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and precision QCD is necessary to maximize this opportunity
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We are on the verge of uncovering the nature of the Higgs mechanism
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Figure 2: Jet multiplicity for events in 8 TeV data. The plots are shown for the (a) eµ+ µe and (b)

ee+ µµ channels after pre-selection and Emiss
T,rel
> 25GeV and > 45GeV, respectively. The signal is too

small to be seen. The shaded area represents the uncertainty on the signal and background yields from

statistical, experimental, and theoretical sources.

vectorial sum pT of the low-pT jets in the φ quadrant opposite p
""
T
for Njet = 0 and p

"" j
T
for Njet = 1.

Low-pT jets are defined as those with pT > 10GeV and below the previously mentioned nominal

thresholds. Each low-pT jet is weighted by its JVF value. The frecoil distribution of DY events is

distinct from that of non-DY processes, because of the different topology of DY and other events in

the dilepton sample. The dilepton system in DY events is balanced by soft hadronic activity, resulting

in large values of frecoil, whereas the dilepton system in WW, top, signal, and similar processes is

balanced by a combination of recoiling neutrinos and soft hadronic activity, which results in small

values of frecoil. Figure 1d shows the frecoil distributions for DY, non-DY and signal processes in

simulated events.

3.4 Analyses categorised in Njet

The signal selection strategy depends on the jet multiplicity (Njet) as do the rate and the composition

of the backgrounds. For Njet ≤ 1 the signal originates almost entirely from the ggF process and WW
events dominate the background composition. For Njet ≥ 2 the signal is mostly from the VBF process
and tt̄ events dominate the background. Figures 2a and 2b show the multiplicity distribution of jets in

the eµ+ µe and ee+ µµ channels for all events satisfying pre-selection described and the requirement

on Emiss
T,rel
(see Table 2). Table 2 summarises the selection described in this section.

For all jet multiplicities, a set of topological selections takes advantage of the configuration of

the two leptons. The leptons emerge in the same direction due to the spin correlations of H→WW(∗)

decay and the V − A structure of the W decay. The leptons’ invariant mass is required to be small,
m"" < 50GeV for Njet ≤ 1 and m"" < 60GeV for Njet ≥ 2, and their azimuthal gap is also required to be
small, |∆φ"" |< 1.8 radians. The distributions of m"" and mT are used to extract the signal strength;
these variables are introduced later in Section 3.5.

The analysis is divided into Njet = 0, = 1, and ≥ 2. In the Njet = 0 analysis, the following criteria
improve the rejection of the DY background and multi-jet background. The missing transverse mo-

mentum is required to be large. For eµ+ µe, the selection is Emiss
T,rel
> 25GeV. For ee+ µµ, the selection

is tighter, Emiss
T,rel
> 45GeV and pmiss

T,rel
> 45GeV, because of the large DY background from Z/γ∗→ "".
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FIG. 7: The 0-jet cross section for R = 0.4 and mH = 125GeV. On the left we show the NLLpT , NLL′
pT+NLO, and

NNLL′
pT+NNLO predictions. A good convergence and reduction of uncertainties at successively higher orders is observed. On

the right we compare our best prediction at NNLL′
pT+NNLO to the fixed NNLO prediction. The lower plots show the relative

uncertainty in percent for each prediction. On the lower left the lighter inside bands show the contribution from ∆resum only,
while the darker outer bands show the total uncertainty from adding ∆resum and ∆µ in quadrature.

ues for σ0(pcutT , R) with both theoretical uncertainties:

σ0(25GeV, 0.4) = 12.67± 1.22pert ± 0.46clust pb ,

σ0(30GeV, 0.5) = 13.85± 0.87pert ± 0.24clust pb . (74)

It is interesting to compare our results and uncertain-
ties for σ0 to the NNLL+NNLO results presented ear-
lier in Ref. [9]. Our results build on their results in a
few ways. In particular, our RG approach includes π2

resummation, our results are quoted as NNLL′ because
they go beyond NNLL by including the complete NNLO
singular terms in the fixed-order matching (which are the
correct boundary conditions for the N3LL resummation),
and finally we use a factorization based approach to un-
certainties, which also makes predictions for the correla-
tions between the different jet bins.
Comparing σ0 at pcutT = 25GeV and R = 0.4 our cen-

tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above

mentioned additions. One important ingredient in this
comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
uncertainty. On the other hand, in Ref. [9] the central
scale is chosen to be µFO = mH/2 which also works in the
same direction, decreasing the uncertainty relative to the
choice µFO = mH . For the total cross section Ref. [9] has
a 7.4% uncertainty, whereas we have 6.9% uncertainty
using µFO = mH and including π2 resummation (see Ta-
ble II). From Table IV in appendix App. A we see that
our perturbative uncertainty for σ0(25GeV, 0.4) would
increase to 12.8% if the π2 resummation were turned off
(while still taking the central µFO = mH), and that at
this level the uncertainty would become comparable to
that of Ref. [9]. For pcutT = 30GeV and R = 0.5 our
central values remain perfectly compatible with Ref. [9],
and the uncertainties follow a pattern similar to the case
above.
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the right we compare our best prediction at NNLL′
pT+NNLO to the fixed NNLO prediction. The lower plots show the relative

uncertainty in percent for each prediction. On the lower left the lighter inside bands show the contribution from ∆resum only,
while the darker outer bands show the total uncertainty from adding ∆resum and ∆µ in quadrature.

ues for σ0(pcutT , R) with both theoretical uncertainties:

σ0(25GeV, 0.4) = 12.67± 1.22pert ± 0.46clust pb ,

σ0(30GeV, 0.5) = 13.85± 0.87pert ± 0.24clust pb . (74)

It is interesting to compare our results and uncertain-
ties for σ0 to the NNLL+NNLO results presented ear-
lier in Ref. [9]. Our results build on their results in a
few ways. In particular, our RG approach includes π2

resummation, our results are quoted as NNLL′ because
they go beyond NNLL by including the complete NNLO
singular terms in the fixed-order matching (which are the
correct boundary conditions for the N3LL resummation),
and finally we use a factorization based approach to un-
certainties, which also makes predictions for the correla-
tions between the different jet bins.
Comparing σ0 at pcutT = 25GeV and R = 0.4 our cen-

tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above

mentioned additions. One important ingredient in this
comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
uncertainty. On the other hand, in Ref. [9] the central
scale is chosen to be µFO = mH/2 which also works in the
same direction, decreasing the uncertainty relative to the
choice µFO = mH . For the total cross section Ref. [9] has
a 7.4% uncertainty, whereas we have 6.9% uncertainty
using µFO = mH and including π2 resummation (see Ta-
ble II). From Table IV in appendix App. A we see that
our perturbative uncertainty for σ0(25GeV, 0.4) would
increase to 12.8% if the π2 resummation were turned off
(while still taking the central µFO = mH), and that at
this level the uncertainty would become comparable to
that of Ref. [9]. For pcutT = 30GeV and R = 0.5 our
central values remain perfectly compatible with Ref. [9],
and the uncertainties follow a pattern similar to the case
above.
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our resummed predictions dramatically 
improve theory uncertainties,

roughly halving them
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Figure 21: Kinematic distributions in the Njet = 0 channel after the full selection: p
!!
T
(top left), |∆φ!! |

(top right), m!! (bottom left), andmT (bottom right). The eµ and µe channels are combined. The signal

is added on top of the background. TheWW and top backgrounds are scaled to use the normalisation

derived from the corresponding control regions described in the text. The shaded area represents the

uncertainty on the signal and background yields from statistical, experimental, and theoretical sources.

 [GeV]
T,lead lep
p

20 40 60 80 100 120 140

E
ve

n
ts

 /
 5

 G
e
V

0

100

200

300

400

500  Data  stat)⊕ SM (sys 

 WW γ WZ/ZZ/W

t t  Single Top

 Z+jets  W+jets

  H [125 GeV]

ATLAS Preliminary
-1 Ldt = 20.7 fb∫ = 8 TeV, s

 + 0 jetsνeνµ/νµνe→
(*)

WW→H

 [GeV]
T,sublead lep
p

10 20 30 40 50 60 70 80 90 100

E
ve

n
ts

 /
 5

 G
e
V

0

100

200

300

400

500

600

700  Data  stat)⊕ SM (sys 

 WW γ WZ/ZZ/W

t t  Single Top

 Z+jets  W+jets

  H [125 GeV]

ATLAS Preliminary
-1 Ldt = 20.7 fb∫ = 8 TeV, s

 + 0 jetsνeνµ/νµνe→
(*)

WW→H

Figure 22: Kinematic distributions in the Njet = 0 channel after the full selection: leading lepton pT
(left) and sub-leading lepton pT (right). The eµ and µe channels are combined. The signal is added on

top of the background. TheWW and top backgrounds are scaled to use the normalisation derived from

the corresponding control regions described in the text. The shaded area represents the uncertainty on

the signal and background yields from statistical, experimental, and theoretical sources.

40



6

Ecm � 8 TeV
pTcut � 30 GeV
R � 0.4

A FO

B

0 1 �20

5

10

15

jet bins

Σ
�pb�

cross section in jet bins

Exclusive jet cross sections
Stewart, Tackmann, JW, Zuberi, 1307.1808

Boughezal, Liu, Petriello, Tackmann, JW, 1312.4535

The precision frontier and the Higgs

Implementation and future work

 [GeV]ll
TP

0 20 40 60 80 100 120 140 160

E
ve

n
ts

 /
 5

 G
e
V

0

50

100

150

200

250

300

350  Data  stat)⊕ SM (sys 

 WW γ WZ/ZZ/W

t t  Single Top

 Z+jets  W+jets

  H [125 GeV]

ATLAS Preliminary
-1 Ldt = 20.7 fb∫ = 8 TeV, s

 + 0 jetsνeνµ/νµνe→
(*)

WW→H

 [rad]
ll

φ∆
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

E
ve

n
ts

 /
 0

.1
5
 r

a
d

0

50

100

150

200

250  Data  stat)⊕ SM (sys 

 WW γ WZ/ZZ/W

t t  Single Top

 Z+jets  W+jets

  H [125 GeV]

ATLAS Preliminary
-1 Ldt = 20.7 fb∫ = 8 TeV, s

 + 0 jetsνeνµ/νµνe→
(*)

WW→H

 [GeV]llm

10 20 30 40 50 60 70 80 90

E
ve

n
ts

 /
 1

0
 G

e
V

0

100

200

300

400

500

600
 Data  stat)⊕ SM (sys 

 WW γ WZ/ZZ/W

t t  Single Top

 Z+jets  W+jets

  H [125 GeV]

ATLAS Preliminary
-1 Ldt = 20.7 fb∫ = 8 TeV, s

 + 0 jetsνeνµ/νµνe→
(*)

WW→H

 [GeV]Tm

50 100 150 200 250 300

E
ve

n
ts

 /
 1

0
 G

e
V

0

50

100

150

200

250

300
 Data  stat)⊕ SM (sys 

 WW γ WZ/ZZ/W

t t  Single Top

 Z+jets  W+jets

  H [125 GeV]

ATLAS Preliminary
-1 Ldt = 20.7 fb∫ = 8 TeV, s

 + 0 jetsνeνµ/νµνe→
(*)

WW→H

Figure 21: Kinematic distributions in the Njet = 0 channel after the full selection: p
!!
T
(top left), |∆φ!! |

(top right), m!! (bottom left), andmT (bottom right). The eµ and µe channels are combined. The signal

is added on top of the background. TheWW and top backgrounds are scaled to use the normalisation

derived from the corresponding control regions described in the text. The shaded area represents the

uncertainty on the signal and background yields from statistical, experimental, and theoretical sources.

 [GeV]
T,lead lep
p

20 40 60 80 100 120 140

E
ve

n
ts

 /
 5

 G
e
V

0

100

200

300

400

500  Data  stat)⊕ SM (sys 

 WW γ WZ/ZZ/W

t t  Single Top

 Z+jets  W+jets

  H [125 GeV]

ATLAS Preliminary
-1 Ldt = 20.7 fb∫ = 8 TeV, s

 + 0 jetsνeνµ/νµνe→
(*)

WW→H

 [GeV]
T,sublead lep
p

10 20 30 40 50 60 70 80 90 100

E
ve

n
ts

 /
 5

 G
e
V

0

100

200

300

400

500

600

700  Data  stat)⊕ SM (sys 

 WW γ WZ/ZZ/W

t t  Single Top

 Z+jets  W+jets

  H [125 GeV]

ATLAS Preliminary
-1 Ldt = 20.7 fb∫ = 8 TeV, s

 + 0 jetsνeνµ/νµνe→
(*)

WW→H

Figure 22: Kinematic distributions in the Njet = 0 channel after the full selection: leading lepton pT
(left) and sub-leading lepton pT (right). The eµ and µe channels are combined. The signal is added on

top of the background. TheWW and top backgrounds are scaled to use the normalisation derived from

the corresponding control regions described in the text. The shaded area represents the uncertainty on

the signal and background yields from statistical, experimental, and theoretical sources.

40



 [TeV]s
7 8 9 10 11 12 13 14

 H
+X

) [
pb

]
(p

p 

-110

1

10

210

LH
C

 H
IG

G
S 

XS
 W

G
 2

01
3

 H (NNLO+NNLL QCD + NLO EW)
pp 

H (NNLO QCD + NLO EW)
q qpp 

 WH (NNLO QCD + NLO EW)
pp 

 ZH (NNLO QCD + NLO EW)
pp 

H (NLO QCD)
t tpp 

7

ΓH→Z∗Z∗→4f = 3 · ΓH→!e!e!µ!µ
+ 3 · ΓH→ee+µµ+ + 9 · ΓH→!e!eµµ

+

+ 3 · ΓH→!e!e!e!e
+ 3 · ΓH→ee+ee+

+ 6 · ΓH→!e!euu + 9 · ΓH→!e!edd
+ 6 · ΓH→uuee+ + 9 · ΓH→ddee+

+ 1 · ΓH→uucc + 3 · ΓH→ddss + 6 · ΓH→uuss + 2 · ΓH→uuuu

+ 3 · ΓH→dddd ,

ΓWW/ZZ−int. = 3 · ΓH→!ee
+e!e − 3 · ΓH→!e!eµµ

+ − 3 · ΓH→!ee
+µ!̄µ

+ 2 · ΓH→uddu − 2 · ΓH→uuss − 2 · ΓH→udsc .

2.1.2 BR Results for Higgs masses
In this section we provide results for the BRs of the SM Higgs boson, using a particularly fine grid of
mass points close to MH = 126 GeV. The results are generated and presented in complete analogy to
the predictions in Refs. [14], including the error estimates for each BR. In the error estimates, we have
identified and removed inconsistencies in the calculation of the numbers presented in Refs. [14]. The
corresponding changes in the error estimate are at the level of one percent for mH > 135 GeV. For
mH > 500 GeV the changes increase for some decay modes, in particular for H → tt. The central
values of the BRs are not affected.

The fermionic decay modes are shown in Table A.1 to Table A.7. The bosonic decay modes
together with the total width are given in Table A.8 to Table A.14. The same information (including the
full uncertainty) is also presented graphically in Figure 2 for the low-mass region (left) and for the full
mass range (right).
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Fig. 2: Higgs branching ratios and their uncertainties for the low mass range (left) and for the full mass range
(right).

