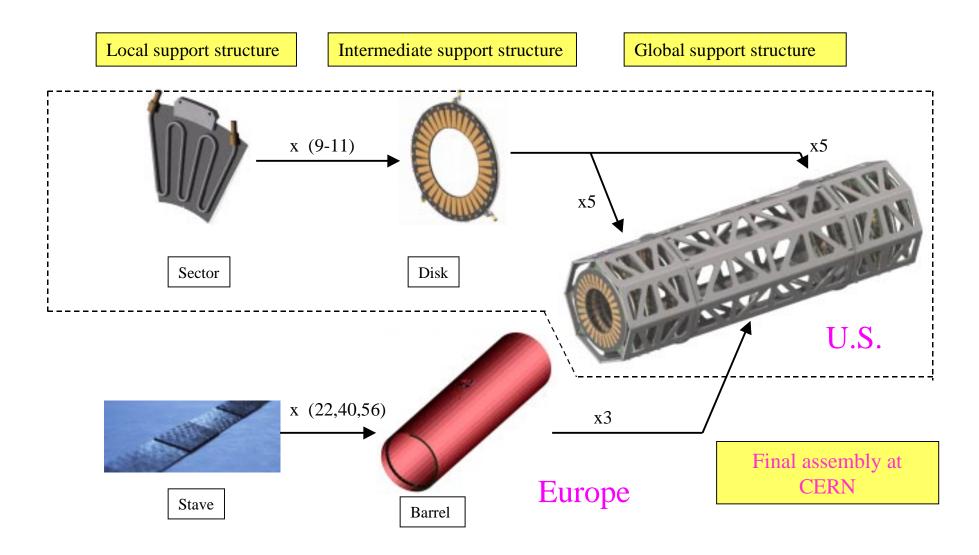

WBS 1.1.1 Pixel System

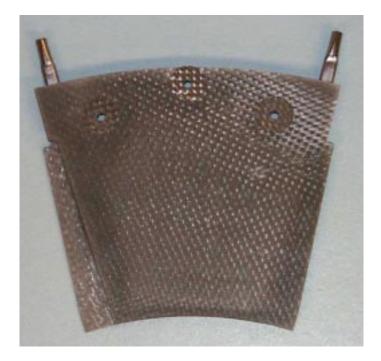

Mechanics, Hybrids and Modules

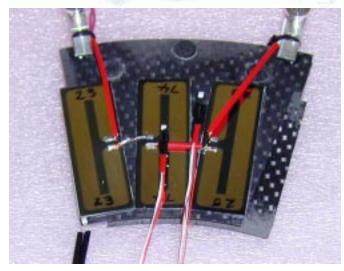
M. Gilchriese - February 2000

WBS 1.1.1 Pixel System

WBS 1.1.1.1 Pixel Mechanics

WBS 1.1.1.1 Deliverables


- The proposed US pixel mechanics deliverables are listed below (these are fabrication costs only- design is separate)
- Design and development has occurred and continues in all of these areas.
- There is a very good partitioning of the work between the US and European institutions that is reflected in these deliverables.
- These deliverables chosen to focus US effort, minimize interfaces and advance experiment.


WBS Number	Description	Base Cost	Cont Cost (k\$)	Cont %	Total Cost	EDIA Labor	Mfg Labor	EDIA Matis	Mfg Matls	FTEs Proje	FTEs ectOther
1.1.1.3	Production	1571	559	36	2129	0	563	0	1008	6.3	7.5
1.1.1.3.1	Disk Sectors	231	65	28	296	0	153	0	78	1.7	0.0
1.1.1.3.2	Disk Support Rings	220	71	32	291	0	0	0	220	0.0	0.0
1.1.1.3.3	Support Frame	328	105	32	433	0	0	0	328	0.0	0.0
1.1.1.3.4	Thermal/EMI Barriers	49	16	33	65	0	33	0	16	0.4	0.0
1.1.1.3.5	Services	396	135	34	530	0	276	0	120	3.1	0.0
1.1.1.3.6	Disk Assembly	83	45	54	128	0	50	0	34	0.5	2.3
1.1.1.3.7	Disk Final Assembly and	135	73	54	208	0	7	0	128	0.1	5.3
1.1.1.3.8	Test Equipment	73	29	39	102	0	0	0	73	0.0	0.0
1.1.1.3.9	B-layer Installation	53	21	39	74	0	43	0	11	0.5	0.0

