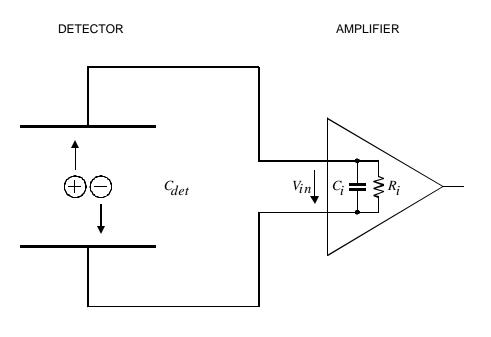
Collection times for

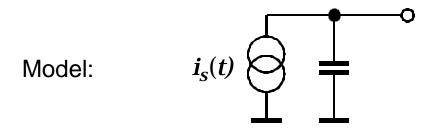
Electrons: 12 ns Holes: 36 ns.

This is substantially less than in the partially depleted device, where collection times for

Electrons: 30 ns Holes: 90 ns.

Time Dependence of the Signal Current





When does the signal current begin?

a) when the charge reaches the electrode?

or

b) when the charge begins to move?

Although the first answer is quite popular (encouraged by the phrase "charge collection"), the second is correct.

When a charge pair is created, both the positive and negative charges couple to the electrodes and induce mirror charges of equal magnitude.

As the positive charge moves toward the negative electrode, it couples more strongly to it and less to the positive electrode.

Conversely, the negative charge couples more to the positive electrode and less to the negative electrode.

The net effect is a negative current at the positive electrode and a positive current at the negative electrode, due to both the positive and negative charges.

The following discussion applies to ALL types of structures that register the effect of charges moving in an ensemble of electrodes, i.e. not just semiconductor or gas-filled ionization chambers, but also resistors, capacitors, photoconductors, vacuum tubes, etc.

60

Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

Helmuth Spieler LBNL

Induced Charge – Ramo's Theorem

W. Shockley, J. Appl. Phys. **9** (1938) 635 S. Ramo, Proc. IRE **27** (1939) 584

Consider a mobile charge in the presence of any number of grounded electrodes.

Surround the charge q with a small equipotential sphere. Then, if V is the potential of the electrostatic field, in the region between conductors

$$\nabla^2 V = 0$$

Call V_q the potential of the small sphere and note that V=0 on the conductors. Applying Gauss' law yields

$$\int_{\substack{\text{sphere's}\\\text{surface}}} \frac{\partial V}{\partial n} \, ds = 4pq$$

Next, consider the charge removed and one conductor A raised to unit potential.

Call the potential V_1 , so that

$$\nabla^2 V_1 = 0$$

in the space between the conductors, including the site where the charge was situated. Call the new potential at this point V_{q1} .

Green's theorem states that

$$\int_{\substack{\text{volume between boundaries}}} (V_1 \nabla^2 V - V \nabla^2 V_1) \, dv = - \int_{\substack{\text{boundary surfaces}}} \left[V_1 \frac{\partial V}{\partial n} - V \frac{\partial V_1}{\partial n} \right] \, ds$$

$$\int_{\text{sphere's}} \partial n$$

Choose the volume to be bounded by the conductors and the tiny sphere.

Then the left hand side is 0 and the right hand side may be divided into three integrals:

- 1. Over the surfaces of all conductors except A. This integral is 0 since on these surfaces $V = V_1 = 0$.
- 2. Over the surface of A. As $V_1 = 1$ and V = 0 this reduces to

$$-\int_{\text{surface A}}\frac{\partial V}{\partial n}\,ds$$

3. Over the surface of the sphere.

$$-V_{q1} \int_{\substack{\text{sphere's} \\ \text{surface}}} \frac{\partial V}{\partial n} \, ds + V_{q} \int_{\substack{\text{sphere's} \\ \text{surface}}} \frac{\partial V_{1}}{\partial n} \, ds$$

The second integral is 0 by Gauss' law, since in this case the charge is removed.

Combining these three integrals yields

$$0 = -\int_{\text{surface } A} \frac{\partial V}{\partial n} ds - V_{q1} \int_{\text{sphere's surface}} \frac{\partial V}{\partial n} ds = 4p \ Q_A - 4p \ qV_{q1}$$

or

$$Q_A = q V_{q1}$$

If the charge q moves in direction x, the current on electrode A is

$$i_{A} = \frac{dQ_{A}}{dt} = q \frac{dV_{q1}}{dt} = q \left(\frac{\partial V_{q1}}{\partial x} \frac{dx}{dt} \right)$$

Since the velocity of motion

$$\frac{dx}{dt} = V_x$$

the induced current on electrode A is

$$i_A = q \ v_x \frac{\partial V_{q1}}{dx}$$

where V_{q1} is the "weighting potential" that describes the coupling of a charge at any position to electrode A.

The weighting potential is for a specific electrode is obtained by setting the potential of the electrode to 1 and setting all other electrodes to potential 0.

• If a charge *q* moves along any path *s* from position 1 to position 2, the net induced charge on electrode *k* is

$$\Delta Q_k = q(V_{q1}(2) - V_{q1}(1)) \equiv q(\Phi_k(2) - \Phi_k(1))$$

• The instantaneous current can be expressed in terms of a weighting field

$$i_k = -q \ \vec{v} \cdot \ \vec{F_k}$$

The weighting field is determined by applying unit potential to the measurement electrode and 0 to all others.