2.1.3 BR Correlations for Higgs masses close to 126 GeV
In this section, we focus on the error correlations for the different BRs. The reason for the correlations is
two-fold: Varying the input parameters within their error bands will induce shifts of the different partial
widths and the resulting BRs in a correlated way. Moreover, there is trivial correlation between the BRs
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Precision Higgs measurements are a sensitive probe of these couplings, 
and we have significant opportunity for improvement
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⇒ Discovering BSM effects in Higgs couplings at the few to O(10%) level
requires detailed and precise control of QCD effects at the same level
including reliable theory uncertainties and correlations.
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H @ NNLO (+NLO EW)
(Hj @ NLO, Hjj @ NLO)

+ NNLL threshold resummation

VH @ NNLO
(+NLO EW)

VBF @ NNLO 
(total rate)
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(a) (b)

(c) (d)

(e) (f)

Figure 1: The qT spectrum of Higgs bosons at the Tevatron and the LHC. Results shown are at
NLL+LO (left panels) and NNLL+NLO (right panels) accuracy. Each result is compared to the
corresponding fixed-order result (dashed line) and to the finite component (dotted line) in Eq. (8).
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Figure 5: The transverse momentum spectrum of the Higgs in MC@NLO (upper) and in
POWHEG+PYTHIA (lower) compared to the HqT result. In the lower insert, the same
results normalized to the HqT central value are shown.

In order to give a more realistic assessment of the uncertainties in POWHEG, one can
also exploit the freedom in the separation R = RS +RF. In the case of Higgs production, it
is found that by choosing h = MH/1.2, the POWHEG result closely matches in shape that
of HqT. It is similarly found that MC@NLO better matches the HqT output if MH, rather
thanmT, is used as central scale for scale variations. These results are shown in Figure 6. We
see that now the large differences between MC@NLO and POWHEG are mostly removed,
since both adopt a central scale equal to MH, and both adopt a similar separation of S (or
S) and F (or H) events. Both generators, furthermore, display a reasonable scale variation
in the high pT regime, while the scale variation at moderate values of transverse momenta
(around 100 GeV) seems to be comparable to that of HqT, rather than being larger.

In MC@NLO, we have seen that the shape of the transverse momentum spectrum
at moderate pT exhibits only a mild dependence upon scale variation. This shape is in
fact determined by S events, and thus depends only upon the shower Monte Carlo that is
being used, which is HERWIG in the present case. We may expect significant changes
in shape if other Monte Carlos are used. In Figure 7 we display the Higgs pT spectrum
using MC@NLO with the virtuality-ordered version of PYTHIA [32]. We do indeed see
a considerable difference in the spectrum at small transverse momenta. The discrepancy
with HqT at small transverse momenta is purely due to the fact that the virtuality-ordered
version of PYTHIA does not match well with HqT at small transverse momenta.

13 NLO+PS versus ME+PS matching

Matching tree-level matrix elements and parton shower generators (ME+PS) allows for the
generation of samples where a basic process is accompanied by a fairly large number of
associated jets. The ME+PS method was first formulated in ref. [1] (CKKW), and several
variants have appeared since (for a summary of the various implementations see refs. [2, 71]).
As a representative example, taking W boson production as the basic process, the method
allows one to construct a sample of W with an arbitrary number of associated jets, where

20
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...continues to develop

upcoming/new results for gluon fusion: N3LO total rate, NNLO H+j, NLO H+3j (done)

0-jet cross section
17

0
0

5

10

10

15

20

20

25

30 40 50 60 70 80

pcut
T [GeV]

σ
0
(p

cu
t

T
)
[p
b
]

mH =125GeV
gg → H (8TeV)

R = 0.4

NNLL′

pT
+NNLO

NLL′

pT
+NLO

NLLpT

0
0

5

10

10

15

20

20

25

30 40 50 60 70 80

pcut
T [GeV]

σ
0
(p

cu
t

T
)
[p
b
]

mH =125GeV
gg → H (8TeV)

R = 0.4

NNLO

NNLL′

pT
+NNLO

0

0

10

10

20

20

30

30 40 50 60 70 80

−10

−20

−30

pcut
T [GeV]

δ
σ
0
(p

cu
t

T
)
[%

]

mH =125GeV

gg → H (8TeV)

R = 0.4

NNLL′
pT
+NNLO

NLL′
pT
+NLO

∆resum⊕∆µ

∆resum⊕∆µ

∆resum

∆resum

0

0

10

10

20

20

30

30 40 50 60 70 80

−10

−20

−30

pcut
T [GeV]

δ
σ
0
(p

cu
t

T
)
[%

]

mH =125GeV
gg → H (8TeV)

R = 0.4

NNLO

NNLL′

pT
+NNLO

FIG. 7: The 0-jet cross section for R = 0.4 and mH = 125GeV. On the left we show the NLLpT , NLL′
pT+NLO, and

NNLL′
pT+NNLO predictions. A good convergence and reduction of uncertainties at successively higher orders is observed. On

the right we compare our best prediction at NNLL′
pT+NNLO to the fixed NNLO prediction. The lower plots show the relative

uncertainty in percent for each prediction. On the lower left the lighter inside bands show the contribution from ∆resum only,
while the darker outer bands show the total uncertainty from adding ∆resum and ∆µ in quadrature.

ues for σ0(pcutT , R) with both theoretical uncertainties:

σ0(25GeV, 0.4) = 12.67± 1.22pert ± 0.46clust pb ,

σ0(30GeV, 0.5) = 13.85± 0.87pert ± 0.24clust pb . (74)

It is interesting to compare our results and uncertain-
ties for σ0 to the NNLL+NNLO results presented ear-
lier in Ref. [9]. Our results build on their results in a
few ways. In particular, our RG approach includes π2

resummation, our results are quoted as NNLL′ because
they go beyond NNLL by including the complete NNLO
singular terms in the fixed-order matching (which are the
correct boundary conditions for the N3LL resummation),
and finally we use a factorization based approach to un-
certainties, which also makes predictions for the correla-
tions between the different jet bins.
Comparing σ0 at pcutT = 25GeV and R = 0.4 our cen-

tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above

mentioned additions. One important ingredient in this
comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
uncertainty. On the other hand, in Ref. [9] the central
scale is chosen to be µFO = mH/2 which also works in the
same direction, decreasing the uncertainty relative to the
choice µFO = mH . For the total cross section Ref. [9] has
a 7.4% uncertainty, whereas we have 6.9% uncertainty
using µFO = mH and including π2 resummation (see Ta-
ble II). From Table IV in appendix App. A we see that
our perturbative uncertainty for σ0(25GeV, 0.4) would
increase to 12.8% if the π2 resummation were turned off
(while still taking the central µFO = mH), and that at
this level the uncertainty would become comparable to
that of Ref. [9]. For pcutT = 30GeV and R = 0.5 our
central values remain perfectly compatible with Ref. [9],
and the uncertainties follow a pattern similar to the case
above.

Stewart, Tackmann, JW, Zuberi, 
1307.1808
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Figure 8. Dependence of the N3LO cross section on the renormalization scale µR. The two choices of
renormalization scale used to compute Tab. 1 are shown as vertical bars.

gluon channel alone than for the full result. This cancellation of the factorization scale dependence
between partonic subchannels is a direct consequence of the known structure of the Altarelli-Parisi
equations. The factorization scale of the full result turns out to be essentially negligible, thereby
justifying the choice not to show the dependence on it in Tab. 1.

The scale dependence of our N3LO result is displayed in Fig. 8. We only show the renormalization
scale dependence: the factorization scale dependence of the N3LO result will be weaker than that of
the NNLO, which is already negligible. Also, our N3LO result only includes the (dominant) gluon
contribution, so its factorization scale dependence would be misleadingly large, and canceled by a
contribution from the quark channels.

The N3LO contribution reduces the renormalization scale dependence of the NNLO QCD result
from ±10% to ±7% if the scale is varied in the range 0.5 < µR/mH < 2. We also show the prediction

obtained using the soft approximation C(3)
N -soft, with ḡ0,3 = 0, i.e. essentially the approximation of

Ref. [28], as well as the prediction obtained by performing a collinear improvement of the latter [35]
(labeled N -soft-collinear, see Sect. 2.1, Fig. 1). The fact that he N -soft result is rather smaller than
our own is clearly seen. The collinear improvement of Ref. [35] has a negligible impact, and indeed it
has therefore not been included [58] in the recent phenomenological results of Ref. [28,56]. As seen in
Fig. 6, for central scale choices mH/2 � µR � mH the the difference between our approximate result
and the N -soft approximation is due almost entirely to our different way of treating subleading soft
terms, and this is thus the reason why correction is more substantial than those of Refs. [28,56] (note
that in Ref. [28] a smaller value of αs(mZ) is adopted, which would lead to a yet smaller result). The
scale dependence of our result is similar to that of the N -soft result and its collinear improvement
(and thus to that of Refs. [28, 56]) towards the high end, but it has a different shape towards lowers
scales, where it is much weaker, partly due to the matching with the small N terms.

5 Conclusions and Outlook

We have determined an approximate expression for the N3LO Higgs production cross section in gluon
fusion, with finite top mass. We have considered the dominant gluon channel only. Our approxima-
tion is based on combining information on the large N and small N singularities of the coefficient
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Figure 4. Results for the product of partonic cross-sections gg → H + jet and parton luminosity in
consecutive orders in perturbative QCD at µR = µF = mh = 125 GeV. See the text for explanation.

functions

L(z, µF ) =

∫ 1

z

dx

x
g(x, µF )g

( z

x
, µF

)

. (7.7)

It follows from Fig. 4 that NNLO QCD corrections are significant in the region
√
s <

500 GeV. In particular, close to partonic threshold
√
s ∼ Eth, radiative corrections are en-

hanced by threshold logarithms ln β that originate from the incomplete cancellation of virtual

and real corrections. There seems to be no significant enhancement of these corrections at

higher energies, where the NNLO QCD prediction for the partonic cross-section becomes al-

most indistinguishable from the NLO QCD one. Note that we extend the calculation of the

NNLO partonic cross-section to
√
s ∼ 500 GeV only. From leading and next-to-leading order

computations, we know that by omitting the region
√
s > 500 GeV, we underestimate the

total cross-section by about 3%. To account for this in the NNLO hadronic cross-section cal-

culation, we perform an extrapolation to higher energies constructed in such a way that when

the same procedure is applied to LO and NLO cross-sections, it gives results that agree well

with the calculation without extrapolation. The correction for the extrapolation is included

in the NNLO QCD cross-sections results shown below.

We now show the integrated hadronic cross-sections for the production of the Higgs

boson in association with a jet at 8 TeV LHC in the all-gluon channel. We choose to vary

the renormalization and factorization scale in the range µR = µF = mH/2, mH , 2mH . After

– 40 –
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1302.6216H

section, it is clear that the Hj-Minlo enhanced fixed order prediction and its derivatives,
namely, the hardest emission cross section and subsequent parton showered predictions, all
agree identically; thus, a relatively low contribution in the vicinity of the pH

T
∼ 0 GeV in

the case of the enhanced fixed order prediction (red) must be compensated by it having a
relatively high contribution elsewhere, in this case the region ∼ 15− 50 GeV.

In summary, we have seen that the Hj-Minlo predictions at the NLO, Les Houches,
and showered level are in close agreement, the largest discrepancy (near 10%) occurring
in the Sudakov region, where effects beyond NLO are numerically significant, for reasons
which are well understood.

The final ingredient to reach the NNLO accuracy is the inclusion of the reweighting
procedure discussed in sections 2.1 and 2.2. In figure 3 we display the effect of the inclusion
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Figure 3. Transverse momentum spectrum of the Higgs boson from the Nnlops simulation with

β = ∞ (red) and our default β = 1
2 (blue), compared to the Hj-Minlo output (green). The Hj-

Minlo output (rescaled by a global factor such that the total inclusive cross section is the same as

for the two Nnlops predictions) is shown in black, and is almost exactly under the red line. The

ratio plots are normalized to the black line.

of the NNLO reweighting with respect to the Hj-Minlo result, for β = ∞ and β = 1
2 .

In the β = ∞ case, the NNLO reweighting can be well modeled by an overall K -factor,
that does not modify the shape of the transverse momentum distribution at all. This is
easily understood, since in practice the reweighting factor has a fairly mild dependence
upon the rapidity. By introducing a finite β we do instead alter the shape of the transverse
momentum distribution, since, in this case, the K -factor is only applied to the lower portion
of the pT spectrum. We observe that the NNLO correction factor is quite large, around
1.5, in the small transverse momentum region, where the bulk of the cross section lies. We
remind the reader that in carrying out the reweighting here, we have set µF = µR = 1

2mH

in the Hnnlo program and used the default Hj-Minlo settings (which correspond well, in
the case of inclusive quantities, to conventional NLO predictions with µF = µR = mH). Had
we chosen µF = µR = mH in determining the Hnnlo input to the reweighting procedure,
the correction factor would be near 1.3.
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Figure 25: Kinematic distributions in the Njet = 1 channel: m!! after the Z→ττ veto (left) and |∆φ!! |
after the cut on m!! (right), The signal is added on top of the background. The WW and top back-

grounds are scaled to use the normalisation derived from the corresponding control regions described

in the text. The shaded area represents the uncertainty on the signal and background yields from

statistical, experimental, and theoretical sources.
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Figure 26: Kinematic distributions in the Njet = 1 channel after the full selection: p
!!
T
(top left), |∆φ!! |

(top right), m!! (bottom left), andmT (bottom right). The eµ and µe channels are combined. The signal

is added on top of the background. TheWW and top backgrounds are scaled to use the normalisation

derived from the corresponding control regions described in the text. The shaded area represents the

uncertainty on the signal and background yields from statistical, experimental, and theoretical sources.
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Figure 21: Kinematic distributions in the Njet = 0 channel after the full selection: p
!!
T
(top left), |∆φ!! |

(top right), m!! (bottom left), andmT (bottom right). The eµ and µe channels are combined. The signal

is added on top of the background. TheWW and top backgrounds are scaled to use the normalisation

derived from the corresponding control regions described in the text. The shaded area represents the

uncertainty on the signal and background yields from statistical, experimental, and theoretical sources.
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(left) and sub-leading lepton pT (right). The eµ and µe channels are combined. The signal is added on
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the corresponding control regions described in the text. The shaded area represents the uncertainty on
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Figure 2: Jet multiplicity for events in 8 TeV data. The plots are shown for the (a) eµ+ µe and (b)

ee+ µµ channels after pre-selection and Emiss
T,rel
> 25GeV and > 45GeV, respectively. The signal is too

small to be seen. The shaded area represents the uncertainty on the signal and background yields from

statistical, experimental, and theoretical sources.

vectorial sum pT of the low-pT jets in the φ quadrant opposite p
""
T
for Njet = 0 and p

"" j
T
for Njet = 1.

Low-pT jets are defined as those with pT > 10GeV and below the previously mentioned nominal

thresholds. Each low-pT jet is weighted by its JVF value. The frecoil distribution of DY events is

distinct from that of non-DY processes, because of the different topology of DY and other events in

the dilepton sample. The dilepton system in DY events is balanced by soft hadronic activity, resulting

in large values of frecoil, whereas the dilepton system in WW, top, signal, and similar processes is

balanced by a combination of recoiling neutrinos and soft hadronic activity, which results in small

values of frecoil. Figure 1d shows the frecoil distributions for DY, non-DY and signal processes in

simulated events.

3.4 Analyses categorised in Njet

The signal selection strategy depends on the jet multiplicity (Njet) as do the rate and the composition

of the backgrounds. For Njet ≤ 1 the signal originates almost entirely from the ggF process and WW
events dominate the background composition. For Njet ≥ 2 the signal is mostly from the VBF process
and tt̄ events dominate the background. Figures 2a and 2b show the multiplicity distribution of jets in

the eµ+ µe and ee+ µµ channels for all events satisfying pre-selection described and the requirement

on Emiss
T,rel
(see Table 2). Table 2 summarises the selection described in this section.

For all jet multiplicities, a set of topological selections takes advantage of the configuration of

the two leptons. The leptons emerge in the same direction due to the spin correlations of H→WW(∗)

decay and the V − A structure of the W decay. The leptons’ invariant mass is required to be small,
m"" < 50GeV for Njet ≤ 1 and m"" < 60GeV for Njet ≥ 2, and their azimuthal gap is also required to be
small, |∆φ"" |< 1.8 radians. The distributions of m"" and mT are used to extract the signal strength;
these variables are introduced later in Section 3.5.