WBS 1.1.1.1.3.1 Disk Sectors

Al-tube LBNL made Current baseline

Hytec, Inc All-carbon Option ESLI, Inc All-carbon

M. Gilchriese - February 2000

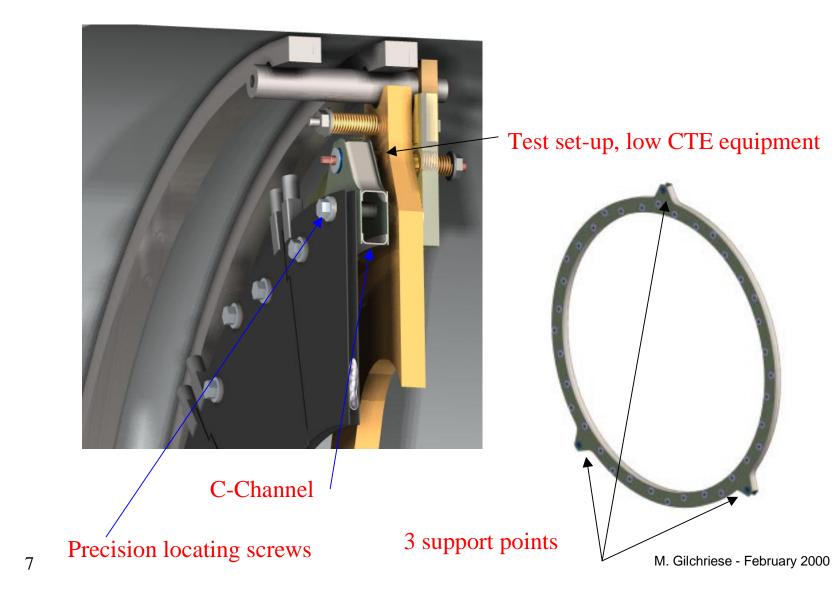
WBS 1.1.1.1.3.1 Disk Sectors

				SEALED
	SPEC	ESLI	AL TUBE	TUBE
Thermal performance (silicon temperature)	<-6°C			
PreRad		OK	OK	OK
After 50 Mrad		?	OK(22 MRad	?
Z distortion(μ /°C)(Δ T=40)	1			
PreRad		<1	<1?	< 0.5?
After 50 Mrad		?	?	?
In-plane distortion(μ /°C)(Δ T=40)	<10			
PreRad		?	?	?
After 50 Mrad		?	?	?
Radiation length(%X _o)(active area)	< 0.7	< 0.6	< 0.65	< 0.7
Average thickness uniformity(µ)	1	Bad	<50	?
Face uniformity(µ)	1	?	<15	?
Maximum pressure(bar absolute)	10	<7	10	10
Pressure distortion(µ/bar)	1			
PreRad		?	2-10(wings)	< 0.3
After 50 MRad		?	?	?
Robustness(relative scale, 1 is best)	N/A	3	1	2
Cost per sector(relative scale)	N/A	3	1	1
Production rate(sectors/month)	>12	?	OK	OK
Other risk factors(relative scale, 1 is best)	N/A			
Sole source procurement		3	1	2
Corrosion resistance		1	3(but OK)	1
Potential for leakage ²		3	1	2
Compatibility with fittings		2	1	1

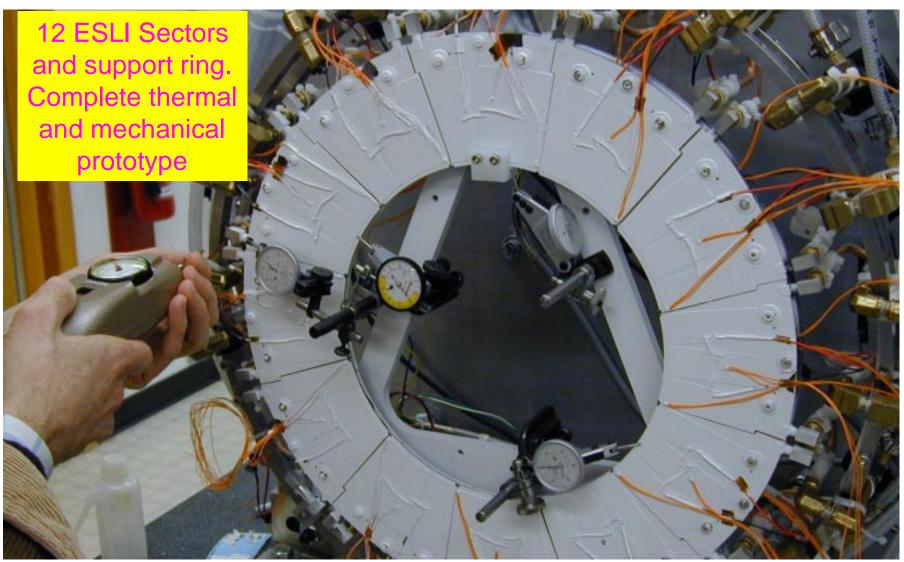
Extensive measurement program with some holes to fill in next months.

•

٠

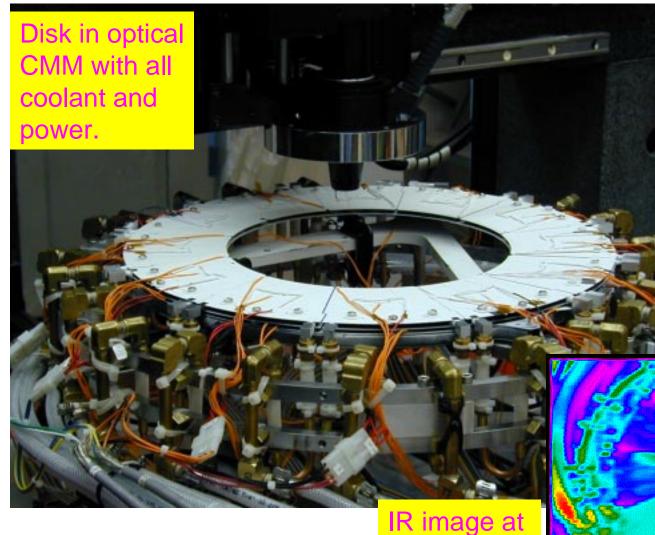

- Now moving to production issues.
- Internal review on April 10.
- ATLAS Final Design Review planned for June, 2000
 - ATLAS
 Production
 Readiness Review
 planned by
 October.

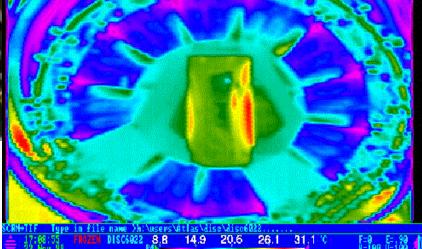
¹Total z distortion resulting from temperature changes, thickness nonuniformity and distortions from pressurization must be less than ? microns. M.


6 ²Assumes no cracks in ESLI design occur, no corrosion in Al tube design.

M. Gilchriese - February 2000

WBS 1.1.1.1.3.2 and 1.1.1.1.3.6

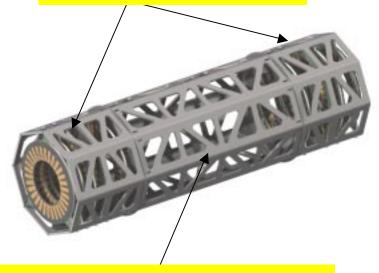

WBS 1.1.1.1.3.2 and 1.1.1.1.3.6


WBS 1.1.1.1.3.2 and 1.1.1.1.3.6

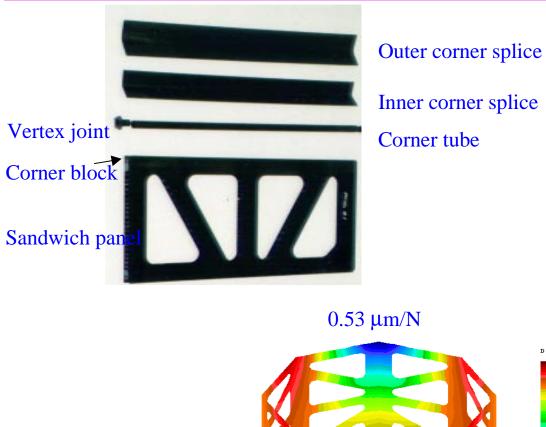
full power at

room temp.