Note that the electric field and the weighting field are distinctly different.

- The electric field determines the charge trajectory and velocity
- The weighting field depends only on geometry and determines how charge motion couples to a specific electrode.
- Only in 2-electrode configurations are the electric field and the weighting field of the same form.

Example 1: Parallel plate geometry with uniform field

(semiconductor detector with very large overbias)

Assume a voltage V_b applied to the detector. The distance between the two parallel electrodes is d.

The electric field that determines the motion of charge in the detector is

$$E = \frac{V_b}{d}$$

Assume that the velocity of the charge carriers is collision limited, so the velocity of the charge

$$\mathbf{v} = \mathbf{m}\mathbf{E} = \mathbf{m}\frac{V_b}{d}$$

The weighting field is obtained by applying unit potential to the collection electrode and grounding the other.

$$E_Q = \frac{1}{d}$$

so the induced current

$$i = qvE_Q = qm\frac{V_b}{d}\frac{1}{d} = qm\frac{V_b}{d^2}$$

since both the electric field and the weighting field are uniform throughout the detector, the current is constant until the charge reaches its terminal electrode. Assume that the charge is created at the opposite electrode and traverses the detector thickness d.

The required collection time, i.e. the time required to traverse the detector thickness d

$$t_c = \frac{d}{v} = \frac{d}{m \frac{V_b}{d}} = \frac{d^2}{m V_b}$$

The induced charge

$$Q = it_c = qm\frac{V_b}{d^2}\frac{d^2}{m V_b} = q$$

Next, assume an electron-hole pair formed at coordinate x from the positive electrode.

The collection time for the electron

$$t_{ce} = \frac{x}{v_e} = \frac{xd}{m_e V_b}$$

and the collection time for the hole

$$t_{ch} = \frac{d-x}{V_h} = \frac{(d-x)d}{m_h V_b}$$

Since electrons and holes move in opposite directions, they induce current of the same sign at a given electrode, despite their opposite charge. The induced charge due to the motion of the electron

$$Q_e = q_e m_e \frac{V_b}{d^2} \frac{xd}{m_e V_b} = q_e \frac{x}{d}$$

whereas the hole contributes

$$Q_h = q_e m_h \frac{V_b}{d^2} \frac{(d-x)d}{m_h V_b} = q_e \left(1 - \frac{x}{d}\right)$$

Assume that x = d/2. After the collection time for the electron

$$t_{ce} = \frac{d^2}{2m_eV_b}$$

it has induced a charge $q_e/2$.

At this time the hole, due to its lower mobility $m_{l} \gg m_{e}/3$, has induced $q_{e}/6$, yielding a cumulative induced charge of $2q_{e}/3$.

After the additional time for the hole collection, the remaining charge $q_e/3$ is induced, yielding the total charge q_e .

In this configuration

- Electrons and holes contribute equally to the currents on both electrodes
- The instantaneous current at any time is the same (although of opposite sign) on both electrodes

The continuity equation (Kirchhoff's law) must be satisfied

$$\sum_{k} i_{k} = 0$$

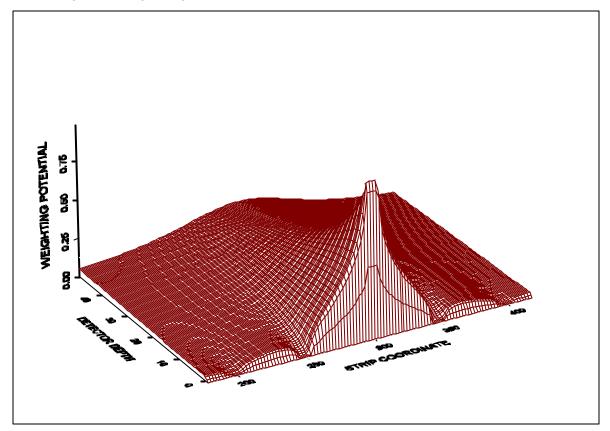
Since k=2: $i_1 = -i_2$

Example 2: Double-Sided Strip Detector

The strip pitch is assumed to be small compared to the thickness.

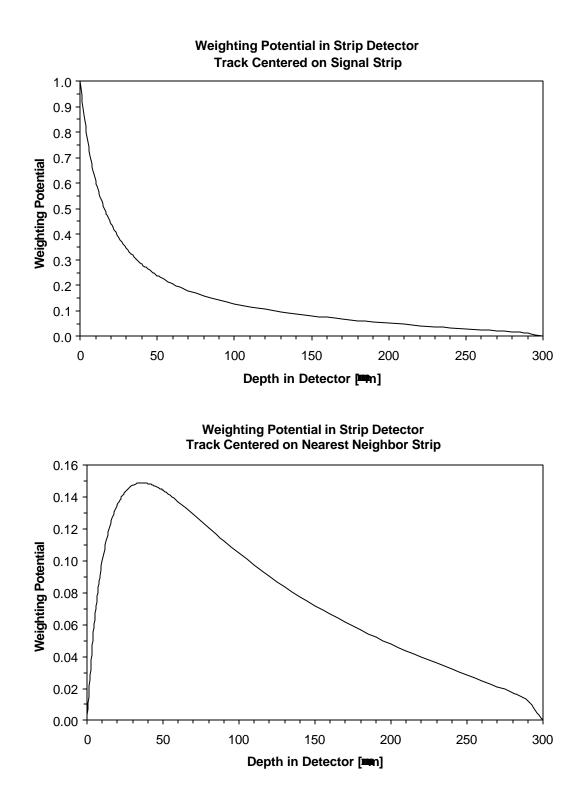
The electric field is similar to a parallel-plate geometry, except in the immediate vicinity of the strips.