The analysis is divided into Njet = 0, = 1, and ≥ 2. In the Njet = 0 analysis, the following criteria
improve the rejection of the DY background and multi-jet background. The missing transverse mo-

mentum is required to be large. For eµ+ µe, the selection is Emiss
T,rel
> 25GeV. For ee+ µµ, the selection

is tighter, Emiss
T,rel
> 45GeV and pmiss

T,rel
> 45GeV, because of the large DY background from Z/γ∗→ "".

6
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proton

W–

ν

e+

W+

H0

ν

e–

antiproton

g

g

can get jets 
via ISR

H → WW channel

ATLAS-CONF-2013-030

1-jet eµ/µe channel0-jet eµ/µe channel



14

 [GeV]llm

50 100 150 200 250

E
ve

n
ts

 /
 1

0
 G

e
V

0

100

200

300

400

500

600

700

800  Data  stat)⊕ SM (sys 

 WW γ WZ/ZZ/W

t t  Single Top

 Z+jets  W+jets

  H [125 GeV]

ATLAS Preliminary
-1 Ldt = 20.7 fb∫ = 8 TeV, s

 + 1 jetνeνµ/νµνe→
(*)

WW→H

 [rad]
ll

φ∆
0 0.5 1 1.5 2 2.5 3

E
ve

n
ts

 /
 0

.1
3
 r

a
d

0

20

40

60

80

100

120  Data  stat)⊕ SM (sys 

 WW γ WZ/ZZ/W

t t  Single Top

 Z+jets  W+jets

  H [125 GeV]

ATLAS Preliminary
-1 Ldt = 20.7 fb∫ = 8 TeV, s

 + 1 jetνeνµ/νµνe→
(*)

WW→H

Figure 25: Kinematic distributions in the Njet = 1 channel: m!! after the Z→ττ veto (left) and |∆φ!! |
after the cut on m!! (right), The signal is added on top of the background. The WW and top back-

grounds are scaled to use the normalisation derived from the corresponding control regions described

in the text. The shaded area represents the uncertainty on the signal and background yields from

statistical, experimental, and theoretical sources.
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Figure 26: Kinematic distributions in the Njet = 1 channel after the full selection: p
!!
T
(top left), |∆φ!! |

(top right), m!! (bottom left), andmT (bottom right). The eµ and µe channels are combined. The signal

is added on top of the background. TheWW and top backgrounds are scaled to use the normalisation

derived from the corresponding control regions described in the text. The shaded area represents the

uncertainty on the signal and background yields from statistical, experimental, and theoretical sources.
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Figure 21: Kinematic distributions in the Njet = 0 channel after the full selection: p
!!
T
(top left), |∆φ!! |

(top right), m!! (bottom left), andmT (bottom right). The eµ and µe channels are combined. The signal

is added on top of the background. TheWW and top backgrounds are scaled to use the normalisation

derived from the corresponding control regions described in the text. The shaded area represents the

uncertainty on the signal and background yields from statistical, experimental, and theoretical sources.
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Figure 22: Kinematic distributions in the Njet = 0 channel after the full selection: leading lepton pT
(left) and sub-leading lepton pT (right). The eµ and µe channels are combined. The signal is added on

top of the background. TheWW and top backgrounds are scaled to use the normalisation derived from

the corresponding control regions described in the text. The shaded area represents the uncertainty on

the signal and background yields from statistical, experimental, and theoretical sources.
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Figure 2: Jet multiplicity for events in 8 TeV data. The plots are shown for the (a) eµ+ µe and (b)

ee+ µµ channels after pre-selection and Emiss
T,rel
> 25GeV and > 45GeV, respectively. The signal is too

small to be seen. The shaded area represents the uncertainty on the signal and background yields from

statistical, experimental, and theoretical sources.

vectorial sum pT of the low-pT jets in the φ quadrant opposite p
""
T
for Njet = 0 and p

"" j
T
for Njet = 1.

Low-pT jets are defined as those with pT > 10GeV and below the previously mentioned nominal

thresholds. Each low-pT jet is weighted by its JVF value. The frecoil distribution of DY events is

distinct from that of non-DY processes, because of the different topology of DY and other events in

the dilepton sample. The dilepton system in DY events is balanced by soft hadronic activity, resulting

in large values of frecoil, whereas the dilepton system in WW, top, signal, and similar processes is

balanced by a combination of recoiling neutrinos and soft hadronic activity, which results in small

values of frecoil. Figure 1d shows the frecoil distributions for DY, non-DY and signal processes in

simulated events.

3.4 Analyses categorised in Njet

The signal selection strategy depends on the jet multiplicity (Njet) as do the rate and the composition

of the backgrounds. For Njet ≤ 1 the signal originates almost entirely from the ggF process and WW
events dominate the background composition. For Njet ≥ 2 the signal is mostly from the VBF process
and tt̄ events dominate the background. Figures 2a and 2b show the multiplicity distribution of jets in

the eµ+ µe and ee+ µµ channels for all events satisfying pre-selection described and the requirement

on Emiss
T,rel
(see Table 2). Table 2 summarises the selection described in this section.

For all jet multiplicities, a set of topological selections takes advantage of the configuration of

the two leptons. The leptons emerge in the same direction due to the spin correlations of H→WW(∗)

decay and the V − A structure of the W decay. The leptons’ invariant mass is required to be small,
m"" < 50GeV for Njet ≤ 1 and m"" < 60GeV for Njet ≥ 2, and their azimuthal gap is also required to be
small, |∆φ"" |< 1.8 radians. The distributions of m"" and mT are used to extract the signal strength;
these variables are introduced later in Section 3.5.

The analysis is divided into Njet = 0, = 1, and ≥ 2. In the Njet = 0 analysis, the following criteria
improve the rejection of the DY background and multi-jet background. The missing transverse mo-

mentum is required to be large. For eµ+ µe, the selection is Emiss
T,rel
> 25GeV. For ee+ µµ, the selection

is tighter, Emiss
T,rel
> 45GeV and pmiss

T,rel
> 45GeV, because of the large DY background from Z/γ∗→ "".

6

full selection cuts

no Higgs mass peak:
the signal strength must be 
extracted by comparing to 

theory predictions
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Table 12: Leading systematic uncertainties on the expected event yields for the 8 TeV analysis. The

first four rows are calculated for inclusive Njet modes and redistributed to exclusive ones (Section 5).

The QCD scale uncertainties on the inclusive ggF cross sections are anti-correlated between the ex-

clusive Njet modes. Some uncertainties are grouped differently with respect to Table 11 to reflect the

treatment of correlations; most experimental ones are correlated between the signal and background.

Sources contributing less than 4% to any column, and individual entries below 1%, are omitted.

Signal processes (%) Background processes (%)

Source Njet = 0 Njet = 1 Njet ≥ 2 Njet = 0 Njet = 1 Njet ≥ 2

Theoretical uncertainties

QCD scale for ggF signal for Njet ≥ 0 13 - - - - -

QCD scale for ggF signal for Njet ≥ 1 10 27 - - - -

QCD scale for ggF signal for Njet ≥ 2 - 15 4 - - -

QCD scale for ggF signal for Njet ≥ 3 - - 4 - - -

Parton shower and UE model (signal only) 3 10 5 - - -

PDF model 8 7 3 1 1 1

H→WW branching ratio 4 4 4 - - -

QCD scale (acceptance) 4 4 3 - - -

WW normalisation - - - 1 2 4

Experimental uncertainties

Jet energy scale and resolution 5 2 6 2 3 7

b-tagging efficiency - - - - 7 2

frecoil efficiency 1 1 - 4 2 -
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Figure 9: Background-subtracted mT distribution for Njet ≤1 in 7 and 8 TeV data. The signal is over-
laid. The error bars represent the statistical uncertainties of the data and the subtracted background; it

does not include the systematic uncertainties of the latter.

of variable widths to have the same number of expected background events in each bin to reduce the

effect of MC statistics. For Njet ≥ 2, the divisions occur at 50, 80, and 130GeV for the 8 TeV analysis,
and one bin with mT < 150GeV is used for the 7 TeV analysis. The use of the mT distribution relies

on the knowledge of its shape, and the effects of those uncertainties are small in comparison to those

from the WW normalisation. Interference effects between gg → WW and the signal reduce the total
expected event yield by about 10% at mT ! mH [74]. The impact on the analysis is negligible because

the signal region is binned in mT and the high end of the distribution has a low expected S/B and

24

systematic uncertainties for jet bins

NNLO

NLO

LO

resummation will help control these uncertainties

17% 30%
ATLAS-CONF-2013-030
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jet clustering and jet vetoes

cluster final state into jets
uses an algorithm (e.g. anti-kT)
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jet clustering and jet vetoes
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only jets with
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are counted

1-jet event
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jet clustering and jet vetoes

cluster final state into jets
uses an algorithm (e.g. anti-kT)

veto on soft jets
(usually by pT)

only jets with
pT > pcutT

are counted

1-jet event

collinear safety
soft safety

IR safety

�

pT veto scale set by:
1. soft jets poorly measured
2. high pT veto less effective

scale usually ~25-30 GeV
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Ecm � 8 TeV
pTcut � 30 GeV
R � 0.4
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cross section in jet bins

Exclusive jet cross sections
Stewart, Tackmann, JW, Zuberi, 1307.1808

Boughezal, Liu, Petriello, Tackmann, JW, 1312.4535

The precision frontier and the Higgs

Implementation and future work
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FIG. 4: Singular and nonsingular contributions to the fixed NNLO cross section (using R = 0.4 and µFO = mH). Left: The
magnitude of the contributions differential in pjetT . Right: The corresponding contributions to the integrated cross section as
a function of pcutT . The resummation, transition, and fixed-order regions are clearly visible as the relative importance of the
singular and nonsingular terms changes with pjetT and pcutT .

The first regime, x ≤ 2x0, is the nonperturbative region
and the scales µB,S and νS asymptote as x → 0 to a
fixed scale x0µFO

>∼ ΛQCD. This ensures that factors
of αs(µi) that enter from solving perturbatively defined
anomalous dimension equations, never become nonper-
turbative. The second regime has the canonical scaling
for resummation. The third and fourth have quadratic
scaling (of positive and negative second derivative, re-
spectively) and simply provide a smooth transition to
the final (constant) region where all scales are equal and
resummation is turned off. This profile function and its
first derivative are both continuous.
For the overall scale parameter we have µFO ∼ mH and

for our central result we will use µFO = mH in Eq. (60).
In Eq. (61) the parameters xi mark the boundary be-
tween the different regimes, and their values are chosen
by considering the importance of the singular versus non-
singular contributions plotted in Fig. 4. The singular
and nonsingular contributions become comparable near
pcutT = 40GeV so the profile must transition towards the
fixed-order result beyond this value. For our central pro-
files we choose

x0 = 2.5GeV/µFO , {x1, x2, x3} = {0.15, 0.4, 0.65} .
(62)

For µFO = mH = 125GeV the {x1, x2, x3} values corre-
spond to {19, 50, 81}GeV. The resulting central profile
scales are shown in Fig. 5, so we see that the transition
occurs roughly between 30–65GeV. In the next subsec-
tion, we discuss in detail the profile scale variations that
we use to evaluate perturbative uncertainties.
Note that in the transition from small to large pcutT ,

we are essentially forced to keep the hard scale at its
imaginary value µH = −imH . In principle, one could
contemplate rotating it to the real axis as a function
of pcutT to turn off the resulting resummation of large
π2 terms in the hard virtual corrections. However, this
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FIG. 5: The central profile scale for the low scales µB , µS , νS
as a function of pcutT , together with the central value for the
high scales |µH |, νB .

would inevitably lead to an unphysical result of a decreas-
ing cross section with increasing pcutT . What this means
is that the significantly improved perturbative stability
observed in the small pT region also directly translates
into an improved convergence in the fixed-order cross sec-
tion at large pcutT , simply because a large part of the total
cross section comes from the small pT region. Further-
more, as we have seen in Fig. 2, the imaginary scale also
translates into an improved convergence of the nonsin-
gular contributions themselves. The total cross section
for µH = −imH increases by about 7% compared to the
NNLO cross section evaluated at µFO = mH/2. This in-
crease is quite consistent with the expected increase in
the total cross section at N3LO from the recent estimate
in Ref. [57].
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singular and nonsingular terms changes with pjetT and pcutT .

The first regime, x ≤ 2x0, is the nonperturbative region
and the scales µB,S and νS asymptote as x → 0 to a
fixed scale x0µFO

>∼ ΛQCD. This ensures that factors
of αs(µi) that enter from solving perturbatively defined
anomalous dimension equations, never become nonper-
turbative. The second regime has the canonical scaling
for resummation. The third and fourth have quadratic
scaling (of positive and negative second derivative, re-
spectively) and simply provide a smooth transition to
the final (constant) region where all scales are equal and
resummation is turned off. This profile function and its
first derivative are both continuous.
For the overall scale parameter we have µFO ∼ mH and

for our central result we will use µFO = mH in Eq. (60).
In Eq. (61) the parameters xi mark the boundary be-
tween the different regimes, and their values are chosen
by considering the importance of the singular versus non-
singular contributions plotted in Fig. 4. The singular
and nonsingular contributions become comparable near
pcutT = 40GeV so the profile must transition towards the
fixed-order result beyond this value. For our central pro-
files we choose

x0 = 2.5GeV/µFO , {x1, x2, x3} = {0.15, 0.4, 0.65} .
(62)

For µFO = mH = 125GeV the {x1, x2, x3} values corre-
spond to {19, 50, 81}GeV. The resulting central profile
scales are shown in Fig. 5, so we see that the transition
occurs roughly between 30–65GeV. In the next subsec-
tion, we discuss in detail the profile scale variations that
we use to evaluate perturbative uncertainties.
Note that in the transition from small to large pcutT ,

we are essentially forced to keep the hard scale at its
imaginary value µH = −imH . In principle, one could
contemplate rotating it to the real axis as a function
of pcutT to turn off the resulting resummation of large
π2 terms in the hard virtual corrections. However, this
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as a function of pcutT , together with the central value for the
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would inevitably lead to an unphysical result of a decreas-
ing cross section with increasing pcutT . What this means
is that the significantly improved perturbative stability
observed in the small pT region also directly translates
into an improved convergence in the fixed-order cross sec-
tion at large pcutT , simply because a large part of the total
cross section comes from the small pT region. Further-
more, as we have seen in Fig. 2, the imaginary scale also
translates into an improved convergence of the nonsin-
gular contributions themselves. The total cross section
for µH = −imH increases by about 7% compared to the
NNLO cross section evaluated at µFO = mH/2. This in-
crease is quite consistent with the expected increase in
the total cross section at N3LO from the recent estimate
in Ref. [57].
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0-jet factorization theorem

short distance 
process

collinear evolution 
of initial state

soft radiation
across event

hard function H

beam function B
   soft function S

short distance (loop) corrections

QCD

SCET

scale ~ mH

collinear radiation
soft radiation

scale ~ pTcut

increasing
scale

renormalization group evolution in SCET
 sums logarithms of mH / pTcut

soft-collinear 
effective theory

Bauer, Fleming, Luke, hep-ph/0005275
Bauer, Fleming, Pirjol, Stewart, hep-ph/0011336

Bauer, Stewart, hep-ph/0107001
Bauer, Pirjol, Stewart, hep-ph/0109045
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0-jet factorization theorem

σ(pcutT ) ∼Hgg(µ)
�
Ba(p

cut
T , µ, ν)×Bb(p

cut
T , µ, ν)× S(pcutT , µ, ν)

�
+ σns(µ)

virtuals known to NNLO
we add π2 resummation, 
which increases total rate

Logarithms known to NNLO through RGE
Finite log(R) dependence calculated by us

(finite means pTcut independent)
Remaining finite terms fit via MCFM

Fully calculated to 
NNLO by us

Fit to NNLO from 
MCFM/HNNLO by us

Becher, Neubert, 
1205.3806
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technical and conceptual complications

veto is on final state jets
we need to include the jet algorithm in the 

theoretical framework for resummation

�
αsCA

π

�n �
Cn(R) ln

mH

pcut
T

+Dn(R)
�clustering effects arise 

at each order
(start at NNLO)

NNLO effects (only LO in the algorithm) are large
need to ensure uncertainties are under control

JW, Alioli, 1311.5234

�αsCA

π

�3
C(2)

3 ln
mH

pcut
T

ln2 R2 ∼ −5 · 10−3

�αsCA

π

�2
C(1)

2 ln
mH

pcut
T

lnR2 ∼ 0.14

leading terms

we have calculated the N3LO leading contributions

Tackmann, JW, Zuberi, 
1206.4312
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FIG. 2: The nonsingular cross section at µns = mH at NLO (blue, dashed) and NNLO (orange, solid) for R = 0.4. We compare
the pure fixed-order nonsingular terms (on the left) with the nonsingular terms that include π2 summation (on the right). The
latter shows a substantially improved perturbative convergence from NLO to NNLO.