- Assembly experience very valuable.
- Thermal performance OK
- Stability testing underway. Looks good so far.
- Precision(as built) spec not met.
- 2nd full prototype under fabrication with revised fab technique for ring.



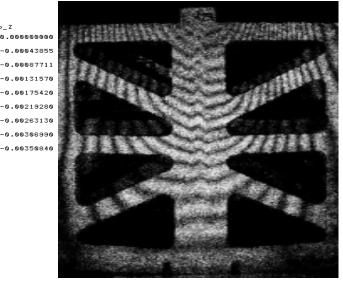
WBS 1.1.1.3.3

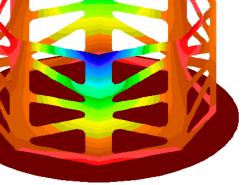

Prototype end section fabricated by December 1999 and under test.

Two end sections

Central frame section and end cones supporting barrel shells

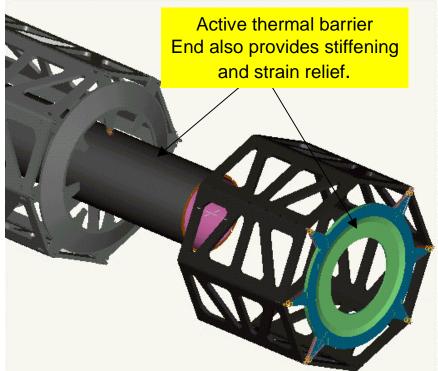
WBS 1.1.1.3.3

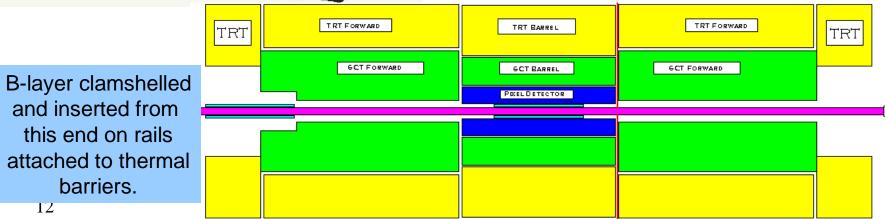



• Detailed comparison of measured deflections with FEA.

 Next step is to prototype disk supports and overall support. Designs for these have started.

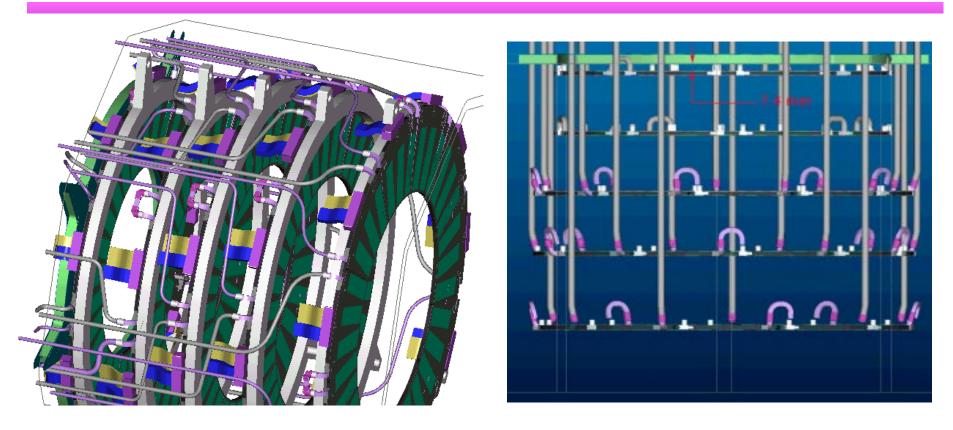
> Deflections measured with TV holography