The signal weighting potential, however is very different.



Weighting potential for a 300 μ m thick strip detector with strips on a pitch of 50 μ m. Only 50 μ m of depth are shown.

Cuts through the weighting potential



Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

Consider an electron-hole pair q_n , q_p originating on a point x_0 on the center-line of two opposite strips of a double-sided strip detector. The motion of the electron towards the *n*-electrode x_n is equivalent to the motion of a hole in the opposite direction to the *p*-electrode x_p . The total induced charge on electrode *k* after the charges have traversed the detector is

$$Q_{k} = q_{p}[\Phi_{Qk}(x_{p}) - \Phi_{Qk}(x_{0})] + q_{n}[\Phi_{Qk}(x_{n}) - \Phi_{Qk}(x_{0})]$$

since the hole charge $q_p = q_e$ and $q_n = -q_e$

$$Q_{k} = q_{e} [\Phi_{Qk}(x_{p}) - \Phi_{Qk}(x_{0})] - q_{e} [\Phi_{Qk}(x_{n}) - \Phi_{Qk}(x_{0})]$$

$$Q_k = q_e[\Phi_{Qk}(x_p) - \Phi_{Qk}(x_n)]$$

If the signal is measured on the *p*-electrode, collecting the holes,

$$\Phi_{Qk} (x_p) = 1,$$

$$\Phi_{Qk} (x_n) = 0$$

and

 $Q_k = q_e$.

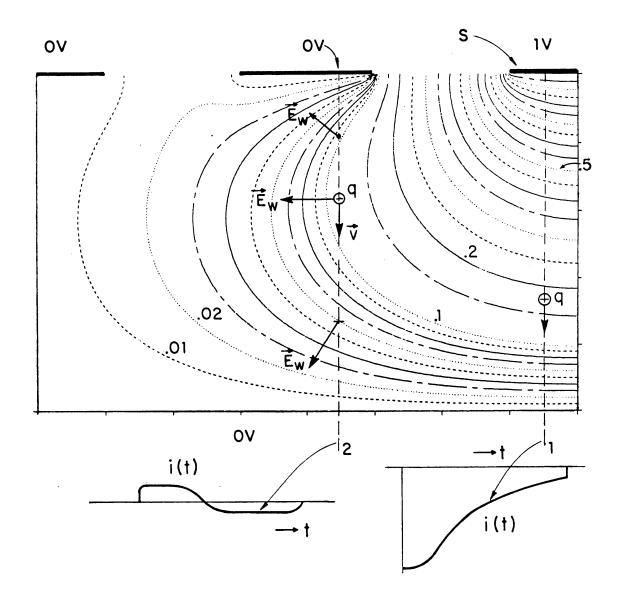
If, however, the charge is collected on the neighboring strip k+1, then

$$\Phi_{Qk+1} (x_p) = \mathbf{0},$$

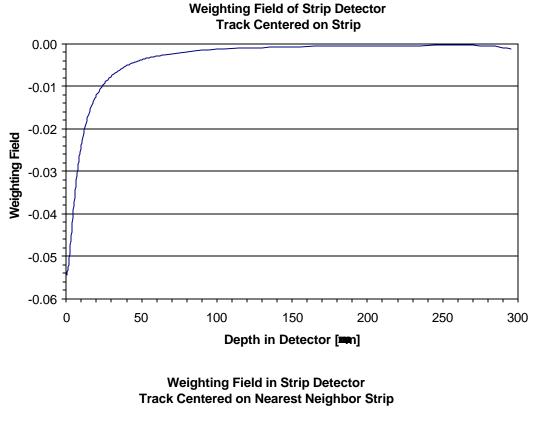
$$\Phi_{Qk+1} (x_n) = \mathbf{0}$$

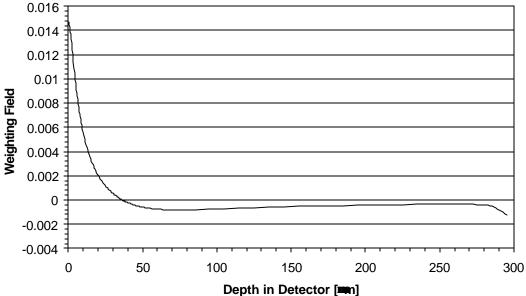
and $Q_{k+1}=0$.

In general, if moving charge does not terminate on the measurement electrode, signal current will be induced, but the current changes sign and integrates to zero. This is illustrated in the following schematic plot of the weighting field in a strip detector (from Radeka)



Cuts through the Weighting Field in a Strip Detector (d= 300 µm, p= 50 µm)





Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

Note, however that this charge cancellation on "non-collecting" electrodes relies on the motion of both electrons and holes.