III. RESUMMATION AND PERTURBATIVE
UNCERTAINTIES

A critical aspect of precision cross section predictions
is the theoretical control of perturbative uncertainties.
Ultimately, the formal perturbative accuracy in the pre-
dictions is only meaningful together with a robust under-
standing and estimate of theoretical uncertainties.
The categorization of the data into jet bins is used

in the experimental analyses to optimize the control of
backgrounds and experimental systematic effects. In the
end, the information from all measured categories flows
together, thereby maximizing the use of the available
data. In this context, vetoing jets in the 0-jet cross sec-
tion amounts to dividing the total inclusive cross sec-
tion, σtot ≡ σ≥0, into an exclusive 0-jet bin equivalent to
σ0(pcutT ) and the remaining inclusive 1-jet bin,

σ≥0 = σ0(p
cut
T ) + σ≥1(p

cut
T ) . (46)

Therefore, a complete theoretical description of this bin-
ning procedure is needed. This requires a framework,
which, in addition to the resummation of σ0(pcutT ) at
small pcutT , provides a valid description of the cross sec-
tion at all values of pcutT as well as the correlations be-
tween the perturbative uncertainties in the jet bins and
the total cross section.
As we discuss in detail in this section, the framework

we use for resummation and fixed-order matching, based
on SCET and profile functions, is well-suited for this
task. It provides us with direct theoretical handles to
reliably assess the perturbative uncertainties and allows
us to predict the required correlations by utilizing com-
mon underlying theory parameters in the scales µH , µB,
µS , νB, and νS . These are varied to obtain the uncer-
tainty estimates.
In Sec. III A we give an overview of perturbative un-

certainties for jet bins, and establish the necessary no-

tation. As the jet-veto cut is increased our resummed
results smoothly reproduce the fixed-order cross section
and its standard uncertainties by using profile functions,
which are discussed in Sec. III B. In Sec. III C we explain
how variations of the hard, soft, and beam scales in the
effective theory determine the fixed-order and jet-binning
uncertainties. Finally, in Sec. III D we discuss our esti-
mate for the additional uncertainty from clustering ef-
fects at higher orders in perturbation theory. Note that
we will not discuss additional parametric uncertainties
from input parameters such as PDFs or αs(mZ). These
have to be estimated separately and included with the
usual uncertainty propagation.

A. Perturbative Uncertainties in Jet Binning

A convenient way to describe the uncertainties involved
in the jet binning is in terms of fully correlated and fully
anticorrelated components [12, 47], which amounts to
parametrizing the covariance matrix for {σ0,σ≥1} as

C({σ0,σ≥1}) =

(

(∆y
0)

2 ∆y
0 ∆

y
≥1

∆y
0 ∆

y
≥1 (∆y

≥1)
2

)

+

(

∆2
cut −∆2

cut

−∆2
cut ∆2

cut

)

.

(47)
The first correlated component, denoted with a super-
script “y”, can be interpreted as an overall yield uncer-
tainty shared among all bins. The second anticorrelated
component can be interpreted as a migration uncertainty
between the two bins, which is introduced by the binning
cut and drops out in their sum. The total uncertainty for
each bin is given by

∆≥0 = ∆y
0 +∆y

≥1 ≡ ∆y
≥0 ,

∆2
0 = (∆y

0)
2 +∆2

cut ,

∆2
≥1 = (∆y

≥1)
2 +∆2

cut . (48)

σns

0 (pcutT ) = σFO

0 (pcutT )− σsing

0
(pcutT )

lets us also fit unknown 
singular constants

in pTcut → 0 limit

given by difference 
between FO, singular
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FIG. 4: Singular and nonsingular contributions to the fixed NNLO cross section (using R = 0.4 and µFO = mH). Left: The
magnitude of the contributions differential in pjetT . Right: The corresponding contributions to the integrated cross section as
a function of pcutT . The resummation, transition, and fixed-order regions are clearly visible as the relative importance of the
singular and nonsingular terms changes with pjetT and pcutT .

The first regime, x ≤ 2x0, is the nonperturbative region
and the scales µB,S and νS asymptote as x → 0 to a
fixed scale x0µFO

>∼ ΛQCD. This ensures that factors
of αs(µi) that enter from solving perturbatively defined
anomalous dimension equations, never become nonper-
turbative. The second regime has the canonical scaling
for resummation. The third and fourth have quadratic
scaling (of positive and negative second derivative, re-
spectively) and simply provide a smooth transition to
the final (constant) region where all scales are equal and
resummation is turned off. This profile function and its
first derivative are both continuous.
For the overall scale parameter we have µFO ∼ mH and

for our central result we will use µFO = mH in Eq. (60).
In Eq. (61) the parameters xi mark the boundary be-
tween the different regimes, and their values are chosen
by considering the importance of the singular versus non-
singular contributions plotted in Fig. 4. The singular
and nonsingular contributions become comparable near
pcutT = 40GeV so the profile must transition towards the
fixed-order result beyond this value. For our central pro-
files we choose

x0 = 2.5GeV/µFO , {x1, x2, x3} = {0.15, 0.4, 0.65} .
(62)

For µFO = mH = 125GeV the {x1, x2, x3} values corre-
spond to {19, 50, 81}GeV. The resulting central profile
scales are shown in Fig. 5, so we see that the transition
occurs roughly between 30–65GeV. In the next subsec-
tion, we discuss in detail the profile scale variations that
we use to evaluate perturbative uncertainties.
Note that in the transition from small to large pcutT ,

we are essentially forced to keep the hard scale at its
imaginary value µH = −imH . In principle, one could
contemplate rotating it to the real axis as a function
of pcutT to turn off the resulting resummation of large
π2 terms in the hard virtual corrections. However, this
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FIG. 5: The central profile scale for the low scales µB , µS , νS
as a function of pcutT , together with the central value for the
high scales |µH |, νB .

would inevitably lead to an unphysical result of a decreas-
ing cross section with increasing pcutT . What this means
is that the significantly improved perturbative stability
observed in the small pT region also directly translates
into an improved convergence in the fixed-order cross sec-
tion at large pcutT , simply because a large part of the total
cross section comes from the small pT region. Further-
more, as we have seen in Fig. 2, the imaginary scale also
translates into an improved convergence of the nonsin-
gular contributions themselves. The total cross section
for µH = −imH increases by about 7% compared to the
NNLO cross section evaluated at µFO = mH/2. This in-
crease is quite consistent with the expected increase in
the total cross section at N3LO from the recent estimate
in Ref. [57].

profile scales

fixed order regime
(all scales equal)

resummation 
regime

profile scales implement 
resummation and matching
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FIG. 6: The variations of the central profiles as described in the text. On the left, the variations are shown that contribute to
the yield uncertainty, where all scales are collectively multiplied by a factor 2 or 1/2, for all four profile shapes. The central
profile shape is shown with thick lines, while the other profile shapes are shown with dotted lines, and we shade between
the shapes. On the right, the variations of µB , µS , and νS (solid lines, yellow shading) and νB (dotted lines, green shading)
are shown which contribute to the resummation uncertainty. Combinations of variations of these scales make up the set of
variations that we perform to asses the uncertainties in our prediction.

the factorization,

µS

µB
∼

µS

νS
∼ 1 ,

νB
νS

∼
mH

pcutT

. (67)

All of these scalings are respected by the central pro-
files. We then constrain the variations about the central
profiles to not violate any of these scaling relations by
more than a factor of 2 (as would happen for instance by
varying µB up and µS down). We make one additional
constraint on the variations by considering the evolution
factor U0 in Eq. (57). The summation of rapidity loga-
rithms contains the factor

exp

[

ln
(νB
νS

)

γg
ν (p

cut
T , R, µB)

]

. (68)

This is a unique combination as it features a large loga-
rithm of νB/νS multiplying a rapidity anomalous dimen-
sion that depends on µB. A simultaneous variation of
µB down with either νS down or νB up gives sensitivity
to small scales αs(µB), and the effect is effectively dou-
bled by the ln(νS/νB) variation, leading us to eliminate
these two combinations from the set of scale variations
we consider.
With these restrictions, there are 35 remaining (of an

original possible 80) profile scale variations of µB, µS , νB,
and νS away from their central profile which probe the re-
summation uncertainty. We note that without separately
varying µB and µS , and without explicit variations of the
νB and νS scales there would be only a single up/down
variation and a significant reduction in the resummation
uncertainty. Exploring a much larger space for the scale
variations is crucial to reliably estimate the uncertainty
from the summation of logarithms. Note that at small R
the large lnR2 effects appear through the rapidity RGE,
so it is important to vary the rapidity scales to probe the

effect of these terms on the pcutT resummation. For the
final resummation uncertainty we use
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where Vresum is the above set of 35 resummation scale
variations. This uncertainty determines the covariance
matrix Cresum, and together with Cµ gives the full co-
variance matrix.

D. Uncertainties from Clustering Effects

The purpose of the profile scale variations is to es-
timate the effect of uncalculated higher-order terms in
the cross section. This includes the higher-order correc-
tions in the perturbative series of the various anoma-
lous dimensions, which would be needed for the resum-
mation at N3LL. While this is effective for the loga-
rithms of pcutT /mH , which are being resummed, the clus-
tering effects generate an all-orders series of logarithms
of pcutT /mH and logarithms of R2. In particular, as ex-
plained at the end of Sec. II B, the lnR2 terms appear as
an unresummed series of large logarithms in the rapidity
anomalous dimension. The effect of these terms on the
resummed cross section is not necessarily well estimated
from scale variation of the lowest order term alone.

The new clustering effects (those not determined from
soft function exponentiation) arising at O(αn

s ) depend
on a coefficient Cn(R), whose small R limit has the form
in Eq. (3). The term with the most factors of lnR2 at
O(αn

s ) gives a contribution to the cross section of the
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the factorization,
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νB
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mH
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. (67)
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R = 0.4:

R = 0.5:

rates with uncertainties:

compare to 17%!

pcutT = 25 GeV : σ0 = 12.67± 1.22(9.6%)

pcutT = 30 GeV : σ0 = 14.09± 0.96(6.8%)

pcutT = 25 GeV : σ0 = 12.40± 1.12(9.0%)

pcutT = 30 GeV : σ0 = 13.85± 0.87(6.3%)
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FIG. 7: The 0-jet cross section for R = 0.4 and mH = 125GeV. On the left we show the NLLpT , NLL′
pT+NLO, and

NNLL′
pT+NNLO predictions. A good convergence and reduction of uncertainties at successively higher orders is observed. On

the right we compare our best prediction at NNLL′
pT+NNLO to the fixed NNLO prediction. The lower plots show the relative

uncertainty in percent for each prediction. On the lower left the lighter inside bands show the contribution from ∆resum only,
while the darker outer bands show the total uncertainty from adding ∆resum and ∆µ in quadrature.

ues for σ0(pcutT , R) with both theoretical uncertainties:

σ0(25GeV, 0.4) = 12.67± 1.22pert ± 0.46clust pb ,

σ0(30GeV, 0.5) = 13.85± 0.87pert ± 0.24clust pb . (74)

It is interesting to compare our results and uncertain-
ties for σ0 to the NNLL+NNLO results presented ear-
lier in Ref. [9]. Our results build on their results in a
few ways. In particular, our RG approach includes π2

resummation, our results are quoted as NNLL′ because
they go beyond NNLL by including the complete NNLO
singular terms in the fixed-order matching (which are the
correct boundary conditions for the N3LL resummation),
and finally we use a factorization based approach to un-
certainties, which also makes predictions for the correla-
tions between the different jet bins.
Comparing σ0 at pcutT = 25GeV and R = 0.4 our cen-

tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above

mentioned additions. One important ingredient in this
comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
uncertainty. On the other hand, in Ref. [9] the central
scale is chosen to be µFO = mH/2 which also works in the
same direction, decreasing the uncertainty relative to the
choice µFO = mH . For the total cross section Ref. [9] has
a 7.4% uncertainty, whereas we have 6.9% uncertainty
using µFO = mH and including π2 resummation (see Ta-
ble II). From Table IV in appendix App. A we see that
our perturbative uncertainty for σ0(25GeV, 0.4) would
increase to 12.8% if the π2 resummation were turned off
(while still taking the central µFO = mH), and that at
this level the uncertainty would become comparable to
that of Ref. [9]. For pcutT = 30GeV and R = 0.5 our
central values remain perfectly compatible with Ref. [9],
and the uncertainties follow a pattern similar to the case
above.
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It is interesting to compare our results and uncertain-
ties for σ0 to the NNLL+NNLO results presented ear-
lier in Ref. [9]. Our results build on their results in a
few ways. In particular, our RG approach includes π2

resummation, our results are quoted as NNLL′ because
they go beyond NNLL by including the complete NNLO
singular terms in the fixed-order matching (which are the
correct boundary conditions for the N3LL resummation),
and finally we use a factorization based approach to un-
certainties, which also makes predictions for the correla-
tions between the different jet bins.
Comparing σ0 at pcutT = 25GeV and R = 0.4 our cen-

tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above

mentioned additions. One important ingredient in this
comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
uncertainty. On the other hand, in Ref. [9] the central
scale is chosen to be µFO = mH/2 which also works in the
same direction, decreasing the uncertainty relative to the
choice µFO = mH . For the total cross section Ref. [9] has
a 7.4% uncertainty, whereas we have 6.9% uncertainty
using µFO = mH and including π2 resummation (see Ta-
ble II). From Table IV in appendix App. A we see that
our perturbative uncertainty for σ0(25GeV, 0.4) would
increase to 12.8% if the π2 resummation were turned off
(while still taking the central µFO = mH), and that at
this level the uncertainty would become comparable to
that of Ref. [9]. For pcutT = 30GeV and R = 0.5 our
central values remain perfectly compatible with Ref. [9],
and the uncertainties follow a pattern similar to the case
above.
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It is interesting to compare our results and uncertain-
ties for σ0 to the NNLL+NNLO results presented ear-
lier in Ref. [9]. Our results build on their results in a
few ways. In particular, our RG approach includes π2

resummation, our results are quoted as NNLL′ because
they go beyond NNLL by including the complete NNLO
singular terms in the fixed-order matching (which are the
correct boundary conditions for the N3LL resummation),
and finally we use a factorization based approach to un-
certainties, which also makes predictions for the correla-
tions between the different jet bins.
Comparing σ0 at pcutT = 25GeV and R = 0.4 our cen-

tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above

mentioned additions. One important ingredient in this
comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
uncertainty. On the other hand, in Ref. [9] the central
scale is chosen to be µFO = mH/2 which also works in the
same direction, decreasing the uncertainty relative to the
choice µFO = mH . For the total cross section Ref. [9] has
a 7.4% uncertainty, whereas we have 6.9% uncertainty
using µFO = mH and including π2 resummation (see Ta-
ble II). From Table IV in appendix App. A we see that
our perturbative uncertainty for σ0(25GeV, 0.4) would
increase to 12.8% if the π2 resummation were turned off
(while still taking the central µFO = mH), and that at
this level the uncertainty would become comparable to
that of Ref. [9]. For pcutT = 30GeV and R = 0.5 our
central values remain perfectly compatible with Ref. [9],
and the uncertainties follow a pattern similar to the case
above.
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ties for σ0 to the NNLL+NNLO results presented ear-
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few ways. In particular, our RG approach includes π2

resummation, our results are quoted as NNLL′ because
they go beyond NNLL by including the complete NNLO
singular terms in the fixed-order matching (which are the
correct boundary conditions for the N3LL resummation),
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tions between the different jet bins.
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tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above
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comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
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scale is chosen to be µFO = mH/2 which also works in the
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choice µFO = mH . For the total cross section Ref. [9] has
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using µFO = mH and including π2 resummation (see Ta-
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and finally we use a factorization based approach to un-
certainties, which also makes predictions for the correla-
tions between the different jet bins.
Comparing σ0 at pcutT = 25GeV and R = 0.4 our cen-

tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above

mentioned additions. One important ingredient in this
comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
uncertainty. On the other hand, in Ref. [9] the central
scale is chosen to be µFO = mH/2 which also works in the
same direction, decreasing the uncertainty relative to the
choice µFO = mH . For the total cross section Ref. [9] has
a 7.4% uncertainty, whereas we have 6.9% uncertainty
using µFO = mH and including π2 resummation (see Ta-
ble II). From Table IV in appendix App. A we see that
our perturbative uncertainty for σ0(25GeV, 0.4) would
increase to 12.8% if the π2 resummation were turned off
(while still taking the central µFO = mH), and that at
this level the uncertainty would become comparable to
that of Ref. [9]. For pcutT = 30GeV and R = 0.5 our
central values remain perfectly compatible with Ref. [9],
and the uncertainties follow a pattern similar to the case
above.
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ues for σ0(pcutT , R) with both theoretical uncertainties:

σ0(25GeV, 0.4) = 12.67± 1.22pert ± 0.46clust pb ,

σ0(30GeV, 0.5) = 13.85± 0.87pert ± 0.24clust pb . (74)

It is interesting to compare our results and uncertain-
ties for σ0 to the NNLL+NNLO results presented ear-
lier in Ref. [9]. Our results build on their results in a
few ways. In particular, our RG approach includes π2

resummation, our results are quoted as NNLL′ because
they go beyond NNLL by including the complete NNLO
singular terms in the fixed-order matching (which are the
correct boundary conditions for the N3LL resummation),
and finally we use a factorization based approach to un-
certainties, which also makes predictions for the correla-
tions between the different jet bins.
Comparing σ0 at pcutT = 25GeV and R = 0.4 our cen-

tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above

mentioned additions. One important ingredient in this
comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
uncertainty. On the other hand, in Ref. [9] the central
scale is chosen to be µFO = mH/2 which also works in the
same direction, decreasing the uncertainty relative to the
choice µFO = mH . For the total cross section Ref. [9] has
a 7.4% uncertainty, whereas we have 6.9% uncertainty
using µFO = mH and including π2 resummation (see Ta-
ble II). From Table IV in appendix App. A we see that
our perturbative uncertainty for σ0(25GeV, 0.4) would
increase to 12.8% if the π2 resummation were turned off
(while still taking the central µFO = mH), and that at
this level the uncertainty would become comparable to
that of Ref. [9]. For pcutT = 30GeV and R = 0.5 our
central values remain perfectly compatible with Ref. [9],
and the uncertainties follow a pattern similar to the case
above.

0-jet cross section: comparison to fixed order
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our 0-jet cross section. This is reflected in both the num-
bers in Table II and in the results shown in Fig. 9.

In the left panel of Fig. 9 we show results for
the efficiency at different orders. The results at
NNLL′

pT
+NNLO are within the uncertainty band of

the lower order NLL′
pT

+NLO results, and again display
an improved level of precision. In the right panel of
Fig. 9 we see that the comparison of ε0(pcutT ) between
NNLL′

pT
+NNLO and pure NNLO follows a similar pat-

tern of improvement to what we have already observed
for the 0-jet and inclusive 1-jet cross sections.

Since the 0-jet efficiency is the more fundamental quan-
tity in the framework of Ref. [9], it makes sense to ex-
tend the comparison made in Sec. IVA to this observ-
able, again taking R = 0.4 and pcutT = 25GeV. At
NNLL+NNLO Ref. [9] has a 11.5% perturbative uncer-

tainty for ε0, which in their framework is assumed to be
independent from the uncertainty in the total cross sec-
tion. Thus, their uncertainty for σ0 is always larger than
that for ε0. This 11.5% uncertainty for their ε0 is close to
the 9.6% uncertainty for our σ0, but larger than the 6.8%
uncertainty for our ε0. For the analysis of Ref. [9] there
is no corresponding cancellation of uncertainties between
the numerator and denominator of Eq. (77), and hence
the same cancellation that we observe does not occur.

D. Correlations

When evaluating the perturbative uncertainties via the
profile scale variations as discussed in Sec. III C, the cor-
relations in the total perturbative uncertainties between
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our 0-jet cross section. This is reflected in both the num-
bers in Table II and in the results shown in Fig. 9.

In the left panel of Fig. 9 we show results for
the efficiency at different orders. The results at
NNLL′

pT
+NNLO are within the uncertainty band of

the lower order NLL′
pT

+NLO results, and again display
an improved level of precision. In the right panel of
Fig. 9 we see that the comparison of ε0(pcutT ) between
NNLL′

pT
+NNLO and pure NNLO follows a similar pat-

tern of improvement to what we have already observed
for the 0-jet and inclusive 1-jet cross sections.

Since the 0-jet efficiency is the more fundamental quan-
tity in the framework of Ref. [9], it makes sense to ex-
tend the comparison made in Sec. IVA to this observ-
able, again taking R = 0.4 and pcutT = 25GeV. At
NNLL+NNLO Ref. [9] has a 11.5% perturbative uncer-

tainty for ε0, which in their framework is assumed to be
independent from the uncertainty in the total cross sec-
tion. Thus, their uncertainty for σ0 is always larger than
that for ε0. This 11.5% uncertainty for their ε0 is close to
the 9.6% uncertainty for our σ0, but larger than the 6.8%
uncertainty for our ε0. For the analysis of Ref. [9] there
is no corresponding cancellation of uncertainties between
the numerator and denominator of Eq. (77), and hence
the same cancellation that we observe does not occur.

D. Correlations

When evaluating the perturbative uncertainties via the
profile scale variations as discussed in Sec. III C, the cor-
relations in the total perturbative uncertainties between

σ≥1(p
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T ) = σtot − σ0(p
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T )/σtot

we control correlations between 
the 0-jet and total cross sections, 

so we can reliably predict uncertainties
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In the left panel of Fig. 9 we show results for
the efficiency at different orders. The results at
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+NLO results, and again display
an improved level of precision. In the right panel of
Fig. 9 we see that the comparison of ε0(pcutT ) between
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+NNLO and pure NNLO follows a similar pat-

tern of improvement to what we have already observed
for the 0-jet and inclusive 1-jet cross sections.

Since the 0-jet efficiency is the more fundamental quan-
tity in the framework of Ref. [9], it makes sense to ex-
tend the comparison made in Sec. IVA to this observ-
able, again taking R = 0.4 and pcutT = 25GeV. At
NNLL+NNLO Ref. [9] has a 11.5% perturbative uncer-

tainty for ε0, which in their framework is assumed to be
independent from the uncertainty in the total cross sec-
tion. Thus, their uncertainty for σ0 is always larger than
that for ε0. This 11.5% uncertainty for their ε0 is close to
the 9.6% uncertainty for our σ0, but larger than the 6.8%
uncertainty for our ε0. For the analysis of Ref. [9] there
is no corresponding cancellation of uncertainties between
the numerator and denominator of Eq. (77), and hence
the same cancellation that we observe does not occur.

D. Correlations

When evaluating the perturbative uncertainties via the
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relations in the total perturbative uncertainties between

19

0
0

5

10

10

15

20

20

25

30 40 50 60 70 80

pcut
T [GeV]

mH =125GeV

σ
≥
1
(p

cu
t

T
)
[p
b
]

gg → H (8TeV)

R = 0.4

NNLL′
pT
+NNLO

NLL′
pT
+NLO

NLLpT

0
0

5

10

10

15

20

20

25

30 40 50 60 70 80

pcut
T [GeV]

mH =125 GeV

σ
≥

1
(p

cu
t

T
)

[p
b
]

gg → H (8 TeV)

R = 0.4

NLO1 (H+jet)

NNLL′
pT

+NNLO

FIG. 8: The inclusive 1-jet cross section for R = 0.4 and mH = 125GeV. On the left we show the different orders of our
resummed predictions, and on the right we compare our best prediction to that derived from the fixed NNLO cross section.
As in the 0-jet cross section, we observe a good convergence and reduction in uncertainties at successively higher orders of
accuracy.

0
0

1

10 20 30 40 50 60 70 80

0.2

0.4

0.6

0.8

pcut
T [GeV]

mH =125GeV

ε
0
(p

cu
t

T
) gg → H (8TeV)

R = 0.4

NNLL′

pT
+NNLO

NLL′

pT
+NLO

NLLpT

0
0

1

10 20 30 40 50 60 70 80

0.2

0.4

0.6

0.8

pcut
T [GeV]

mH =125GeVε
0
(p

cu
t

T
)

gg → H (8TeV)

R = 0.4

NNLO

NNLL′

pT
+NNLO

FIG. 9: The 0-jet efficiency for R = 0.4 and mH = 125GeV. On the left we show the different orders in our resummed
predictions, and on the right we compare our best prediction to that derived from the fixed NNLO cross section. Because the
efficiency is the ratio of the 0-jet and total cross sections, the correlated fixed-order scale uncertainty in each quantity reduces
the uncertainty in the 0-jet efficiency, making it relatively more accurate than the cross section itself.

our 0-jet cross section. This is reflected in both the num-
bers in Table II and in the results shown in Fig. 9.

In the left panel of Fig. 9 we show results for
the efficiency at different orders. The results at
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+NNLO are within the uncertainty band of

the lower order NLL′
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+NLO results, and again display
an improved level of precision. In the right panel of
Fig. 9 we see that the comparison of ε0(pcutT ) between
NNLL′

pT
+NNLO and pure NNLO follows a similar pat-

tern of improvement to what we have already observed
for the 0-jet and inclusive 1-jet cross sections.

Since the 0-jet efficiency is the more fundamental quan-
tity in the framework of Ref. [9], it makes sense to ex-
tend the comparison made in Sec. IVA to this observ-
able, again taking R = 0.4 and pcutT = 25GeV. At
NNLL+NNLO Ref. [9] has a 11.5% perturbative uncer-

tainty for ε0, which in their framework is assumed to be
independent from the uncertainty in the total cross sec-
tion. Thus, their uncertainty for σ0 is always larger than
that for ε0. This 11.5% uncertainty for their ε0 is close to
the 9.6% uncertainty for our σ0, but larger than the 6.8%
uncertainty for our ε0. For the analysis of Ref. [9] there
is no corresponding cancellation of uncertainties between
the numerator and denominator of Eq. (77), and hence
the same cancellation that we observe does not occur.

D. Correlations

When evaluating the perturbative uncertainties via the
profile scale variations as discussed in Sec. III C, the cor-
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our 0-jet cross section. This is reflected in both the num-
bers in Table II and in the results shown in Fig. 9.

In the left panel of Fig. 9 we show results for
the efficiency at different orders. The results at
NNLL′

pT
+NNLO are within the uncertainty band of

the lower order NLL′
pT

+NLO results, and again display
an improved level of precision. In the right panel of
Fig. 9 we see that the comparison of ε0(pcutT ) between
NNLL′

pT
+NNLO and pure NNLO follows a similar pat-

tern of improvement to what we have already observed
for the 0-jet and inclusive 1-jet cross sections.

Since the 0-jet efficiency is the more fundamental quan-
tity in the framework of Ref. [9], it makes sense to ex-
tend the comparison made in Sec. IVA to this observ-
able, again taking R = 0.4 and pcutT = 25GeV. At
NNLL+NNLO Ref. [9] has a 11.5% perturbative uncer-

tainty for ε0, which in their framework is assumed to be
independent from the uncertainty in the total cross sec-
tion. Thus, their uncertainty for σ0 is always larger than
that for ε0. This 11.5% uncertainty for their ε0 is close to
the 9.6% uncertainty for our σ0, but larger than the 6.8%
uncertainty for our ε0. For the analysis of Ref. [9] there
is no corresponding cancellation of uncertainties between
the numerator and denominator of Eq. (77), and hence
the same cancellation that we observe does not occur.

D. Correlations

When evaluating the perturbative uncertainties via the
profile scale variations as discussed in Sec. III C, the cor-
relations in the total perturbative uncertainties between
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our 0-jet cross section. This is reflected in both the num-
bers in Table II and in the results shown in Fig. 9.

In the left panel of Fig. 9 we show results for
the efficiency at different orders. The results at
NNLL′

pT
+NNLO are within the uncertainty band of

the lower order NLL′
pT

+NLO results, and again display
an improved level of precision. In the right panel of
Fig. 9 we see that the comparison of ε0(pcutT ) between
NNLL′

pT
+NNLO and pure NNLO follows a similar pat-

tern of improvement to what we have already observed
for the 0-jet and inclusive 1-jet cross sections.

Since the 0-jet efficiency is the more fundamental quan-
tity in the framework of Ref. [9], it makes sense to ex-
tend the comparison made in Sec. IVA to this observ-
able, again taking R = 0.4 and pcutT = 25GeV. At
NNLL+NNLO Ref. [9] has a 11.5% perturbative uncer-

tainty for ε0, which in their framework is assumed to be
independent from the uncertainty in the total cross sec-
tion. Thus, their uncertainty for σ0 is always larger than
that for ε0. This 11.5% uncertainty for their ε0 is close to
the 9.6% uncertainty for our σ0, but larger than the 6.8%
uncertainty for our ε0. For the analysis of Ref. [9] there
is no corresponding cancellation of uncertainties between
the numerator and denominator of Eq. (77), and hence
the same cancellation that we observe does not occur.

D. Correlations

When evaluating the perturbative uncertainties via the
profile scale variations as discussed in Sec. III C, the cor-
relations in the total perturbative uncertainties between
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Figure 8: The measured and unfolded distributions for the jet multiplicity and jet veto fraction are com-
pared with the predictions from POWHEG and MINLO. The data points are identical with Figures 5(a)
and 5(b), but the theory uncertainties due to missing higher order corrections, are calculated using the
procedure outlined in Ref. [68], as is used in most Higgs boson studies. The inputs to this procedure
are the total Higgs boson production cross section of Ref [23] and the inclusive 1 and 2 jet cross section
uncertainties calculated using MCFM [69–72] to obtain a conservative estimate based on fixed order
predictions.
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ATLAS-CONF-2013-072

combined binned fit 
(in leading jet pT) 
to the γγ excess

prediction derived from the 
0-jet and inclusive 1-jet results

good agreement between 
theory/MC predictions 

Powheg; 
Stewart, Tackmann, JW, Zuberi; 
Banfi, Monni, Salam, Zanderighi

good shape agreement 
outside of the first bin, 
Run 2 comparison will 

be interesting

comparison to data

pjetT spectrum in γγ
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0-jet events 1-jet events 2-jet events

onto the 1-jet rate!

pjetT1•
pcutT

pjetT2

pjetT3
...

jet pT

pcutT

pjetT1

pjetT2

pjetT3
...

jet pT jet pT

pjetT2

pjetT1•
•

pjetT3
...

pcutT



40

kinematics of the 1-jet cross section

3-scale problem:

pcut
T

� mH

what regime is pTJ in?
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pTJ : leading jet pT

mH

pTcut

0-jet region

exclusive 1-jet cross section

pcut
T

� pTJ ∼ mH

pcut
T

∼ pTJ � mH

resummation
wanted for all pTJ

kinematics of the 1-jet cross section

3-scale problem:

pcut
T

� mH

what regime is pTJ in?
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pToff

Reliable predictions exist

Soft final state jet
theory unclear

H + 1-jet: Liu, Petriello, 
1303.4405, 1210.1906

matching
scale

cross section 
peaks at low jet pT

pTJ : leading jet pT

mH

pTcut

0-jet region

exclusive 1-jet cross section

pcut
T

� pTJ ∼ mH

pcut
T

∼ pTJ � mH

resummation
wanted for all pTJ

theory framework for the 1-jet cross section



Table 24: Shown are the central values and uncertainties for the NLO cross section, the resummed cross section,
and the event fractions in the one-jet bin using both the fixed-order and the resummed results. Numbers are given
for several Higgs masses and for pvetoT = 25, 30 GeV.