> > $0.69 \ \mu m/N$

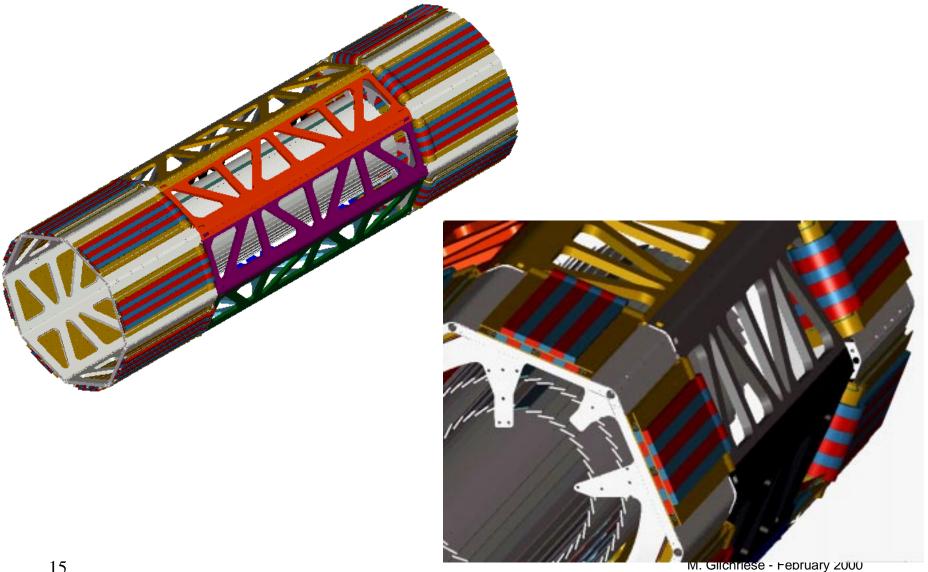


Finite element model result

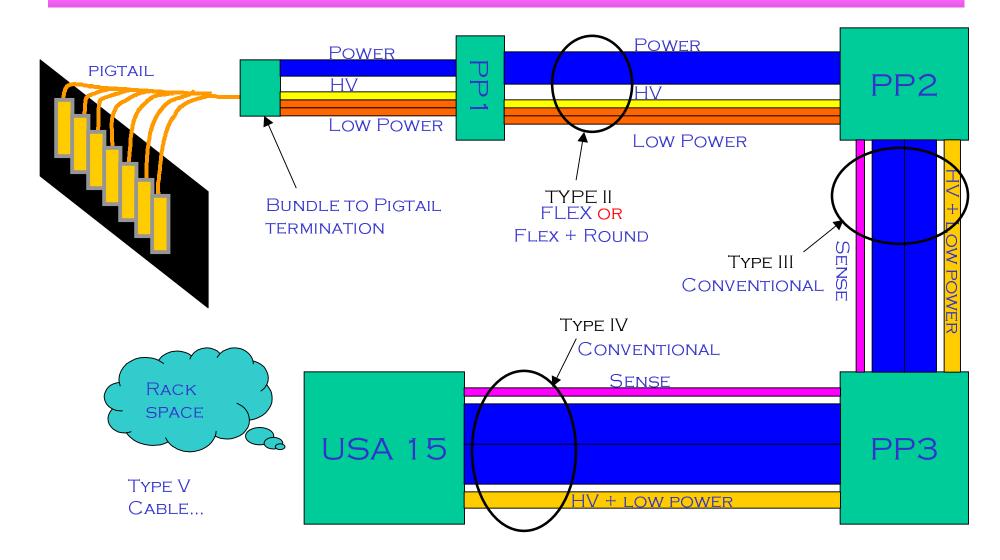
WBS 1.1.1.1.3.4 and 1.1.1.1.3.9


- Thermal barriers required to keep pixels(and SCT) cold when B-layer removed/replaced.
- Integrated into frame and strain relief(at ends).
- Also supports rails for B-layer insertion/removal
- Implies integrated design with frame and services => US proposed responsibility.

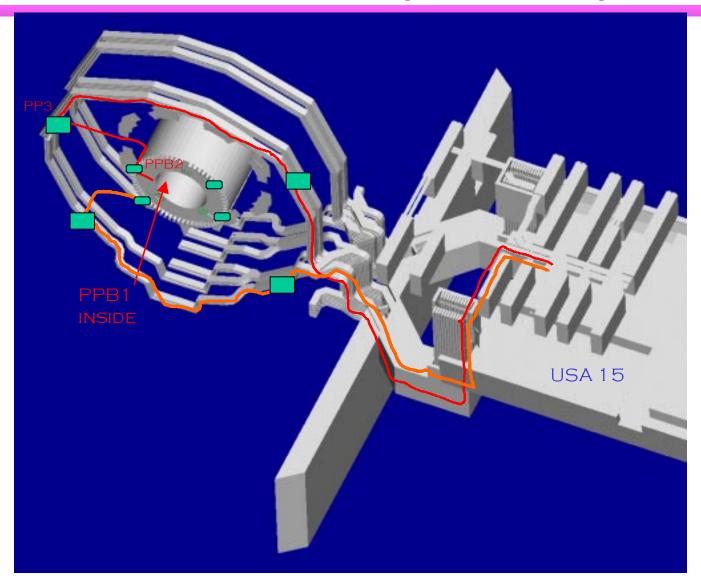
WBS 1.1.1.1.3.5 - Services


- Services includes integration of cables and coolant pipes(all have to pass through or be supported by frame), coolant pipes for disk region and specific cables for complete detector.
- It is critical to do the integration correctly to define precisely interfaces to disk sectors, rings and frame and we have just recently brought this under control.
- We are proposing to fabricate/purchase cables/connectors within the tracking volume. This both gives us control of these interfaces and takes advantage of our ability to fabricate lowmass kapton cables. The remainder of the cables, outside the tracking volume would come from Europe.

WBS 1.1.1.1.3.5 - Services

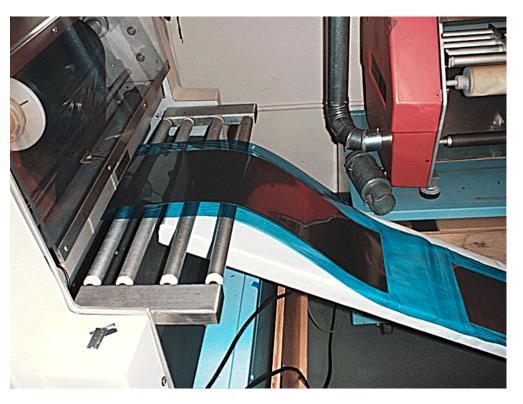


- Detailed CAD models exist. Must define precisely interfaces, strain relief to frame.
- Physical mockups within pixel volume under construction at LBNL.
- ATLAS is constructing full mockup of 90° of complete inner tracker, cryostat, Lar crates, and we propose to take responsibility for pixel cable part of this. This is critical to understanding feasibility.
 M. Gilchriese February 2000


WBS 1.1.1.1.3.5 - Services

Cable Bundles Schematic

Service Plant Physical Layout

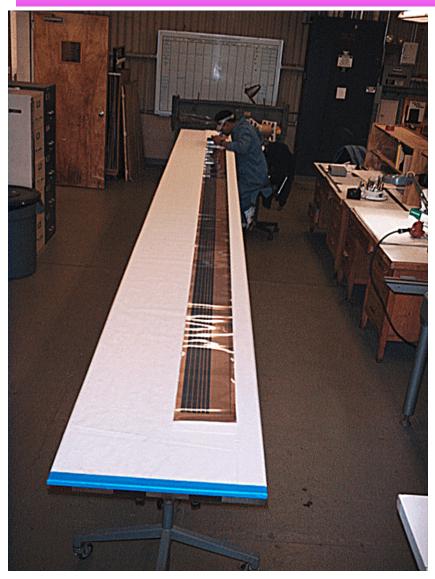


WBS 1.1.1.1.3.5 - Cables

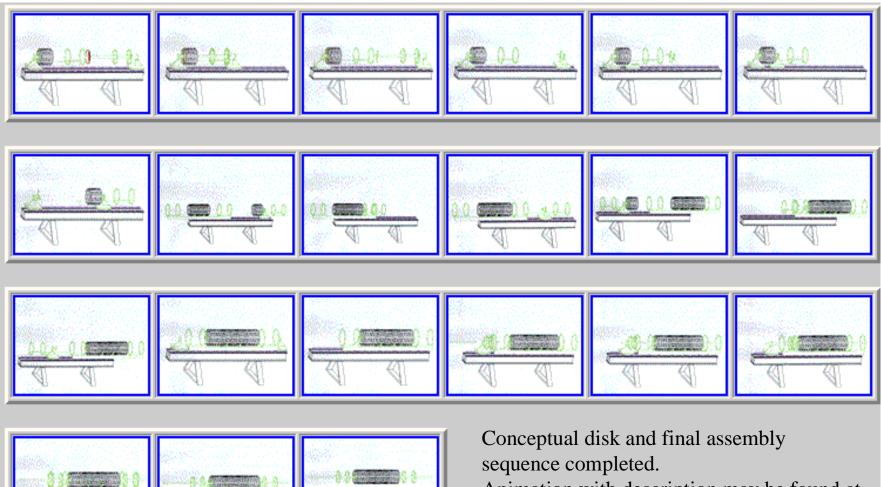
HANDLING EQUIPMENT IS SIMPLE, BUT EFFECTIVE