Assume, for example, that the holes are stationary, so they don't induce a signal. Then the first term of the first equation above vanishes, which leaves a residual charge

$$Q_k = q_e \left[\Phi_{Qk} \left(x_0 \right) - \Phi_{Qk} \left(x_n \right) \right]$$

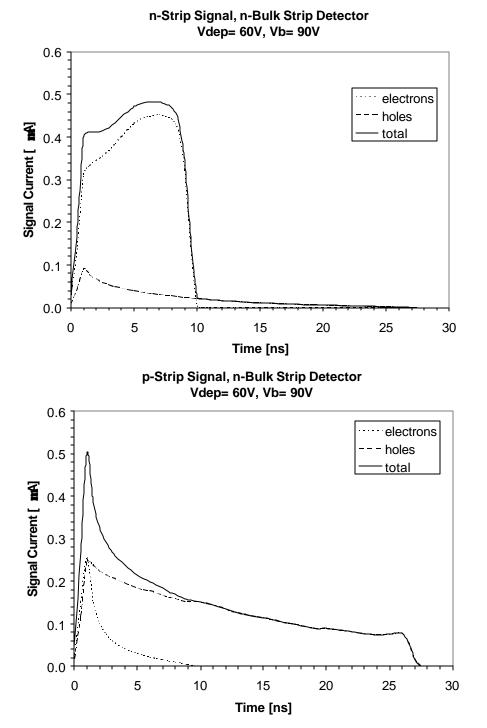
since for any coordinate not on an electrode

$$Q_k(x_0) \neq 0$$
,

although it may be very small.

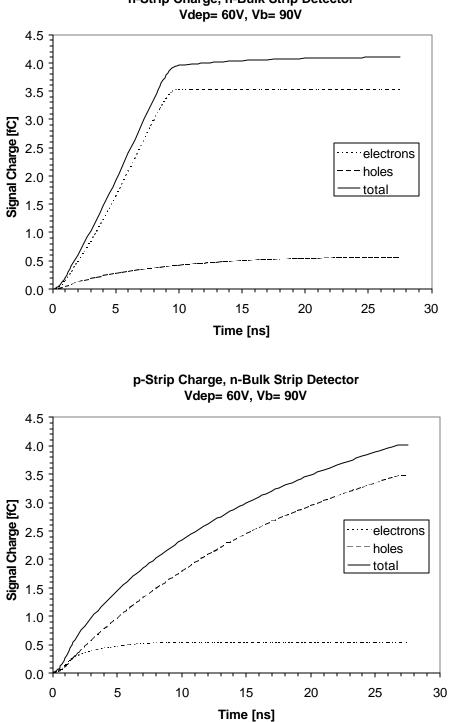
An important consequence of this analysis is that one cannot simply derive pulse shapes by analogy with a detector with contiguous electrodes (i.e. a parallel plate detector of the same overall dimensions as a strip detector). Specifically,

- 1. the shape of the current pulses can be quite different,
- 2. the signals seen on opposite strips of a double-sided detector are not the same (although opposite in sign), and
- 3. the net induced charge on the p- or n-side is not split evenly between electrons and holes.
 - Because the weighting potential is strongly peaked near the signal electrode, most of the charge is induced when the moving charge is near the signal electrode.
 - As a result, most of the signal charge is due to the charge terminating on the signal electrode.



Current pulses in strip detectors (track traversing the detector)

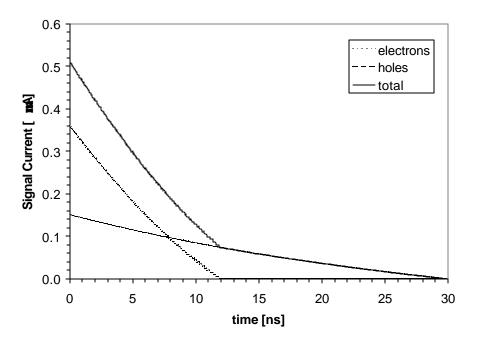
The duration of the electron and hole pulses is determined by the time required to traverse the detector as in a parallel-plate detector, but the shapes are very different.



n-Strip Charge, n-Bulk Strip Detector

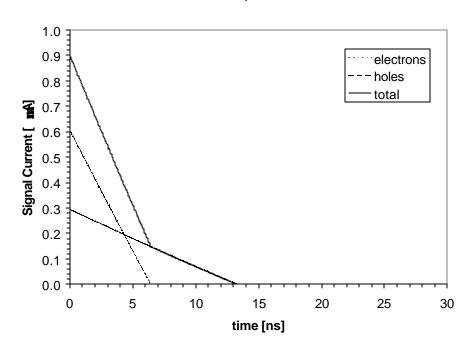
For comparison:

Current pulses in pad detectors (track traversing the detector)



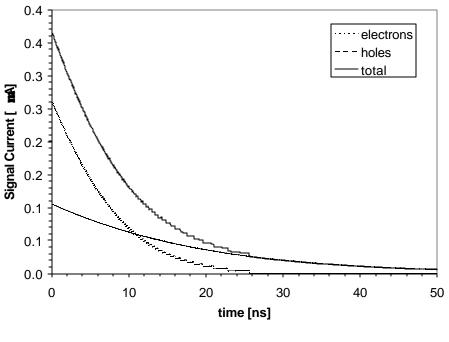
Pad Detector, Vdep= 60V, Vb= 90V

For the same depletion and bias voltages the pulse durations are the same as in strip detectors. Overbias decreases the collection time.

