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The W Boson

In the Standard Model the electroweak sector ssdleed by three
well-measured parameters:

a., (m,) ! =127.904+ 0.019
G. =1.66371)" 10° GeV?
M, =91.1876(2]) GeV

\
&
At tree level these > >
parameter % L
are related by:
_ N
My =M; cosg, & W/Z Boson .
/s
" J2G;sin’(g,)
M 2 — pa
“ \J2G_ sin%(g, ) cos(q,)
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Motivation

 Beyond tree level we start to test the SM.

« Change in N|, is described by factor.

M — I\/IW,tree
W —
J1-r
Heavy quark loop Higgs coupling

r~M:? r~InM,
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Motivation

M,y = 80.398 GeV + 25 MeV
M, =170.9 GeV ¥ 1.8 GeV

Precise measurements of W
and top masses constrain
the Higgs mass.

M. =

Corresponds to:
M,y = 10 MeV

Improvement in NJ, is
needed.

S. Heinemeyer, W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '06
http://quark.phy.bnl.gov/~heinemey/uni/plots/
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Previous Measurements

DO Run Il Goal:
* With 1/fb
» Electron channel
M,y < 50 MeV uncertainty

~1 part in 10,000
DO Run 1: 84 MeV (100/pb)

Dominant systematic uncertainty is
Calorimeter Energy Scale
Run | EM scale known to 0.08% =>
M,y = 70 MeV
(For 50 GeV electron, 0.08% is only

40 MeV) arXiv:hep-ex/0612034v2

Updated for 2007 at

_ _ http://www.cern.ch/LEPEWWG
Run | hadronic recoil known to 1% =>

M,y = 40 MeV
(For 5 GeV recoll system, 1% is only
50 MeV)
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DO Detector — Run Il

Tracker —
Calorimeter— position/angular
Energy Measurement measurement

T

h = - In[tan(g/2)]
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Event Display

W->e In data Z->ee In data

electron

Transverse view
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Observable

 We can’t detect the W.

 We can't detect the.

 We can’t detect the longitudinal
momentum.

* We can detect the electron p

p; (W) = p; (8)+ py
pr (1) =- pr (8)- u; Pr = &,

December 13, 2007 Berkeley

= MET
frequently used
Interchangeably
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Arbitrary linear scale

Arbitrary linear scale

Distributions

- -

No P(W)
O P-(W) included

Detector Effects added

.

pr(e) most affected by
production mode{p(W))

Transverse mass:

M; = 2E; (e)E; (m)(- cos(f,,))

Abboitt et. al. (DO Collaboration), PRD 58, 092003 (1998))

December 13, 2007
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M+ most affected by detector
resolution

Previously thestatistical
uncertainty made Mmore
attractive than electron:p
Different situation in Run Il.
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Analysis Strategy

1. Calibrate detector:
Use Z->eeas a standard candle for calorimeter calibratiaivahtages:
well measured elsewhere, can reconstruct invanass at DO.

2. Tune parameterized detector simulation to Z->ee.

We have 2 separate tunings:
1. The parameters from the tunedtta(the “real” parameters)

2. The parameters from the tuneé detector simulatioMonte Carlo:

The full detector simulation tuning allows us tove®p and test the tools
we use with the data and demonstrate we under#itartdning methods.

3. Check tuned detector simulation distributions4Z@and W
bosons to distributions iimill detector simulatiorand fit for
mass (using a templates method).

4. Measure detector efficiencies and backgroundsia, and
apply in the parameterized detector simulation.

5. Check tuned detector simulation distributions &l ,,,
using W Electron pand M. distributionsin data.

December 13, 2007 Berkeley 13



Analysis Strategy -II

Analysis Is a blind analysis, and we first test ohniques
using Geant full detector simulation monte carlo:

e |n this talk | will describe the methods used for
calibration and tuning, but | will show only thened
distributions for the full detector simulation MC.

— In final tuning (in progress) we do this both fMIC and
data tuning in parallel.

December 13, 2007 Berkeley 14
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Signal Simulation

« Our signal cannot be described analytically, tfogee
parameterized Monte Carlo Is used to simulate igumas
distributions.

« Many high statistics templates generated for theahtl p(e)
distributions over a range of M

 Mass determined by fitting to the data using bthnegative log
likelihood method

M,, = 80.200 GeV
M,, = 80.695 GeV

~10"W
events

December 13, 2007 Berkeley 16



Monte Carlo Signal Generation

« We use RESBOS (1) + PHOTOS (2) to generate eventsir
parameterized monte carlo.