ROLL LAMINATION PROCESS IS USED TO APPLY PHOTO-RESIST AND PHOTO-IMAGEABLE COVERLAY

WBS 1.1.1.1.3.5 - Cables



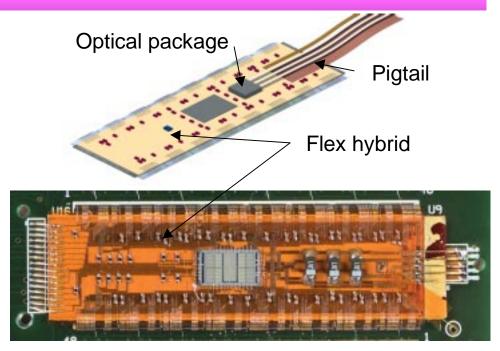
UV EXPOSURE LAMP ON TROLLEY EXPOSES FULL LENGTH OF ARTWORK. LAMINATED CU-KAPTON IS HELD BETWEEN ART LAYERS UNDER VACUUM CONTINUOUS FEED DEVELOPER REMOVES PHOTO-RESIST THAT IS NOT EXPOSED. ETCHING BATH IS IN A SIMILAR MACHINE. SAME ROLLS ARE USED TO HANDLE MATERIAL AT EACH STEP


M. Gilchriese - February 2000

WBS 1.1.1.1.3.5 - Cables

- Prototype cables under fabrication now at LBL.
- These will be used for critical electrical tests with modules and prototype power supply.
- And guide the design integration via mockups.
- This is added cost to Development budget.
- Capability doesn't exist anywhere else in collaboration.

WBS 1.1.1.3.7

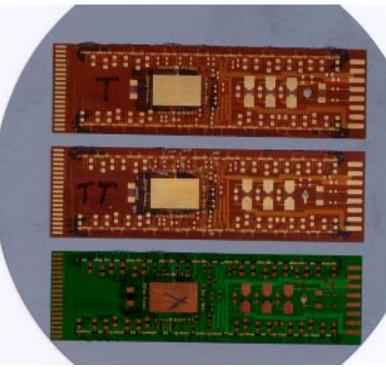

Animation with description may be found at http://pxs.lbl.gov/~goozen/assdetset.html

WBS 1.1.1.1 Mechanics - Issues

- Cooling situation within ATLAS Inner Detector is not settled.
- History was described briefly yesterday.
- Current baseline is evaporative cooling with nominal maximum pressure of about 4 bar in structure but under certain(rare) fault conditions might reach 10 bar, in our opinion.
- Our response has been to be conservative and design for 10 bar accidental.
- The scope of US mechanics deliverables is greater than we thought in 97-98.
- However, it is well matched to needs of experiment, our capabilities and has been chosen to minimize interfaces with Europe, for practical reasons.
- In general, the mechanics is in good shape and we will be ready shortly to proceed with production design for many items.
- To do this efficiently may require some advance of production engineering design funding(for external design contract we have used for frame and rings) and we will know by April.

WBS 1.1.1.4 Hybrids

Hybrids connect the FE electronics to power and signals. Flex hybrid - glued to bare module and wire bond connections made. Pigtail attached to flex and most current design has optical package on pigtail(unlike the picture). Other end of pigtail attached to power cables(connector). Area of rapid development(have much to do to bring to production status).



WBS Number	Description	Base Cost	Cont Cost (k\$)	Cont %	Total Cost	EDIA Labor	Mfg Labor	EDIA Matis	Mfg Matls	FTEs Proj	FTEs ectOther
1.1.1.4.3	Production	614	444	72	1058	0	154	0	460	7.0	0.1
1.1.1.4.3.1	Flex hybrid	483	358	74	841	0	113	0	370	5.0	0.1
1.1.1.4.3.1.1	Bare Flex Hybrids	150	147	98	297	0	0	0	150	0.0	0.0
1.1.1.4.3.1.2	Components and Assembly	150	147	98	297	0	0	0	150	0.0	0.0
1.1.1.4.3.1.3	Testing	123	52	42	175	0	113	0	10	5.0	0.1
1.1.1.4.3.1.4	Flex singulation	60	12	20	72	0	0	0	60	0.0	0.0
1.1.1.4.3.2	Pigtails	84	68	80	152	0	20	0	64	1.0	0.0
1.1.1.4.3.2.1	Bare pigtails	36	35	98	70	0	0	0	36	0.0	0.0
1.1.1.4.3.2.2	Components and assembly	18	17	98	35	0	0	0	18	0.0	0.0
1.1.1.4.3.2.3	Testing	31	15	50	46	0	20	0	10	1.0	0.0
1.1.1.4.3.3	Optical packages	47	19	40	65	0	20	0	26	1.0	0.0

M. Gilchriese - February 2000

WBS 1.1.1.4 Flex Hybrids

- Flex hybrids v1.x manufactured at CERN(two generations) and most recently by US company (Compunetics).
- Few modules built and design looks OK but need more detailed verification with more modules
- Design of v2.x launched. Agreement reached on how, generally, to make connections to pigtails(different for barrel and disks) with identical flex hybrid. V2.x would be first to allow optical communication.
- Loading of flex hybrids so far done by hand but industry loading work just beginning in US and in Italy.
- Design of flex hybrid 100% responsibility of Oklahoma. Pigtail designs separated out: barrel in Europe and disk in US(UOK/LBL).
- In general, this has gone well but limited by availability of modules(in turn limited mostly by electronics). Recognize need to push harder now on production issues and are doing this.

CERN - first version


CERN - second version

Compunctics

M. Gilchriese - February 2000

WBS 1.1.1.4 Pigtails and Optical Packages

- This area is much less developed than the flex hybrid.
- The pigtail is now intended to hold the optical package and make the transition(power and slow signals) from the flex hybrid to cables. We do not yet have a conceptual design(ie. good drawing) but will by about mid-April.
- Optical packages include VCSELs and PIN diodes + electronics.
- Development of optical aspects adapting what is done by SCT, work by Ohio State and from Taiwan.
- Taiwan has agreed to provide optical packages but are just starting on integration of these into pigtail design.
- We have a lot of work to do in these areas.