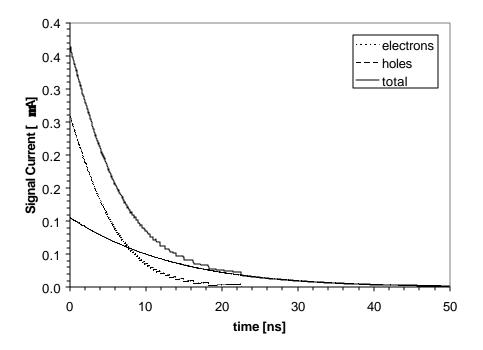


Pad Detector, Vdep= 60V, Vb= 200V

Operation at or under full depletion leads to long "tails" from the low-field region.



Pad Detector, Vdep= 60V, Vb= 60V



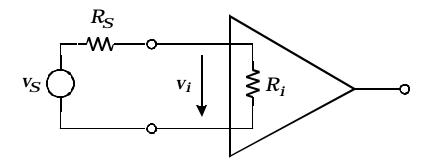
Note: The "steps" in the curves are artifacts of the calculation resolution.

Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

3. Signal Acquisition

Amplifier Types

a) Voltage-Sensitive Amplifier



The signal voltage at the amplifier input

$$v_i = \frac{R_i}{R_S + R_i} v_S$$

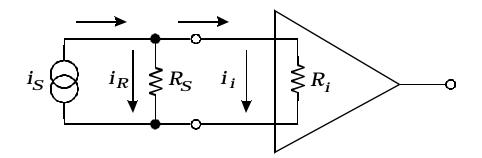
If the signal voltage at the amplifier input is to be approximately equal to the signal voltage

$$V_i \approx V_S$$
 P $R_i \gg R_S$

To operate in the voltage-sensitive mode, the amplifier's input resistance (or impedance) must be large compared to the source resistance (impedance).

In ideal voltage amplifiers one sets $R_i = \infty$, although this is never true in reality, although it can be fulfilled to a good approximation.

To provide a voltage output, the amplifier should have a low output resistance, i.e. its output resistance should be small compared to the input resistance of the following stage.



The signal current divides into the source resistance and the amplifier's input resistance. The fraction of current flowing into the amplifier

$$\boldsymbol{i}_i = \frac{\boldsymbol{R}_s}{\boldsymbol{R}_s + \boldsymbol{R}_i} \, \boldsymbol{i}_S$$

If the current flowing into the amplifier is to be approximately equal to the signal current

$$i_i \approx i_S$$
 P $R_i \ll R_S$

To operate in the current-sensitive mode, the amplifier's input resistance (or impedance) must be small compared to the source resistance (impedance).

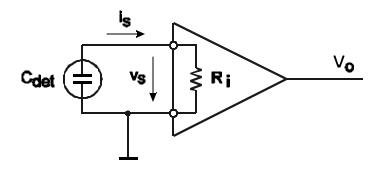
One can also model a current source as a voltage source with a series resistance. For the signal current to be unaffected by the amplifier input resistance, the input resistance must be small compared to the source resistance, as derived above.

• Whether a specific amplifier operates in the current or voltage mode depends on the source resistance.

At the output, to provide current drive the output resistance should be high, i.e. large compared to the input resistance of the next stage.

• Amplifiers can be configured as current mode input and voltage mode output or, conversely, as voltage mode input and current mode output. The gain is then expressed as V/A or A/V.

c) Voltage and Current Mode with Capacitive Sources



Output voltage V_o = voltage gain $A_v \times$ input voltage v_s .

Operating mode depends on charge collection time t_{coll} and the input time constant R_iC_{det} :

a) $R_i C_{det} \ll t_{coll}$ detector capacitance discharges rapidly

 $\Rightarrow V_o \propto i_s(t)$

current sensitive amplifier

b) $R_i C_{det} >> t_{coll}$ detector capacitance discharges slowly

 $\Rightarrow V_o \propto \int i_s(t) dt$

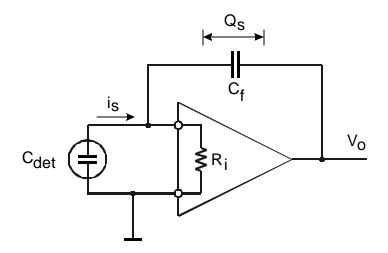
voltage sensitive amplifier

Note that in both cases the amplifier is providing voltage gain, so output signal voltage is determined directly by the input voltage. The difference is that the shape of the input voltage pulse is determined either by the instantaneous current or by the integrated current and the decay time constant. d) Feedback Amplifiers

Basic amplifier as used above.

High input resistance: $R_i C_{det} >> t_{coll}$

Add feedback capacitance C_f



Signal current i_s is integrated on feedback capacitor C_f :

 $V_o \mu Q_s / C_f$

Amplifier output directly determined by signal charge, insensitive to detector capacitance

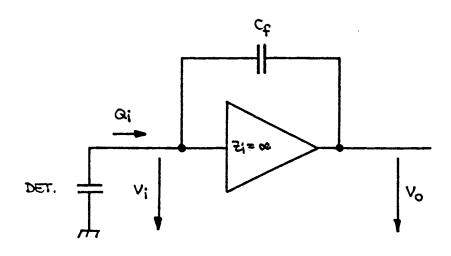
 \Rightarrow charge-sensitive amplifier

Active Integrator ("charge-sensitive amplifier")

Start with inverting voltage amplifier

Voltage gain $dV_o/dV_i = -A \implies v_o = -A v_i$

Input impedance = ∞ (i.e. no signal current flows into amplifier input) Connect feedback capacitor C_f between output and input.