MH (GeV) pvetoT (GeV) σNLO (pb) σNLL′+NLO (pb) f1j
NLO f1j

NLL′+NLO

124 25 5.92+35%
−46% 5.62+29%

−30% 0.299+38%
−49% 0.283+33%

−34%

125 25 5.85+34%
−46% 5.55+29%

−30% 0.300+37%
−49% 0.284+33%

−33%

126 25 5.75+35%
−46% 5.47+30%

−30% 0.300+38%
−49% 0.284+34%

−33%

124 30 5.25+31%
−41% 4.83+29%

−29% 0.265+35%
−43% 0.244+33%

−33%

125 30 5.19+32%
−41% 4.77+30%

−29% 0.266+35%
−43% 0.244+33%

−33%

126 30 5.12+32%
−41% 4.72+30%

−29% 0.266+35%
−43% 0.246+33%

−32%

choices used in the code are the µint.
i appearing on the left-hand side of Eq. (55). We use κ = 0.2 to

produce all numerical results, although we have checked that their dependence on κ is negligible.
We show in Fig. 62 the cross section as a function of the lower cut on pJT for a fixed pvetoT =

30 GeV. The solid line and blue band show the NLL′ + NLO result together with its perturbative
uncertainty, which can be compared with the dashed line and yellow band showing the fixed NLO result
with its uncertainty. Even for values of the lower pJT cut near pvetoT , a sizeable reduction of the uncertainty
occurs when the NLL′ + NLO result is used. The reason for this is discussed in Section 8.2.3; roughly
half of the uncertainty comes from the high-pJT region, which is exactly the parameter space improved
by our effective-theory description.

Fig. 62: Shown are theNLL′ +NLO (blue band) and NLO (yellow band) cross sections for fixed pvetoT = 30 GeV
as a function of the lower cut on pJT.

We present in Table 24 numerical results for both the cross sections and the fraction of events in
the one-jet bin, f1j . We define the event fraction as

f1j
x =

σx
σinc

, (61)

where x denotes either the NLO or the NLL′ + NLO cross section in the one-jet bin. We note that
our values for f1j

NLO are consistent with those obtained by the ATLAS collaboration, which provides
a cross-check of our results.The total cross section σinc, as well as its estimated uncertainty, is taken
from the LHC Higgs cross section working group. The uncertainties shown are calculated as discussed
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Table 24: Shown are the central values and uncertainties for the NLO cross section, the resummed cross section,
and the event fractions in the one-jet bin using both the fixed-order and the resummed results. Numbers are given
for several Higgs masses and for pvetoT = 25, 30 GeV.
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choices used in the code are the µint.
i appearing on the left-hand side of Eq. (55). We use κ = 0.2 to

produce all numerical results, although we have checked that their dependence on κ is negligible.
We show in Fig. 62 the cross section as a function of the lower cut on pJT for a fixed pvetoT =

30 GeV. The solid line and blue band show the NLL′ + NLO result together with its perturbative
uncertainty, which can be compared with the dashed line and yellow band showing the fixed NLO result
with its uncertainty. Even for values of the lower pJT cut near pvetoT , a sizeable reduction of the uncertainty
occurs when the NLL′ + NLO result is used. The reason for this is discussed in Section 8.2.3; roughly
half of the uncertainty comes from the high-pJT region, which is exactly the parameter space improved
by our effective-theory description.

Fig. 62: Shown are theNLL′ +NLO (blue band) and NLO (yellow band) cross sections for fixed pvetoT = 30 GeV
as a function of the lower cut on pJT.

We present in Table 24 numerical results for both the cross sections and the fraction of events in
the one-jet bin, f1j . We define the event fraction as

f1j
x =

σx
σinc

, (61)

where x denotes either the NLO or the NLL′ + NLO cross section in the one-jet bin. We note that
our values for f1j

NLO are consistent with those obtained by the ATLAS collaboration, which provides
a cross-check of our results.The total cross section σinc, as well as its estimated uncertainty, is taken
from the LHC Higgs cross section working group. The uncertainties shown are calculated as discussed
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pToff

matching
scale

pTJ : leading jet pT

mH

pTcut

0-jet region

exclusive 1-jet cross section

pcut
T

� pTJ ∼ mH

pcut
T

∼ pTJ � mH

theory framework for the 1-jet cross section

use inclusive 1-jet resummation
+ fixed order correction

1-jet resummed

new approach

σ1 = σ≥1 − σ≥2

≥1-jet resummed
+ fixed order



σ1([p
cut
T , poffT ]; pcutT ) = [σ≥1(p

cut
T )− σ≥1(p

off
T )]− [σ≥2(p

cut
T , pcutT )− σ≥2(p

off
T , pcutT )]
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relation for exclusive 1-jet cross section in bin [pTcut, pToff]:

� �

1-jet inclusive terms 2-jet inclusive terms

inclusive 1-jet resummation inclusive 2-jet fixed order

resummed prediction
from Boughezal, Liu, Petriello

pcutT < pTJ < poffT

poffT < pTJ

1-jet inclusive resummation 
+ fixed order correction

using the inclusive 1-jet cross section

direct contribution:

indirect contribution:



σ1([p
cut
T , poffT ]; pcutT ) = [σ≥1(p

cut
T )− σ≥1(p

off
T )]− [σ≥2(p

cut
T , pcutT )− σ≥2(p

off
T , pcutT )]
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relation for exclusive 1-jet cross section in bin [pTcut, pToff]:

� �

1-jet inclusive terms 2-jet inclusive terms

using the inclusive 1-jet cross section

2-jet corrections are small
(LO shown)

indirect contribution
fixed order comparison

MCFM



Ecm � 8 TeV
pTcut � 30 GeV
R � 0.4

1-jet direct resum
�1-jet resum � 2-jet FO

pToff
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matching of the direct and indirect approaches is smooth across pTcut

indirect approach lowers the uncertainties in the low pT regime

matching the direct and indirect contributions

Ecm � 8 TeV
pTcut � 30 GeV

1-jet direct resum
�1-jet resum � 2-jet FO

30 40 50 60 70 800.0
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1.0
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pTJ �GeV�
Σ
1�p Tcut

��pb�

pp � H � j, Scheme A
scheme A: π2 resummation, H + 1j NNLO virtuals
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Σ1�pTcut�
pTJ � pT

off

pTJ � pT
off

Ecm � 8 TeV, pTcut � 30 GeV, R � 0.4 �1
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�1
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Σ
1�p Tcut

�
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Matching scale (pToff) dependence is small

mHpTcut

small pToff :
direct approach increases, 
but larger FO contributions

large pToff :
indirect approach increases, 
but larger FO contributions

intermediate pToff :
using each resummed 

prediction where it is reliable

testing the matching
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Ecm � 8 TeV
pTcut � 30 GeV
R � 0.4

A FO

B

0 1 �20

5

10

15

jet bins

Σ
�pb�

cross section in jet bins

bin-by-bin uncertainties reduced 
by a factor of 2 over FO

need to determine 
the theoretical uncertainty 

on this cross section

cross section in the WW analysis

σWW = �acc0 σ0 + �acc1 σ1 + �acc≥2σ≥2

acceptances from analysis cuts
(jet bin cuts, leptonic cuts, ,
  reconstruction efficiencies)

combination of jet bins
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Ecm � 8 TeV
pTcut � 30 GeV
R � 0.4

A FO

B

0 1 �20
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jet bins

Σ
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cross section in jet bins

Exclusive jet cross sections
Stewart, Tackmann, JW, Zuberi, 1307.1808

Boughezal, Liu, Petriello, Tackmann, JW, 1312.4535

The precision frontier and the Higgs

Implementation and future work
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Ecm � 8 TeV
pTcut � 30 GeV
R � 0.4

A FO

B

0 1 �20

5

10

15

jet bins

Σ
�pb�

cross section in jet bins

how do we implement the 
resummed results to improve the 

uncertainties in an analysis?

Considerations:

• Need correlations between jet bins to propagate uncertainties

• A common framework to implement jet bin correlations desirable

• Fixed order results can be implemented in a Monte Carlo framework

• Allows to propagate jet binning uncertainties through the 
leptonic cuts to get correlations
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correlations between jet bins

yield and migration components:

We can construct the 0-jet, 1-jet, and 2-jet inclusive covariance matrix
This is part of the goal of making a combined 0-jet / 1-jet prediction

C = Cy + Ccut

anti-correlated
2x2 blocks

fully correlated yield uncertainty

bin migration
uncertainty

Cy = �∆y
�∆T

y

Ccut =
�

i,j

�
∆2

ij cut −∆2
ij cut

−∆2
ij cut ∆2

ij cut

�

ij

We determine these covariance matrix entries from 3 sources:

1. Uncertainty components of the 0-jet calculation

2. 0-jet and direct 1-jet uncertainty components in the 1-jet bin

3. Closure relations for the total cross section (e.g.,                                           )∆tot = ∆y
0 +∆y

1 +∆y
≥2

can directly connect these uncertainty 
components to nuisance parameters 

used in the analysis fit
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correlations between jet bins

yield and migration components:

We can construct the 0-jet, 1-jet, and 2-jet inclusive covariance matrix
This is part of the goal of making a combined 0-jet / 1-jet prediction

C = Cy + Ccut

anti-correlated
2x2 blocks

fully correlated yield uncertainty

bin migration
uncertainty

Cy = �∆y
�∆T

y

Ccut =
�

i,j

�
∆2

ij cut −∆2
ij cut

−∆2
ij cut ∆2

ij cut

�

ij

fixed order vs. resummed 
uncertainties for 

ATLAS parameters

�

can directly connect these uncertainty 
components to nuisance parameters 

used in the analysis fit

CATLAS =




1.49 −0.39 0.20
−0.39 0.88 −0.04
0.20 −0.04 0.32



 pb2

CATLAS

FO =




4.24 −1.99 0
−1.99 5.23 −3.24

0 −3.24 3.24



 pb2



the Higgs signal strength

fixed order vs. resummed 
uncertainties for 

ATLAS parameters

�

signal strength: µ =
σobs

σexp

σexp = �exp0 σexp
0 + �exp1 σexp

1 + �exp≥2 σ
exp
≥2

Table 13: Leading uncertainties on the signal strength µ for the combined 7 and 8 TeV analysis.

Category Source Uncertainty, up (%) Uncertainty, down (%)

Statistical Observed data +21 −21
Theoretical Signal yield (σ · B) +12 −9
Theoretical WW normalisation +12 −12
Experimental Objects and DY estimation +9 −8
Theoretical Signal acceptance +9 −7
Experimental MC statistics +7 −7
Experimental W+ jets fake factor +5 −5
Theoretical Backgrounds, excludingWW +5 −4
Luminosity Integrated luminosity +4 −4

Total +32 −29

7.3.1 VBF results and measurement of couplings

Statistical tests of a VBF signal are performed on the 7 and 8 TeV data by considering the ggF signal

as part of the background. The test defines µVBF, the signal strength parameter associated with the

VBF process, as the parameter of interest. The ggF signal strength µggF is profiled, and is constrained

mainly by the Njet ≤ 1 signal regions.
The expected VBF signal significance at mH = 125GeV is 1.6 s.d. (p0 = 0.05). The corresponding

observed significance is 2.5 s.d. (p0 = 0.007), but the highest value of 2.5 s.d. (p0 = 0.006) occurs

at mass mH = 115GeV. Figure 12a compares the observed p0 with the expected distribution in the

presence of a signal. The 95% CL exclusion on σ/σSM is shown in Fig. 12b. In the absence of a VBF

signal, the expected exclusion is mH > 130GeV. However, the observed exclusion is mH > 147GeV.

Figure 13 shows µ vs. mH . The best-fit measured signal strength at mH = 125GeV is

µobs, VBF = 1.66± 0.67 (stat.)± 0.42 (syst.)
= 1.66± 0.79.

Similarly, µggF has been measured on the 7 and 8 TeV data by considering the VBF signal as part

of the background. In this test, µVBF is constrained mainly by the Njet ≥ 2 signal region. The best-fit
signal strength at mH = 125GeV is

µobs, ggF = 0.82± 0.24 (stat.)± 0.28 (syst.)
= 0.82± 0.36.

A two-dimensional likelihood scan of the signal strength for the ggF and VBF production modes

is shown in Fig. 14a. Since the signal strengths in the VBF,WH, and ZH production modes scale with

the VH coupling, the three strengths are grouped together. The results are consistent with the expected

SM values of unity. Figure 14b shows the likelihood curves for the ratio µVBF+VH/µggF+tt̄H from the

H→γγ, H→ZZ(∗)→4#, H→ττ, and H→WW(∗)→ #ν#ν analyses. The branching ratio dependence
of the individual channels cancels in the ratio so that the compatibility of the measurements in the

various channels can be compared. The H→WW(∗)→ #ν#ν channel has a larger best-fit ratio than the
other channels, but is consistent with the H→γγ and H→ZZ(∗)→4# results at 68% CL.
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ATLAS-CONF-2013-030

CATLAS =




1.49 −0.39 0.20
−0.39 0.88 −0.04
0.20 −0.04 0.32



 pb2

CATLAS

FO =




4.24 −1.99 0
−1.99 5.23 −3.24

0 −3.24 3.24



 pb2

naive estimates suggest the 
signal strength uncertainty 

will be nearly halved

implementation of resummed 
results being studied 

within Higgs cross section 
working group
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recent work on (pT) jet vetoes

• Banfi, Monni, Salam, Zanderighi - 1203.5773, 1206.4996, 1308.4634

• Becher, Neubert, Rothen - 1205.3806, 1307.0025

• Stewart, Tackmann, JW, Zuberi - 1307.1808

• Liu, Petriello - 1210.1906, 1303.4405

• Boughezal, Liu, Petriello, Tackmann, JW (H + 0/1-jet) 1312.4535

• Gangal, Tackmann (fixed order uncertainties) - 1302.5437

• (Chong Sheng) Li, (Hai Tao) Li, Shao - 1309.5015

• (Ye) Li, Liu - 1401.2149

• Alioli, JW - 1311.5234

H + 0 jets

H + 1 jet

H + 2 jets

VH + 0 jets

clustering
effects

(also Z + 0 jets)

(also 1206.4312, TWZ)
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future directions in jet vetoes

• Many analyses use jet binning, often with novel features:

• WW - interesting SM measurement, a leading uncertainty in H → WW
NNLO will be finished soon, offers jump in precision

• VH with H → bb - combines substructure and jet vetoes, 
would also like to understand V + jets background

• gg → H in VBF topology - large uncertainties on the contamination, 
needs good theory development for forward jets

• tt + jets - large logarithms and a gluon initiated process, complex phase space

• Interfacing high order resummation into a fully differential Monte Carlo (Geneva)

• Possibility to produce state-of-the-art predictions with fully exclusive generator

• Additional precision in gluon fusion possible

• Requires 3-loop calculations, matching with H + 1-jet at NNLO
Phenomenologically less urgent, but offers many, many interesting theory aspects
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Precision Land Monte Carlo Land

state-of-the-art accuracy
control over uncertainties

robust predictions

often:
limited scope

single observables
inclusive

generic
fully exclusive

data-ready

often:
compromises accuracy

poor uncertainty estimates
variance between tools

compromise is necessary in each case,
but progress is being made in merging the two:

Monte Carlo generators with high perturbative/resummed accuracy
that are capable of giving robust uncertainty estimates

this is not a panacea, but is a leap forward for many applications

precision Monte Carlo
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Precision Land Monte Carlo Land

state-of-the-art accuracy
control over uncertainties

robust predictions

often:
limited scope

single observables
inclusive

generic
fully exclusive

data-ready

often:
compromises accuracy

poor uncertainty estimates
variance between tools

compromise is necessary in each case,
but progress is being made in merging the two:

Monte Carlo generators with high perturbative/resummed accuracy
that are capable of giving robust uncertainty estimates

this is not a panacea, but is a leap forward for many applications

precision Monte Carlo

Geneva
MC



Conclusions

• Precision QCD brings powerful, modern tools to bear on Higgs 
measurements and beyond

• Crucial to get the most from the LHC program

• Broad development of tools impact experimental program

• Resummed results for exclusive H + 0-jet and 1-jet cross sections 
significantly lower uncertainties over fixed order

• Expect the use of resummed results by H → WW, other analyses

• Jet vetoes are a broadly interesting, useful area

• Work on jet physics can push the boundaries of precision, discovery
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Figure 1-3. Measurement precision on κW , κZ , κγ , and κg at different facilities.