&  W/ZBoson o

1. C.Balazs, C.-P. Yuan, PRD56, 5558 (1997)
2. E. Barberio, Z.Was Comput.Phys.Com.79:291 (1994)

December 13, 2007 Berkeley
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Monte Carlo Signal Generation

« We useRESBOS(1) + PHOTOS (2) to generate events for our
parameterized monte carlo.

— RESBOS = RESummed BOSon Production and Decay

«  Computes the differential cross-section for pp->Bj where B = bosor,=
electron or neutrino

* Includes soft-gluon resummed initial state QCD eotions

1. C.Balazs, C.-P. Yuan, PRD56, 5558 (1997)
2. E. Barberio, Z.Was Comput.Phys.Com.79:291 (1994)

December 13, 2007 Berkeley 18



Monte Carlo Signal Generation

e We use RESBOS (1) PFHOTOS(2) to generate events for our
parameterized monte carlo.

— RESBOS = RESummed BOSon Production and Decay

«  Computes the differential cross-section for pp->Bj where B = bosor,=
electron or neutrino

* Includes soft-gluon resummed initial state QCD ections

9

. PHOTOS simulates QED single photon radiative deddgsed for final state
QED radiation.

1. C.Balazs, C.-P. Yuan, PRD56, 5558 (1997)
2. E. Barberio, Z.Was Comput.Phys.Com.79:291 (1994)

December 13, 2007 Berkeley 19



PDF Uncertainty

Parton distributions used as input to RESBOS areekkifrom
global QCD fits to many experiments. We use CTEQp@rion
distribution fits, which have some Intrinsic uneanty.

I
<

Conversion tol
December 13, 2007 Berkeley
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Calorimeter — Electron Energy Measurement

e 3 individual calorimeters: central
(CC) and two end caps (EC), all
of nearly equal size.

e Liquid Argon Sampling
e Uranium Absorber (Copper, Iron
In Course Hadronic layer)

o oo 4 « Electromagnetic (EM)
' — 4 layers, Ur ~ 3mm think

— 1cell=0.1x0.1in and
layer 3 is 0.05 x 0.05.

CALORIMETER

,I
7 S ,«"’ tmﬂ”" P
e .
4 2 ectromagnetic .
Inner Hadronic i i - CC EM IS 20.5 %
i arse .
oarse Hadronic

Electromagnetic

December 13, 2007 Berkeley 22



Calorimeter calibration

* Onlineelectronics: equalize cell response using pulsers.

o Offline: Determine energy scale from data. First EM
calorimeter, then Hadronic calorimeter. Two Steps:

1. “ Inter-calibration”"Use symmetry of detector/physics
make detector response uniform in
2. “ Inter-calibration’Use Z ee to set absolute scale in EM

calorimeter. (QCD di-jets in hadronic)

inter-
calibration:

Data

December 13, 2007 Berkeley



Calorimeter calibration

2. " Inter-calibration’Use Z ee to set absolute
scale in EM calorimeter.

With the degree of freedom calibrated we have eno
Z events to absolutely calibrate eachng.

Z Mass is: m:\/ZElEZ(l_ cogy)

E, are the electron energies ants the opening angle from tracking

We find the set of constants that minimize the
resolution of M and gives the correct (LEP) measured
value.

E™ = Gy *E

(all cells)

December 13, 2007 Berkeley 24
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Tuning Detector Simulation

Parameterize electron energy and recoll energweal&tET.
One parameterization—two tuningme fordataand one for

full detector simulation

Electron

*Real Electron Energy
*Radiated Photons

December 13, 2007

Soft Recoil Componen

/

MET

Recoil System

Every thing but the
electron(s)
«Soft Component:
multiple interactions,
other parton-parton
Interactions, electronic
noise

eHard Component:
Recoil from W/Z boson.

MET = -p,(Electron) - p(Recoil)

Berkeley
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Event Selection

e Selection determined to reduce backgrounds and
focus on a well modeled region of the detector:

—Electron:
* p>25 GeV,
matched track > 10 GeV
Central Calorimeter
|solated
*Electron like shower shape (Hmatrix)

—\W Boson
W p;<30 GeV
p(7)>25 GeV
—Z Boson
o/ py<30 GeV with 2 electrons

December 13, 2007 Berkeley 27



Electron Energy Tuning

The electron energy scale is the dominant systeraatiertainty. We model the
electron energy response in parameterized MC iagar [function of scale |

and offset (): E -3  E + b

measured true

The kinematic variablé gives us the most f, = (E(el) +E(e))(1- cos@..))
iInformation about the parameters: M. casured

The mass can be written In terms of
the scale and offset.