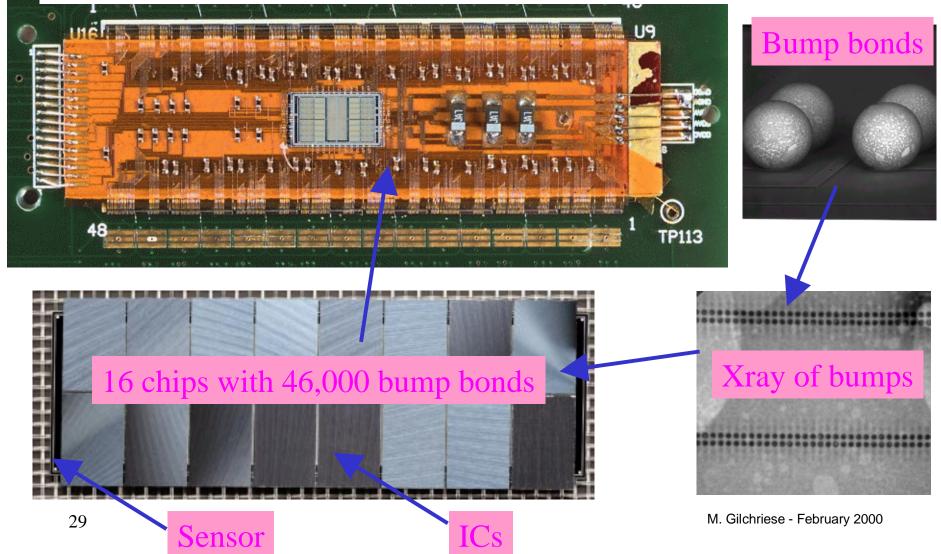
M. Gilchriese - February 2000

WBS 1.1.1.4 Hybrids - Issues

- We have included in the ETC additional development funds beyond the baseline
 - May need to qualify additional vendors(eg. GE or others) for flex hybrid
 - Pigtail development was not part of baseline plan(didn't exist)
 - We want to move this more quickly to production quality with assembly vendors to understand potential problems.
- Again will review in April time frame, which is a bit tight to complete work by time of Production baseline review.

WBS 1.1.1.5 Modules

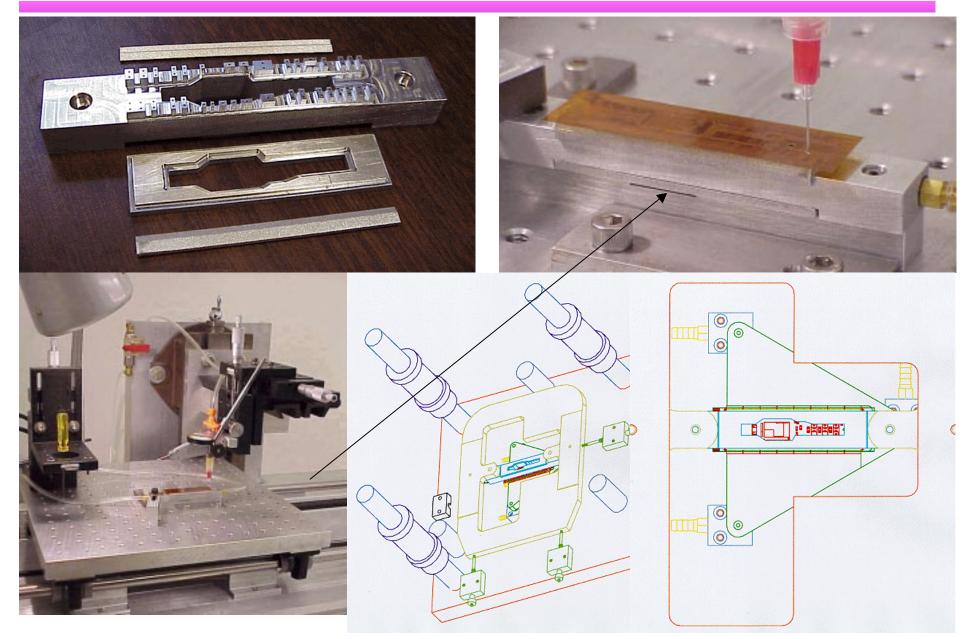
- US contributions to making bare modules. This is currently some X-ray inspection, thinning of all IC wafers(nominal spec is 150 microns), dicing of IC wafers after thinning, inspection. May change before production review.
- Module assembly is attaching flex hybrids to bare modules and pigtails to flex hybrids.
- Module testing includes testing of modules with flex hybrids attached(there is a sacrificial connection).
- Module attachment is attachment of tested modules to sectors.
- Sector electrical testing is testing of modules on sectors before disk assembly.


WBS		Base	Cont Cost	Cont %	Total	EDIA Labor	Mfg Labor	EDIA Matis	Mfg Matls	FTEs Proj	FTEs ectOther
Number	Description	Cost	(k\$)		Cost						
1.1.1.5.3	Production	1063	359	34	1422	0	579	0	484	14.0	1.4
1.1.1.5.3.1	Bump bonding/X-ray	99	28	28	126	0	15	0	83	0.6	0.0
1.1.1.5.3.2	IC Wafer Thinning	17	5	27	21	0	0	0	17	0.0	0.0
1.1.1.5.3.3	Dicing of IC Wafers	64	17	27	82	0	0	0	64	0.0	0.0
1.1.1.5.3.4	IC Die Sort	72	16	22	88	0	30	0	42	1.1	0.0
1.1.1.5.3.5	Module Assembly	292	85	29	377	0	227	0	65	4.7	0.6
1.1.1.5.3.6	Module Testing	215	93	44	308	0	123	0	92	4.5	0.4
1.1.1.5.3.7	Module Attachment	249	94	38	343	0	144	0	105	1.6	0.4
1.1.1.5.3.8	Sector Electrical Testing	55	21	38	77	0	40	0	16	1.5	0.0

Bare Module and Bump Bonding

- Bump bonding is being done by IZM(Berlin), AMS(Rome) and third vendor(Sofradir) being started in France. These all use different processes, but as far as we can tell all will work.
- Have had recent site visits to IZM and AMS to discuss detailed outstanding issues. Qualification of Sofradir is just starting.
- Final Design Review for bump bonding scheduled for July this year.
- We will split order between at least two vendors, and possibly three if Sofradir works.
- US role much reduced. Currently
 - X-ray inspection for AMS(IZM has internal capability) at Bay Area firm.
 - IC wafer thinning(only success so far has been with US vendor). 150 micron thick IC modules assembled but final thickness is TBD. Material issue.
 - IC wafer dicing after thinning and subsequent inspection via Bay Area firms.
- More practical if as much as possible is done in Europe, so expect some evolution in this before baseline review.
- A dummy module program(wafers with correct bump patterns) is now in place with deliveries shortly so that we can practice steps(thinning, etc) in 28 absence of real wafers.