Voltage difference across C_f : $v_f = (A+1) v_i$

 \Rightarrow Charge deposited on C_f : $Q_f = C_f v_f = C_f (A+1) v_i$

 $Q_i = Q_f$ (since $Z_i = \infty$)

 \Rightarrow Effective input capacitance

$$C_i = \frac{Q_i}{v_i} = C_f (A+1)$$

("dynamic" input capacitance)

Gain

$$A_Q = \frac{dV_o}{dQ_i} = \frac{A \cdot v_i}{C_i \cdot v_i} = \frac{A}{C_i} = \frac{A}{A+1} \cdot \frac{1}{C_f} \approx \frac{1}{C_f} \quad (A \gg 1)$$

Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

 Q_i is the charge flowing into the preamplifier

but some charge remains on C_{det} .

What fraction of the signal charge is measured?

$$\frac{Q_i}{Q_s} = \frac{C_i v_i}{Q_{det} + Q_i} = \frac{C_i}{Q_s} \cdot \frac{Q_s}{C_i + C_{det}}$$
$$= \frac{1}{1 + \frac{C_{det}}{C_i}} \approx 1 \text{ (if } C_i >> C_{det} \text{)}$$

Example:

A =
$$10^{3}$$

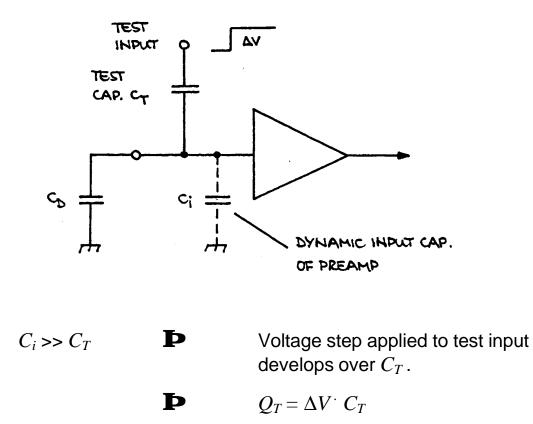
 $C_{f} = 1 \text{ pF}$ **P** $C_{i} = 1 \text{ nF}$
 $C_{det} = 10 \text{ pF}$: $Q_{i}/Q_{s} = 0.99$
 $C_{det} = 500 \text{ pF}$: $Q_{i}/Q_{s} = 0.67$
 \uparrow
Si Det.: 50 µm thick
500 mm² area

Note: Input coupling capacitor must be $>>C_i$ for high charge transfer efficiency.

Calibration

Inject specific quantity of charge - measure system response

Use voltage pulse (can be measured conveniently with oscilloscope)



Accurate expression:

$$Q_T = \frac{C_T}{1 + \frac{C_T}{C_i}} \cdot \Delta V \approx C_T \left(1 - \frac{C_T}{C_i} \right) \Delta V$$

Typically: $C_T/C_i = 10^{-3} - 10^{-4}$

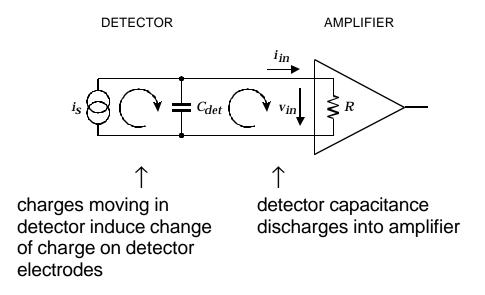
Realistic Charge-Sensitive Preamplifiers

The preceding discussion assumed idealized amplifiers with infinite speed.

In reality, amplifiers may be too slow to follow the instantaneous detector pulse.

Does this incur a loss of charge?

Equivalent Circuit:



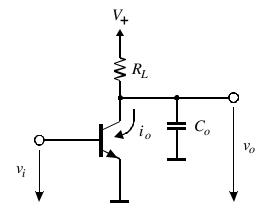
Signal is preserved even if the amplifier responds much more slowly than the detector signal.

However, the response of the amplifier affects the measured pulse shape.

- How do "real" amplifiers affect the measured pulse shape?
- How does the detector affect amplifier response?

84

A Simple Amplifier



Voltage gain:

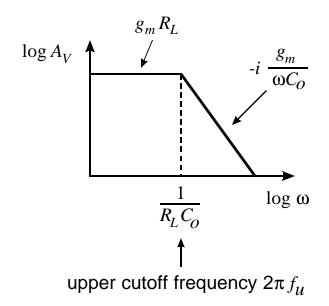
$$A_V = \frac{dv_o}{dv_i} = \frac{di_o}{dv_i} \cdot Z_L \equiv g_m Z_L$$