A number of studies have presented results combining measurements from different facilities [88, 89]. A

general observation is that the precision in the measurement of many Higgs coupling at a new facility are

reasonably or significantly improved, and these quickly dominate the combined results and overall knowledge

of the relevant coupling parameters. Exceptions are the measurements of the branching fractions of rare

decays such as H → γγ and H → µ
+
µ
−

where results from new lepton colliders would not significantly

improve the coupling precisions driving these decays. However, precision measurements of the ratio of κZ/κγ

at hadron colliders combined with the high-precision and model-independent measurements of κZ at a lepton

collider would substantially increase the precision on κγ .
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Figure 1-4. Measurement precision on κb, κτ , and κt measured both directly via tt̄H and through global
fits at different facilities.
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Table 1-12. The numbers of predicted Higgs events produced in 3000 fb
−1

at 14 TeV in different
production processes and decay modes for mH = 125 GeV. Experimental sensitivity to these production

modes and decays varies widely, see text. Here � = e, µ.

ggF VBF VH tt̄H Total

Cross section (pb) 49.9 4.18 2.38 0.611 57.1

Numbers of events in 3000 fb
−1

H → γγ 344,310 28,842 16,422 4,216 393,790

H → ZZ
∗ → 4� 17,847 1,495 851 219 20,412

H → WW
∗ → �ν�ν 1,501,647 125,789 71,622 18,387 1,717,445

H → ττ 9,461,040 792,528 451,248 115,846 10,820,662

H → bb̄ 86,376,900 7,235,580 4,119,780 1,057,641 98,789,901

H → µµ 32,934 2,759 1,570 403 37,667

H → Zγ → ��γ 15,090 1,264 720 185 17,258

H → all 149,700,000 12,540,000 7,140,000 1,833,000 171,213,000

Table 1-13. Expected relative precisions on the signal strengths of different Higgs decay final states as

well as the 95% CL upper limit on the Higgs branching ratio to the invisible decay from the ZH search

estimated by ATLAS and CMS. The ranges are not comparable between ATLAS and CMS. For ATLAS,

they correspond to the cases with and without theoretical uncertainties while for CMS they represent two

scenarios of systematic uncertainties.

�
Ldt Higgs decay final state

(fb
−1

) γγ WW
∗

ZZ
∗

bb̄ ττ µµ Zγ BRinv

ATLAS

300 9− 14% 8− 13% 6− 12% N/A 16− 22% 38− 39% 145− 147% < 23− 32%

3000 4− 10% 5− 9% 4− 10% N/A 12− 19% 12− 15% 54− 57% < 8− 16%

CMS

300 6− 12% 6− 11% 7− 11% 11− 14% 8− 14% 40− 42% 62− 62% < 17− 28%

3000 4− 8% 4− 7% 4− 7% 5− 7% 5− 8% 14− 20% 20− 24% < 6− 17%

Community Planning Study: Snowmass 2013

Snowmass Higgs report: 1310.8361

ATLAS: range is with/without theory uncertainties
CMS, 2 scenarios:

1. systematics unchanged (from now), taking increased rate into account
2. theory uncertainty halved, others scaled by square root of integrated luminosity
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Figure 1. The mass-shell hyperbolae showing the distinction between the different sectors [6].

The separation between soft and collinear modes is arbitrary and leads to rapidity divergences.

The soft sector has two distinct rapidity (UV) divergences that must cancel with rapidity (IR)

divergences arising from the collinear sector.

Given that the full theory graph is IR finite, so must be the sum of the effective theory

graphs. Let us consider the soft graph integrating over k⊥.

IS ∼
�

[d2k](n · k n̄ · k −M2
)
−2� 1

(−n · k + i�)

1

(−n̄ · k + i�)
(4.6)

We see that the relevant region of phase space lives on the hyperbola n · k n̄ · k ∼ M2,

shown in figure 1. Off the hyperbola the integral becomes scaleless. Given this restriction,

we note that the integral diverges when the rapidity (n · k/n̄ · k) approaches infinity or

zero. These divergences are not regulated by dimensional regularization and correspond to

the rapidity divergences that arise when the soft integral overlaps with the two collinear

rapidity regions. This is illustrated in figure 1. On the other hand, if we consider the

collinear n diagram we see that it only has divergences associated with the limit where

(n · k/n̄ · k) approaches infinity, and similarly with (n → n̄) for the In̄ collinear integral,

since there is only one border between a collinear sector and the neighboring soft sector.

There are multiple ways of regulating these rapidity divergences. One can go off the

light cone by setting n2 �= 0 [8, 20], use an analytic regulator [33], or a “delta” regulator

as was done in [34]. Choosing a regulator determines how much of an overlap there is

between modes. For instance, in the case of a delta regulator, where one shifts the eikonal

propagators

1

n · k → 1

n · k + δ
, (4.7)

one must perform a soft-bin subtraction to generate the correct result in the effective theory.

In fact, the authors of [34] showed that the sum of the integrands, once properly soft-bin

subtracted leaves a finite integral with no rapidity divergences. With an analytic regulator

the soft function vanishes explicitly. In this case there is no double counting as half of the

soft contribution comes from each of the collinear sectors, and thus there is no zero bin.

While physically it seems clear that a sensible rapidity regulator should cancel in the

sum over sectors, we should have a proof of this assertion. A direct proof follows noting

that if all of the regulated EFT diagrams arise from an asymptotic expansion of the full

– 9 –

Chiu, Jain, Neill, Rothstein, 
1104.0881, 1202.0814
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NNLO soft function calculation 
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Figure 1: O(α2
s) opposite hemisphere diagrams. The endpoints of the gluons can be attached to

the points on the Wilson lines labeled by a ‘x’ in any order. Figure (a) gives the I diagrams, (b)
and (c) give the T diagrams, (d) gives the G diagrams, (e) the H diagrams with ghosts, and (f) the
Q diagrams with massless quarks.

We have explicitly checked that our final result is unchanged if the gluon propagators

in Fig. 1 are taken in a general covariant gauge. The gauge parameter cancellation occurs

individually for the T , G +H, and Q terms (and provides a non-trivial cross check on the

relative overall signs of G and H).

Next we present final results for the renormalized soft function that includes contribu-

tions from both the same hemisphere and opposite hemisphere terms, using the approach

described in Sec. 3.2. We first discuss position space and then the double cumulant distri-

bution in momentum space. Eqs. (3.30) and (3.36) are the main results of this paper.

3.3.1 Result in Position Space

In position space we find

S̃(x1, x2, µ) = 1−
αs(µ)CF

4π
π2 + R̃(x1, x2, µ) +

α2
s(µ)

4π2

[
C2
F
π4

8
+

1

2
t2
(x1
x2

)]
, (3.30)

where

t2
(x1
x2

)
= −CFCA

2π2

3
ln2

(x1
x2

)
(3.31)

+ 2 ln
(x1/x2 + x2/x1

2

)(
CFCA

11π2−3−18ζ3
9

+ CFTRnf
6− 4π2

9

)

+ 2CFTRnf

[
FQ

(x1
x2

)
+ FQ

(x2
x1

)
− 2FQ(1)

]

+ 2CFCA

[
FN

(x1
x2

)
+ FN

(x2
x1

)
− 2FN (1)

]
+ CFCAs

[CFCA]
2 + CFTRnfs

[nf ]
2 ,

determining the non-global function appearing in Eq. (2.16). Here and throughout this

paper x1 and x2 have a small imaginary components, and should be regarded as x1 − i0+

– 19 –

As in the x integrals, all of these hypergeometric functions are finite when � → 0:

2F1

�
1, 0,

1

2
,−u

�
= 1 , 2F1

�
1, 1,

3

2
,−u

�
=

sinh−1√u�
u(1 + u)

, (4.5)

2F1

�
2, 2,

5

2
,−u

�
= −3

4
u−3/2(1 + u)−2

�
√
u(1 + u)−

√
1 + u(1 + 2u) tanh−1

�
u

1 + u

�
,

2F1

�
−1

2
, 0,

1

2
,

1

1 + v

�
= 1 , 2F1

�
1,

1

2
, 1,

v

1 + v

�
=

√
1 + v ,

2F1

�
2,

1

2
, 1,

v

1 + v

�
= 2F1

�
1

2
, 2, 1,

v

1 + v

�
=

1

2
(2 + v)

√
1 + v . (4.6)

Importantly, none of the hypergeometric functions appearing in the x and ξ integrals diverges

as u → 0 for � near zero. This means we can expand the hypergeometrics in � to evaluate the

integrals as a series in �; we use the Mathematica packages HypExp and HPL for this purpose

[6–9].

We can write the 1/η divergent terms as a function of the x and ξ integrals defined above.

The result is

S(2)
R,η(ET ) =

�
αs

π

�2 e2γE�
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Before evaluating the remaining integral, we should determine the order in � to which we need

to work to. The integral itself is at most 1/� divergent, and there are terms whose coefficient

is 1/� divergent. This means the total integral is at most 1/�2 divergent.

The prefactor to the integral contains divergent terms. Expanding in � and keeping all

– 6 –

4.2 The η0 Terms

Next we turn to the O(η0) terms, which come from the term −η
2 ln(1 + ξu) in eq. (4.1). We

need to evaluate

S(2)
R,0(ET ) = − 4

(4π)4
e2γE�

Γ(1− �)2
νηE−1−4�−η

T

� 1

0
dξ

1√
1− ξ

�ξ
4

�−1−2�
� ∞

0
du

1�
u(1 + u)

×
� 1

0
dx

�
x(1− x)

�−1/2−�
2−2�cφ ln(1 + ξu) �A2(ξ, u, x) . (4.13)

The coefficient of the integrals is only divergent in the ET distribution, and the only divergence

multiplies the δ(ET ) term:

κ4�+ηE−1−4�−η
T = − 1

4�
δ(ET ) +

1

κ
L0

�
ET

κ

�
− 4�

1

κ
L1

�
ET

κ

�
+O(�2, η) . (4.14)

The η term in the ET distribution does not contribute since we expand in small η first and

there is no 1/η divergence to cancel the O(η) factors from the expansion of E−1−4�−η
T . Since

we are not currently interested in the singular constant, we need only keep the integral to

O(�0).

The calculation is simplified tremendously by the fact that the integrals are actually

finite, so that we can set � = 0 in the integrand. The result is

S(2)
R,0(ET ) =

�
αs

π

�2 e2γE�

Γ(1− �)2
µ4� νη E−1−4�−η

T K� , (4.15)

where

K� = −1.474C2
A + 0.208CATRnf . (4.16)

5 The Real-Virtual Terms

The real-virtual terms are simple to evaluate using the one-loop soft current [10, 11], and are

given by

S(2)
RV (ET ) = −

�αs

π

�2
C2
Aµ

4�eγE� Γ4(1− �)Γ3(1 + �)
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8

�2
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ddk
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p−2−2�
T 2πδ(k2)θ(k0)M(ET ; k)

(5.1)

This is essentially just the one loop soft function with a different prefactor and � → 2� in the

integral. Evaluating the integral, we find

S(2)
RV (ET ) =

�αs

π

�2
C2
A µ4� νη E−1−4�−η

T

1

η

�
− 2

�2
+ π2 +

16

3
ζ3�−

π4

60
�2
�
. (5.2)

Additionally, there are charge renormalization terms to account for, which are given in terms

of the one loop graphs as

S(2)
ch (ET ) = −αs

4π

β0
�
S(1)(ET )

= −
�αs

π

�2 eγE�

Γ(1− �)
µ2�νηE−1−2�−η

T

1

η�
CAβ0 . (5.3)
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8

�2

�
ddk

(2π)d
p−2−2�
T 2πδ(k2)θ(k0)M(ET ; k)

(5.1)

This is essentially just the one loop soft function with a different prefactor and � → 2� in the

integral. Evaluating the integral, we find

S(2)
RV (ET ) =

�αs

π

�2
C2
A µ4� νη E−1−4�−η

T

1

η

�
− 2

�2
+ π2 +

16

3
ζ3�−

π4

60
�2
�
. (5.2)

Additionally, there are charge renormalization terms to account for, which are given in terms

of the one loop graphs as

S(2)
ch (ET ) = −αs

4π

β0
�
S(1)(ET )

= −
�αs

π

�2 eγE�

Γ(1− �)
µ2�νηE−1−2�−η

T

1

η�
CAβ0 . (5.3)

– 8 –

element: there is a collinear divergence as y,φ → 0 and a soft divergence as z → 0, 1. To

further simplify the calculation, we will use particular functions of z, y, and φ:

ξ = 4z(1− z) , u = sinh2
y

2
, x = sin2

φ

2
. (2.7)

In terms of these variables, the soft function at O(α2
s) is

S(2)(ET ) =
4

(4π)4
e2γE�

Γ(1− �)2

� ∞

0
dpTt p

−1−4�
Tt

� 1

0
dξ

1√
1− ξ

�ξ
4

�−1−2�
� ∞

0
du

1�
u(1 + u)

×
� 1

0
dx

�
x(1− x)

�−1/2−�
2−2�cφ

� ∞

−∞
dyt �A2(ξ, u, x)M(ET ; pTt)Rη(pTt, yt, ξ, u) .

(2.8)

In this equation, we have rescaled the matrix element:

�A2 =
1

16
p4Tt ξ

2
A2 . (2.9)

The real non-Abelian matrix elements are found in [4, 5], and in terms of these variables are

�A2 = 4(4παsµ
2�)2C2

A

�
1

2(x+ u)(1 + ξu)

�
x
�
−2 +

ξ

2
(1− 2u)

�
+

�
1 +

ξ

2
(u− 1)

��

+
1− �

4(x+ u)2(1 + ξu)2

�
1

4
ξ2u(1 + u)

��
(2.10)

+ 4(4παsµ
2�)2CATRnf

�
1

2(x+ u)(1 + ξu)

ξ

4
− 1

4(x+ u)2(1 + ξu)2

�
1

2
ξ2u(1 + u)

��
.