X-Ray Inspection


Module with flex hybrid and controller chip on PC board

Module Assembly

- We have built a few modules with flex hybrids but all so far have required mounting on PC boards for test. Really electronics and hybrid test vehicles, not module assembly test vehicles.
- In parallel, we have developed conceptual design of tooling for module assembly and are now building a prototype version of this tooling.
- We have so far been using bare silicon to practice dispensing glue, for irradiation tests, etc. Some wire bonding tests done.
- Expect to proceed to use dummy modules and practice automated wire bonding at LBL and Ohio State by May.

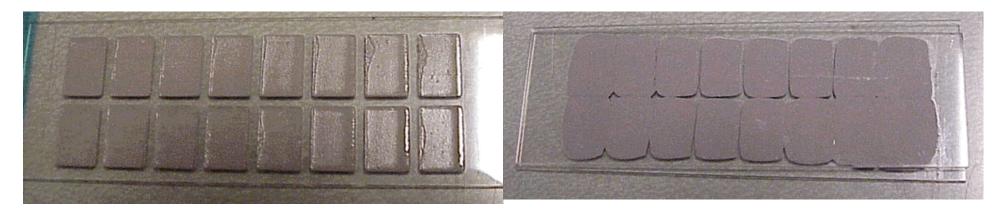
Module Assembly



Module Assembly Yield Model

Yield(%) 30.0% Fab 99.5% Shi 97.0% Prol 99.5% Shi	nip obe nip ump deposition nip spection nip nip ce	99.5% 97.0% 99.5% 97.0%	Ship Probe Ship Bump deposition Ship Inspection	99.5% 99.0% 99.5% 95.0%	Inspect(in fab) Ship Cut	No of L1/2&diskmodules No of B-layer modules No of L1/2&disk FE die L1/2&disk FE die/ wafer No B-layer FE die B-layer FE die/wafer	1980 273 31682 130 4368
Yield(%) Yield(%) 30.0% Fab 99.5% Ship 97.0% Prol 99.5% Ship 97.0% Bun 99.5% Ship 97.0% Insp 99.5% Ship 99.5% Ship 98.0% Thir 98.0% Dicc 98.0% Sort 99.5% Ship 98.0% Sort 99.5% Ship 98.0% Dicc 99.5% Ship 99.5% Ship 99.5% Ship 99.0% Insp	Step ab nip obe nip mp deposition nip spection nip in nip ce	100.0% 99.5% 95.0% 99.5% 97.0% 99.5% 97.0% 99.5% 97.0%	Step Fab Ship Probe Ship Bump deposition Ship Inspection	100.0% 100.0% 99.5% 99.0% 99.5% 95.0%	Step Fab Inspect(in fab) Ship Cut	No of B-layer modules No of L1/2&disk FE die L1/2&disk FE die/ wafer No B-layer FE die	27 3168 13
Yield(%) Yield(%) 30.0% Fab 99.5% Ship 97.0% Prol 99.5% Ship 97.0% Bun 99.5% Ship 97.0% Insp 99.5% Ship 99.5% Ship 98.0% Thir 98.0% Dicc 98.0% Sort 99.5% Ship 98.0% Sort 99.5% Ship 98.0% Dicc 99.5% Ship 99.5% Ship 99.5% Ship 99.0% Insp	Step ab nip obe nip mp deposition nip spection nip in nip ce	100.0% 99.5% 95.0% 99.5% 97.0% 99.5% 97.0% 99.5% 97.0%	Step Fab Ship Probe Ship Bump deposition Ship Inspection	100.0% 100.0% 99.5% 99.0% 99.5% 95.0%	Step Fab Inspect(in fab) Ship Cut	No of B-layer modules No of L1/2&disk FE die L1/2&disk FE die/ wafer No B-layer FE die	27 3168 13
30.0% Fab 99.5% Ship 97.0% Prol 99.5% Ship 97.0% Bun 99.5% Ship 97.0% Insp 99.5% Ship 98.0% Thir 98.0% Dicc 98.0% Sort 99.5% Ship 99.5% Ship 99.0% Insp	ab hip obe hip mp deposition hip spection hip hip ce	100.0% 99.5% 95.0% 99.5% 97.0% 99.5% 97.0% 99.5% 97.0%	Fab Ship Probe Ship Bump deposition Ship Inspection	100.0% 100.0% 99.5% 99.0% 99.5% 95.0%	Fab Inspect(in fab) Ship Cut	No of L1/2&disk FE die L1/2&disk FE die/ wafer No B-layer FE die	3168 13
99.5% Ship 97.0% Prol 99.5% Ship 97.0% Bun 99.5% Ship 97.0% Insp 99.5% Ship 99.5% Ship 99.5% Ship 98.0% Thir 98.0% Sort 99.5% Ship 98.0% Sort 99.5% Ship 99.5% Ship 99.5% Ship 99.0% Insp	nip obe nip ump deposition nip spection nip nip ce	99.5% 95.0% 99.5% 97.0% 99.5% 97.0% 99.5% 97.0%	Ship Probe Ship Bump deposition Ship Inspection	100.0% 99.5% 99.0% 99.5% 95.0%	Inspect(in fab) Ship Cut	L1/2&disk FE die/ wafer No B-layer FE die	13
97.0% Prol 99.5% Ship 97.0% Bun 99.5% Ship 98.0% Thir 98.0% Dice 98.0% Sort 99.5% Ship 98.0% Sort 99.5% Ship 99.0% Insp	obe nip imp deposition nip spection nip nin nip ce	95.0% 99.5% 97.0% 99.5% 97.0% 99.5% 97.0%	Probe Ship Bump deposition Ship Inspection	99.5% 99.0% 99.5% 95.0%	Ship Cut	No B-layer FE die	
99.5% Ship 97.0% Bun 99.5% Ship 97.0% Insp 99.5% Ship 98.0% Thir 98.0% Dicc 98.0% Sort 99.5% Ship 99.5% Ship 99.0% Insp	nip Imp deposition nip spection nip nin nip ce	99.5% 97.0% 99.5% 97.0% 99.5% 97.0%	Ship Bump deposition Ship Inspection	99.0% 99.5% 95.0%	Cut		436
97.0% Bun 99.5% Ship 97.0% Insp 99.5% Ship 98.0% Thir 99.5% Ship 98.0% Dicc 98.0% Sort 99.5% Ship 99.5% Ship	imp deposition hip spection hip hin hip ce	97.0% 99.5% 97.0% 99.5% 97.0%	Bump deposition Ship Inspection	99.5% 95.0%		B-layer FE die/wafer	
99.5% Ship 97.0% Insp 99.5% Ship 98.0% Thir 99.5% Ship 98.0% Dice 98.0% Son 99.5% Ship 98.0% Dice 99.0% Son 99.5% Ship 99.5% Ship 99.5% Ship 99.0% Insp	nip spection nip nin nip ce	99.5% 97.0% 99.5% 97.0%	Ship Inspection	95.0%	Ship		13
97.0% Insp 99.5% Ship 98.0% Thir 99.5% Ship 98.0% Dice 98.0% Son 99.5% Ship 99.0% Insp	spection hip hin hip ce	97.0% 99.5% 97.0%	Inspection			Detectors/wafer	:
99.5% Shi 98.0% Thir 99.5% Shi 98.0% Dice 98.0% Sort 99.5% Shi 99.0% Insp	nip iin nip ce	99.5% 97.0%			Mount components	Number of optical die	225
98.0% Thir 99.5% Ship 98.0% Dice 98.0% Son 99.5% Ship 99.0% Insp	nin nip ce	97.0%	Ship	99.5%		No optical die/wafer	100
99.5% Ship 98.0% Dice 98.0% Sort 99.5% Ship 99.0% Insp	nip ce				Wire bond MCC		
98.0% Dice 98.0% Sort 99.5% Shir 99.0% Insp	ce	00.001	Dice	99.5%			
98.0% Sort 99.5% Ship 99.0% Insp		99.0%	Sort	97.0%	Probe/burn-in	Total modules started	2993
99.5% Ship 99.0% Insp	ort	99.5%	Ship	99.5%	Ship	Total L1/2&disk modules started	2630
99.0% Insp		99.0%	Inspect			Total B-layer modules started	363
	nip					Total L1/2&disk FE die required	169974
Yield(%)	spect					Total L1/2&disk FE wafers	1307
	25%		83%		86%	Total B-layer FE die required	23432
	per die		per tile		per flex	Total B-layer FE wafers required	180
			·			Total optical ICs needed	2837
Yield(%) Op	Optical Components	Yield(%)	Module Assembly	Yield(%)	Pigtails	Total optical wafers needed	3
87.0% IC fa	fab	99.5%	Flip chip/die	100.0%	Fab	Total detector wafers	1204
99.5% IC S	Ship	92.3%	Flip chip/module	100.0%	Inspect(in fab)	Total flex needed	3047
97.0% IC F	Probe	99.5%	Inspect(X-Ray)	99.5%	Ship	Total optical pkgs needed	2652
99.5% IC S	Ship	99.5%	Ship	99.0%	Cut	Total opt fiber ribbon needed	2626
98.0% IC tl	thin	97.0%	Probe bare module	99.5%	Ship	Total pigtails needed	2494
99.5% IC S	Ship	99.5%		98.0%	Mount components	Flip chip modules	2993
98.0% IC d	dice	98.0%	Attach flex	99.5%	Ship	Total bump IC	1488
99.5% IC S			Wire bond(with repair)		Test/burn in	Total bump detector	1204
79.4% Opt			Attach pigtail	99.5%	Ship		
100.0% Fibe		99.5%		00.070	Cinp	20,42,56 staves, 2*[3x11+2*9]sect	ors
100.0% Fibe			Test/burn in			5% spare modules included	0.0
	ber inspect/connect	99.5%				B-layer is not flex	
	ber ribbon yield	00.070	p			Temic optimum yield assumed	
100.0% Pac						, at the second decontrol	
	ackage ship						
	ackage inspect/test						
	ackage ship		75%		90%		
	ackage vield		per module		per pigtail		
	ionage yield				per pigtan		
99.5% Shir							

Module Attachment to Sectors


- Have also developed conceptual design for attaching modules to sectors and are practicing.
- Key element is control of adhesive(which is good thermal conductor) see next page.

M. Gilchriese - February 2000

Modules Attachment Adhesive Tests

Module and Sector Testing

- Conceptually how we do this is understood but we are far from actually doing it need real modules and parts
- Individual module testing will be done after attachment of flex hybrid that has sacrificial extension with connector so that tests can be done without optical connections.
- Pigtails can be tested separately also.
- Current concept is to mount modules with extension on sectors and retest, then attach pigtails and retest again.
- All sector-related mounting and testing at LBL and all individual module and pigtail testing outside LBL is current plan.

Hybrids and Modules - Issues

- To the greatest extent possible, we plan to move ahead with design and prototyping, cost and schedule of all mechanical aspects of hybrids and modules.
- We believe we can do this well enough to have a credible plan for a Production baseline review in September.
- However, our experience then with electrically functional modules will be limited.
- And we wont have a large experience to accurately predict assembly yields.
- These uncertainties will have to be covered by the appropriate contingencies in all areas, since module assembly losses affect all areas but mechanics.

Conclusions

- Mechanics
 - Good progress so far on all fronts.
 - Proposed deliverables well defined, take advantage of US strengths and minimize interfaces with non-US groups.
 - Need additional development funds for sector prototypes, services mockup and cable prototypes. Review in April.
 - May require advance of production design funding to meet ATLAS schedule.
- Hybrids and Modules
 - Good progress on flex hybrids and module assembly concepts but need to broaden effort and move to production-like
 - Have focussed our deliverables to again minimize interfaces.
 - Need additional development funds to qualify additional vendors, do pigtail development and move more rapidly to production mode to avoid potential problems later.