 $g_m \equiv \text{transconductance}$

$$Z_L = R_L //C_o$$

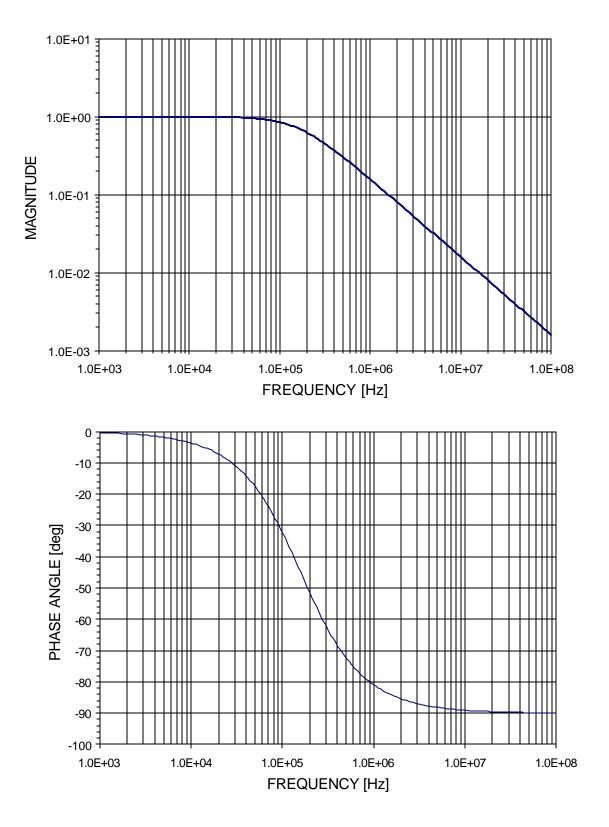
$$\frac{1}{Z_L} = \frac{1}{R_L} + i \mathbf{w} C_o \qquad \Rightarrow \quad A_V = g_m \left(\frac{1}{R_L} + i \mathbf{w} C_o\right)^{-1}$$

low freq. high freq.



Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

Exact amplitude and phase response:

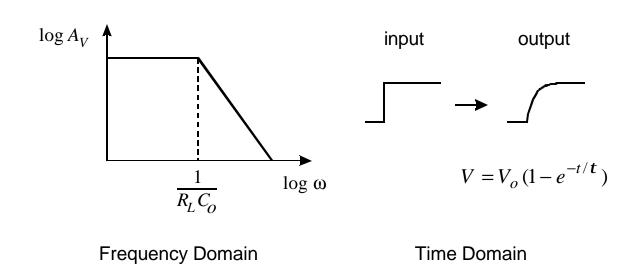


Pulse Response of the Simple Amplifier

A voltage step $v_i(t)$ at the input causes a current step $i_o(t)$ at the output of the transistor.

D The output voltage changes with a time constant $t = R_L C_o$

For the output voltage to change, the output capacitance C_o must first charge up.



The time constant t corresponds to the upper cutoff frequency

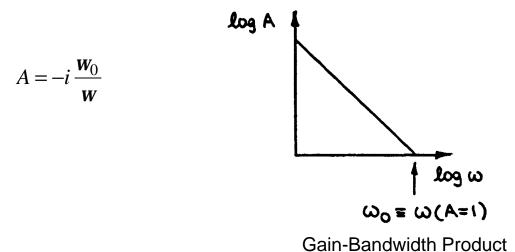
$$\boldsymbol{t} = \frac{1}{2\boldsymbol{p} f_u}$$

Input Impedance of a Charge-Sensitive Amplifier

Input impedance

$$Z_i = \frac{Z_f}{A+1} \approx \frac{Z_f}{A} \quad (A \gg 1)$$

Amplifier gain vs. frequency beyond the upper cutoff frequency



Feedback Impedance

$$Z_f = -i \frac{1}{\mathbf{w} C_f}$$

 \Rightarrow Input Impedance

$$Z_i = -\frac{i}{wC_f} \cdot \frac{1}{-i\frac{w_0}{w}}$$
$$Z_i = \frac{1}{w_0C_f}$$

Þ

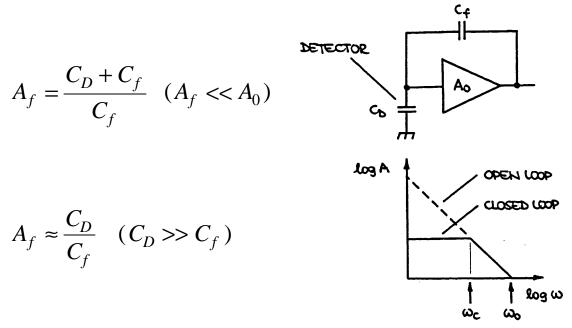
Imaginary component vanishes

Resistance: $Z_i \rightarrow R_i$

Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

Time Response of a Charge-Sensitive Amplifier

Closed Loop Gain



Closed Loop Bandwidth

$$\boldsymbol{w}_{C}\boldsymbol{A}_{f}=\boldsymbol{w}_{0}$$

Response Time

$$\boldsymbol{t}_{amp} = \frac{1}{\boldsymbol{w}_C} = \boldsymbol{C}_D \ \frac{1}{\boldsymbol{w}_0 \boldsymbol{C}_f}$$

D Rise time increases with detector capacitance.

Alternative Picture: Input Time Constant

$$\boldsymbol{t}_{i} = R_{i}C_{D}$$
$$\boldsymbol{t}_{i} = \frac{1}{\boldsymbol{w}_{0}C_{f}} \cdot C_{D} = \boldsymbol{t}_{amp}$$

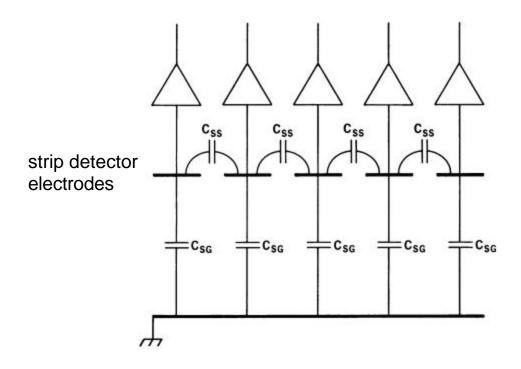
Same result as from conventional feedback theory.

Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

Appication to Strip and Pixel Detectors

Input impedance is critical in strip or pixel detectors:

Amplifiers must have a low input impedance to reduce transfer of charge through capacitance to neighboring strips



For strip pitches that are smaller than the bulk thickness the capacitance is dominated by the fringing capacitance to the neighboring strips C_{SS} .

Typically: 1 - 2 pF/cm for strip pitches of $25 - 100 \mu \text{m}$ on Si.

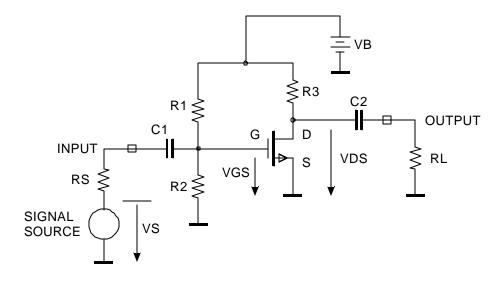
The backplane capacitance C_{SG} is typically 20% of the strip-to-strip capacitance.

Negligible cross-coupling at times $t > (2 \dots 3) \times R_i C_D$ and if $C_i >> C_D$.

Appendix: Equivalent Circuits

Take a simple amplifier as an example.

a) full circuit diagram



First, just consider the DC operating point of the circuitry between C1 and C2:

1. The n-type MOSFET requires a positive voltage applied from the gate G to the source S.

$$V_{GS} = \frac{R2}{R1 + R2} V_B$$

- 2. The gate voltage V_{GS} sets the current flowing into the drain electrode D.
- 3. Assume the drain current is I_D . Then the DC voltage at the drain is

$$V_{DS} = V_B - I_D R3$$

Next, consider the AC signal V_S provided by the signal source.

Assume that the signal at the gate G is dV_G/dt .

1. The current flowing through R2 is

$$\frac{dI}{dt}(R2) = \frac{dV_G}{dt} \cdot \frac{1}{R2}$$

2. The current flowing through R1 is

$$\frac{dI}{dt}(R1) = \frac{1}{R1} \cdot \frac{d}{dt}(V_G + V_B)$$

Since the battery voltage V_B is constant,

$$\frac{dV_{\rm B}}{dt} = 0$$

so that

$$\frac{dI}{dt}(R1) = \frac{1}{R1} \cdot \frac{dV_G}{dt}$$

3. The total time-dependent input current is

$$\frac{dI}{dt} = \frac{dI_{R1}}{dt} + \frac{dI_{R2}}{dt} = \left(\frac{1}{R1} + \frac{1}{R2}\right) \cdot \frac{dV_G}{dt} \equiv \frac{1}{R_i} \cdot \frac{dV_G}{dt}$$

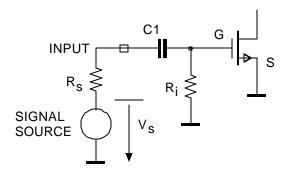
where

$$R_i = \frac{R1 \cdot R2}{R1 + R2}$$

is the parallel connection of R1 and R2.

Radiation Detectors and Signal Processing - II. Signal Formation Oct. 8 – Oct. 12, 2001; Univ. Heidelberg

Consequently, for the AC input signal the circuit is equivalent to



At the output, the voltage signal is formed by the current of the transistor flowing through the combined output load formed by R_L and R3.

For the moment, assume that $R_L >> R3$. Then the output load is dominated by R3.

The voltage at the drain D is

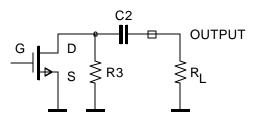
$$V_o = V_B - i_D R3$$

If the gate voltage is varied, the transistor drain current changes, with a corresponding change in output voltage

$$\frac{dV_o}{di_D} = \frac{d}{dI_D} (V_B - i_D R3) = R3$$

D The DC supply voltage does not directly affect the signal formation.

If we remove the restriction $R_L >> R3$, the total load impedance for time-variant signals is the parallel connection of R3 and $(X_{C2} + R_L)$, yielding the equivalent circuit at the output



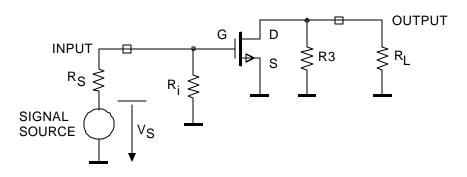
If the source resistance of the signal source $R_S << R_i$, the input coupling capacitor C1 and input resistance R_i form a high-pass filter. At frequencies where the capacitive reactance is $<< R_i$, i.e.

$$f >> \frac{1}{2\boldsymbol{p} \ R_i C 1}$$

the source signal v_s suffers negligible attenuation at the gate, so that

$$\frac{dV_G}{dt} = \frac{dV_s}{dt}$$

Correspondingly, at the output, if the impedance of the output coupling capacitor $C2 << R_L$, the signal across R_L is the same as across R_3 , yielding the simple equivalent circuit



Note that this circuit is only valid in the "high-pass" frequency regime.

Equivalent circuits are an invaluable tool in analyzing systems, as they remove extraneous components and show only the components and parameters essential for the problem at hand.

Often equivalent circuits are tailored to very specific questions and include simplifications that are not generally valid. Conversely, focussing on a specific question with a restricted model may be the only way to analyze a complicated situation.