m(eg =a>m,(LEP)+ b> f,

Tm(eg _
1w
M, [GeV] _
f, Results in My, of 13 MeV

December 13, 2007 Berkeley 28



Hadronic Recoll Tuning

» The hadronic recoil is the energy of all the otparticles
In the event except the decay products of the boson

« Z and W have similar recoill,
again we tune using Z->ee. Electron

o/->ee and balance the
hadronic recoip; with
calibrated electrons in EM

calorimeter. _
Recoil —

December 13, 2007 Berkeley
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Hadronic Recoll Calibration

» The hadronic recoil is the energy of all the otparticles
In the event except the decay products of the boson

 There are two contributions
to the hadronic recoill:
1. A *“soft,” isotropic
contribution from additional
interactions--described by /
library of low bias events.
2. A *hard,” jet-like contribution

In the direction opposite the
boson.

December 13, 2007 Berkeley 30



Hadronic tuning with Z ee events

* \We tune the monte carlo parameters for the “soft” and
*hard” components together in the using e events.

 The distribution of p(ee) + p(recoil)
along axis gives us the best
iInformation. e-

Minimizing the chf between the
data or full monte carlo and the ¢
parameterized monte carlo gives @

us the hadronic recoll parameters.
December 13, 2007 Berkeley pT(ee) [Gev] 31

Full MC

an of p; balance [GeV]



Hadronic tuning with Z ee events

« We tune the parameterized monte carlo for the “sarit]
*hard” components together in the using e events.

 The distribution of p(ee) + p(recoil)
along axis gives us the best
iInformation. e-

resolution) of p;
ance [GeV]

Minimizing the cht between the= Full MC
L O

data or full monte carlo and thexs

parameterized monte carlo gives

us the hadronic recoll parameters.
December 13, 2007 Berkeley pT(ee) [Gev] 32
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Results of Tuning

Full MC

The Z boson mass and electrgndpstributions indicated that we
have calibrated the calorimeter and parameterizeddasponse well.

Z Mass comparison Electron p; Comparison
after tuning after tuning
M, [GeV] Electron p  [GeV]

December 13, 2007 Berkeley 34



Z boson p spectrum from Pythia/Geant monte carlo and

Hadronic Model

Full MC

parameterized monte carlo show good agreement:

Z p+(ee) comparison
after tuning

Z pr(ee) [GeV]

December 13, 2007

Berkeley

Z p+(recoil) Comparison
after tuning

Z p (recolil) [GeV]

35



Hadronic Model

Recoill parallel to the electron affects electron
mass measurement directly and is anrecoll
Important check of the model. —

elec'trop/neutrino

A4

Recoll Parallel Recoll
to electron Perpendicular
direction to electron
/ ee events. direction
/ eeevents.

Full MC

December 13, 2007 U” [G ev] Berkeley uperp [G ev] 36



Mass Fit

M,y fit done treating full MC as data.

Transverse mass distribution (black) Electron p; distribution (black)
with fit (red) with fit (red)
\ Full MC
Statistical Uncertainty - :
Statistical Uncertaint

l = Fit range Transverse mass: [60,100] GeV, electron pT: [25,55] GeV

Results consistent with “true” value within uncertainty.

December 13, 2007 Berkeley 37
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Backgrounds

The background contributions toNMnd p(e)
distributions are small. Studied using Pythia/Geaonte
carlo (W-> n, Z->ee) and data (QCD):

M- shape of background events

December 13, 2007

Berkeley

p(e) shape of background eveni

---: QCD =1.0%

- Z->ee =1.1%

39
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Blind analysis
Analysis is blinded by a random offset [-2.0 Ge¥,0+rGeV] In
our W encomparisons and likelinood fitting.

When analysis is frozen we will unblind.

December 13, 2007 Berkeley
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Uncertainty estimates
Preliminary uncertainties for 1/fb data sample:

Source M, Electron P, Run |
M, [MeV] | My[MeV] | M [MeV] _
W stat 29 o5 50 X Analy3|s of data
Electron Energy 7 il 56 IS IN Progress.
Response
Electron Energy i 6 | e Parameter
Linearity values may
lectron Ener
gesolution o i : i Change’ but
Hadronic Response 24 16 37 parame_ter_
Hadronic Resolution 10 5 | unce_rtamﬂes
uy 5 15 | relatively stable.
Background 4 6 9

December 13, 2007 Berkeley 42



Prospects

What we have done:
 EM Calorimeter well understood.
* Recoil measurement well understood.
e Theoretical and systematic uncertainties
understood.
 Measurement technique applied developed and
successfully tested with full detector simulation.

Blind analysis with data in progress.
Exciting times: 1/fb result foWinter '08.

Longer termfull Tevatron Run Il measurement
will be a legacy that may stand for some time.
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