3 The Regulator Factor for the Real Graphs

The first step in evaluating the real diagrams is to perform the yt integral over the regulator

factor. It is simplest to write the regulator in terms of the coordinates yt, pTt, y, and z:

νη
��P3g

��−η
= νηp−η

Tt

��eyt
�
− zey/2 − (1− z)e−y/2

�
+ e−yt

�
ze−y/2 + (1− z)ey/2

���−η
. (3.1)

We can integrate over yt, using
� ∞

−∞
dyt

��eyt(−a) + e−ytb
��−η

=
2

η
− ln(ab) +O(η) . (3.2)

This is the only integral that will produce rapidity divergences, and hence we only need to

keep the result to O(η0). In our case,
� ∞

−∞
dytRη(pTt, yt, ξ, u) = νηp−η

Tt

�
2

η
− ln(1 + ξu) +O(η)

�
. (3.3)

Note that this also allows us to integrate over pTt using the measurement function, since �A2

is independent of pTt.

– 3 –

4

term and a jet algorithm correction1,

Sgg(p
cut
T , R, µ, ν) = SG

gg(p
cut
T , µ, ν) +∆Sjet

gg (p
cut
T , R, µ, ν) .

(13)
This isolates the jet algorithm effects into ∆Sjet

gg , which
makes them easier to compute and analyze their resum-
mation properties. Note that these jet algorithm cor-
rections are defined relative to the chosen global veto,
while the full soft function on the left-hand side is
uniquely defined by specifying the jet-veto measurement,
Mjet(pcutT , R). At O(α2

s), where the clustering correc-
tions are first nonzero, the two-particle phase space con-
straints of the anti-kT algorithm are identical to other
kT-type jet algorithms, which include kT and Cambridge-
Aachen [36–39]. This is also true for the jet algorithm
effects in the beam function, and thus our calculation
does not distinguish between these jet algorithms at the
order to which we work.
The soft and beam functions separately contain rapid-

ity divergences. When they are combined in the cross
section, the rapidity divergences cancel, leaving large “ra-
pidity logarithms” ln(pcutT /mH) at fixed order. We em-
ploy the rapidity renormalization group [25, 26], which
allows one to apply standard effective theory and RG
methods to regulate and renormalize the rapidity diver-
gences and perform the resummation of the associated
rapidity logarithms. It introduces an arbitrary rapidity
renormalization scale ν, whose role in the rapidity RGE
is the same as that of the usual renormalization scale µ
in the standard virtuality RGE.
In our case, the soft function is multiplicatively renor-

malized in both µ and ν,

d

d lnµ
lnSgg(p

cut
T , R, µ, ν) = γg

S(µ, ν) ,

d

d ln ν
lnSgg(p

cut
T , R, µ, ν) = γg

ν (p
cut
T , R, µ) . (14)

The anomalous dimensions have the general struc-
ture [11]

γg
S(µ, ν) = 4Γg

cusp[αs(µ)] ln
µ

ν
+ γg

S [αs(µ)] ,

γg
ν (p

cut
T , R, µ) = −4ηgΓ(p

cut
T , µ) + γg

ν [αs(p
cut
T ), R] , (15)

where

ηgΓ(µ0, µ) =

∫ µ

µ0

dµ′

µ′
Γg
cusp[αs(µ

′)] = Γg
cusp ln

µ

µ0
+ · · ·

(16)

1 Technically, this division into global and clustering contributions
is affected by the fact that non-Abelian exponentiation occurs
for the soft function, and only specifies how the genuinely new
terms at each perturbative order are divided. Since the first
nontrivial clustering correction only arises at O(α2

s), Eq. (13)
holds for the soft function through NNLO. The exponentiation
of lower-order results will mix global and clustering contributions
at higher orders in the soft function.

sums an all-orders set of terms in the anomalous dimen-
sion that are determined by the RG consistency. (They
are required to ensure the exact path independence of the
evolution in the two-dimensional µ-ν space [26].) The
RGE of the soft function is obtained by solving Eq. (14).
Evolving first in rapidity and then in virtuality, we have

Sgg(p
cut
T , R, µ, ν)

= Sgg(p
cut
T , R, µS, νS) exp

[

ln
ν

νS
γg
ν (p

cut
T , R, µS)

]

× exp

[
∫ µ

µS

dµ′

µ′
γg
S(µ

′, ν)

]

. (17)

We have calculated the complete soft function to
O(α2

s), which to our knowledge is the first two-loop calcu-
lation employing the rapidity renormalization. Our result
for the perturbative soft function through O(α2

s) is

Sgg(p
cut
T , R, µS, νS) =

1 +
αs(µS)

4π

[

2Γg
0L

µ
S

(

Lµ
S − 2Lν

S)−
π2

3
CA

]

+
α2
s(µS)

(4π)2

{

1

2

[

2Γg
0L

µ
S

(

Lµ
S − 2Lν

S)−
π2

3
CA

]2

+ 2β0L
µ
S

[

2Γg
0L

µ
S

(1

3
Lµ
S − Lν

S

)

−
π2

3
CA

]

+ 2Γg
1L

µ
S(L

µ
S − 2Lν

S)

+ γg
S 1L

µ
S + γg

ν 1(R)Lν
S + s2(R)

}

, (18)

where we abbreviated

Lµ
S ≡ ln

µS

pcutT

, Lν
S ≡ ln

νS
pcutT

. (19)

Hence, the natural soft scales for which the large loga-
rithms in the soft function are minimized are µS ∼ pcutT

and νS ∼ pcutT .
In Eq. (18) and in the following, the β function and

anomalous dimensions are expanded as

β(αs) = −2αs

∞
∑

n=0

βn

(αs

4π

)n+1
,

γ(αs) =
∞
∑

n=0

γn
(αs

4π

)n+1
, (20)

where the coefficients needed in Eq. (18) are

β0 =
11

3
CA −

4

3
TF nf ,

β1 =
34

3
C2

A −
(20

3
CA + 4CF

)

TF nf ,

Γg
0 = 4CA ,

Γg
1 = 4CA

[(67

9
−

π2

3

)

CA −
20

9
TF nf

]

, (21)

and CA = 3, CF = 4/3, TF = 1/2, and nf = 5 is the
number of light quark flavors. The coefficients β2 and Γg

2
are also used in the NNLL resummation.

5

At one loop, the non-cusp soft and rapidity anomalous
dimensions vanish,

γg
S 0 = 0 , γg

ν 0(R) = 0 . (22)

The dependence on the jet algorithm starts to enter at
two loops through the two-loop ν anomalous dimension,
γg
ν 1(R), which determines the coefficient of the single log-

arithm of ln(ν/pcutT ), as well as the nonlogarithmic two-
loop soft constant, s2(R). For the two-loop coefficients
of the non-cusp anomalous dimensions we find

γg
S 1 = 8CA

[

(52

9
− 4(1 + π2) ln 2 + 11ζ3

)

CA

+
(2

9
+

7π2

12
−

20

3
ln 2

)

β0

]

= 16C2
A (−3.83) ,

γg
ν 1(R) = −16CA

[

(17

9
− (1 + π2) ln 2 + ζ3

)

CA

+
(4

9
+

π2

12
−

5

3
ln 2

)

β0

]

+ C2(R)

= 16C2
A (4.16) + C2(R) . (23)

Here, C2(R) is the clustering correction due to the jet
algorithm, and was computed earlier in Ref. [11]. It is
given by

C2(R) = 2CA

[(

1−
8π2

3

)

CA +
(23

3
− 8 ln 2

)

β0

]

lnR2

+ 15.62C2
A − 9.17CAβ0 + CRsub

2 (R)

= 16C2
A

(

−2.49 lnR2 − 0.49
)

+O(R2) , (24)

where CRsub
2 (R) ∼ O(R2) contains all subleading power

corrections in R2. Note that we define the clustering ef-
fects in C2(R) relative to the global ET veto. A different
choice, such as the pT of the Higgs used in Ref. [10],
would give a different R-independent constant in C2(R).
Nevertheless, the full result for γg

ν1(R) is independent of
this choice and our final NNLL cross section agrees with
that of Ref. [10].
For the two-loop soft function constant s2(R), which

is not determined from RGE constraints, we find

s2(R) = CA

[

(19

3
− 10 ln 2 + 8ζ3

)

CA

+
(

−
163

9
+

58

3
ln 2 + 8 ln2 2

)

β0

]

lnR2

− 18.68C2
A − 3.25CAβ0 + sRsub

2 (R)

= 16C2
A

(

0.43 lnR2 − 1.69
)

+O(R2) , (25)

where sRsub
2 (R) ∼ R2. This result for s2(R) is new and

also constitutes the first calculation of the pcutT indepen-
dent clustering terms in the soft function.
The terms not proportional to lnR2 in C2(R) and

s2(R) involve complicated phase-space integrals, which
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FIG. 1: Jet-algorithm dependent O(α2
s) contributions to the

fixed NNLO cross section from different sources, for µFO =
mH and pcutT = 25GeV. The ν anomalous dimension coeffi-
cient γg

ν 1 is given in Eq. (23), the O(α2
s) soft function con-

stant terms in Eq. (25), the beam function constant terms
in Eq. (39) and the following paragraph, and the clustering
effects on uncorrelated emissions in Eq. (40).

are computed numerically. The contributions of γg
ν 1(R)

and s2(R) to the fixed NNLO cross section including their
full R dependence are shown in Fig. 1.

As mentioned above, the jet algorithm corrections in
the soft function start at O(α2

s). They have the all-order
structure

∆Sjet
gg (p

cut
T , R, µS, νS)

=
∑

n≥2

αn
s (µS)

(4π)n

[

Cn(R) ln
νS
pcutT

+∆sn(R)
]

, (26)

where Cn(R) and ∆sn(R) contain up to n− 1 powers of
lnR2. The Cn(R) in the soft function are the same as in
Eq. (2) for the cross section. The beam functions contain
an equivalent set of terms ∼ αn

sCn(R) ln(mH/νB). In
the fixed-order cross section (i.e. for νB = νS = ν) they
combine with the soft function terms to give the total
clustering correction ∼ αn

sCn(R) ln(mH/pcutT ) in Eq. (2).
For R2 ∼ pcutT /mH , the leading lnn−1 R2 terms in Cn(R)
formally count as NLL in the exponent of the cross sec-
tion. Similarly, the leading lnn−1 R2 terms in ∆sn(R),
as well as the lnn−2 R2 terms in Cn(R), formally count
as NNLL. The anomalous dimension γg

ν (R) includes the
Cn(R), so its perturbative series explicitly contains the
lnR2 terms, which means that the NLL and higher log-
arithmic series from lnR2 clustering corrections are not
resummed here. A formalism for this resummation is not
currently known. Since these clustering corrections are
numerically large at O(α2

s), we perform an estimate of
the potential size of the higher-order clustering effects as
part of our uncertainty analysis.

real matrix elements

real-virtual terms, global veto

reduced double real terms, global vetofull result

2-loop anomalous dimensions
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renormalization group evolution

σ(pcutT ) ∼Hgg(µ)
�
Ba(p

cut
T , µ, ν)×Bb(p

cut
T , µ, ν)× S(pcutT , µ, ν)

�
+ σns(µ)

RGE

hard

beam, soft soft

beam

renormalization scale rapidity scaleµ ν

S(pcutT , µ, ν) = S(pcutT , µS , νS) exp

�� µ

µS

dµ�

µ� γ
µ
S(µ

�, ν)

��
ν

νS

�γν
S(pcut

T ,µS)
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FIG. 4: Singular and nonsingular contributions to the fixed NNLO cross section (using R = 0.4 and µFO = mH). Left: The
magnitude of the contributions differential in pjetT . Right: The corresponding contributions to the integrated cross section as
a function of pcutT . The resummation, transition, and fixed-order regions are clearly visible as the relative importance of the
singular and nonsingular terms changes with pjetT and pcutT .

The first regime, x ≤ 2x0, is the nonperturbative region
and the scales µB,S and νS asymptote as x → 0 to a
fixed scale x0µFO

>∼ ΛQCD. This ensures that factors
of αs(µi) that enter from solving perturbatively defined
anomalous dimension equations, never become nonper-
turbative. The second regime has the canonical scaling
for resummation. The third and fourth have quadratic
scaling (of positive and negative second derivative, re-
spectively) and simply provide a smooth transition to
the final (constant) region where all scales are equal and
resummation is turned off. This profile function and its
first derivative are both continuous.
For the overall scale parameter we have µFO ∼ mH and

for our central result we will use µFO = mH in Eq. (60).
In Eq. (61) the parameters xi mark the boundary be-
tween the different regimes, and their values are chosen
by considering the importance of the singular versus non-
singular contributions plotted in Fig. 4. The singular
and nonsingular contributions become comparable near
pcutT = 40GeV so the profile must transition towards the
fixed-order result beyond this value. For our central pro-
files we choose

x0 = 2.5GeV/µFO , {x1, x2, x3} = {0.15, 0.4, 0.65} .
(62)

For µFO = mH = 125GeV the {x1, x2, x3} values corre-
spond to {19, 50, 81}GeV. The resulting central profile
scales are shown in Fig. 5, so we see that the transition
occurs roughly between 30–65GeV. In the next subsec-
tion, we discuss in detail the profile scale variations that
we use to evaluate perturbative uncertainties.
Note that in the transition from small to large pcutT ,

we are essentially forced to keep the hard scale at its
imaginary value µH = −imH . In principle, one could
contemplate rotating it to the real axis as a function
of pcutT to turn off the resulting resummation of large
π2 terms in the hard virtual corrections. However, this
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FIG. 5: The central profile scale for the low scales µB , µS , νS
as a function of pcutT , together with the central value for the
high scales |µH |, νB .

would inevitably lead to an unphysical result of a decreas-
ing cross section with increasing pcutT . What this means
is that the significantly improved perturbative stability
observed in the small pT region also directly translates
into an improved convergence in the fixed-order cross sec-
tion at large pcutT , simply because a large part of the total
cross section comes from the small pT region. Further-
more, as we have seen in Fig. 2, the imaginary scale also
translates into an improved convergence of the nonsin-
gular contributions themselves. The total cross section
for µH = −imH increases by about 7% compared to the
NNLO cross section evaluated at µFO = mH/2. This in-
crease is quite consistent with the expected increase in
the total cross section at N3LO from the recent estimate
in Ref. [57].

µH

∼ mH

µB , µS
∼ pcutT

νB

νS

∼ mH

∼ pcutT

profile scales control the matching 
between resummation, fixed order



π2 Resummation

virtual corrections to gg > H 
contain logarithms of the form

H(mH , µH) = |CggH(−m
2
H
, µ

2
H
)|2

ln2
−m2

H
− i0

µ2
H

����
µH=mH

= π2

Setting µH = mH generates

large π2 terms in H

These terms are resummed

if one chooses µH = −imH

3

with

S(−µ2, µ2) = −

αs(µ2)
∫

αs(−µ2)

dα
ΓA

cusp(α)

β(α)

α
∫

αs(−µ2)

dα′

β(α′)
,

aΓ(−µ2, µ2) = −

αs(µ2)
∫

αs(−µ2)

dα
ΓA

cusp(α)

β(α)
,

(19)

and similarly for the function aγS . The perturba-
tive expansions of these functions obtained at NNLO in
renormalization-group improved perturbation theory can
be found in [20]. They can be simplified using relation
(16). To leading order we find

lnU(m2
H , µ2) =

ΓA
0

2β2
0

{

4π

αs(m2
H)

[

2a arctan(a) − ln(1 + a2)
]

+

(

ΓA
1

ΓA
0

−
β1

β0
−

γS
0 β0

ΓA
0

)

ln(1 + a2) (20)

+
β1

4β0

[

4 arctan2(a) − ln2(1 + a2)
]

+ O(αs)

}

,

where a ≡ a(m2
H). Note that the result is µ-independent at

this order. The relevant anomalous-dimension coefficients
are ΓA

0 = 4CA, γS
0 = 0, and

ΓA
1

ΓA
0

=

(

67

9
−

π2

3

)

CA −
20

9
TF nf , (21)

where CA = Nc, TF = 1/2, and nf = 5 is the number
of light quark flavors. The coefficients of the β-function
follow from (14).

The expression for the evolution function simplifies con-
siderably if we treat a(m2

H) ≈ 0.2 as a parameter of order
αs. Inserting the values of the one-loop anomalous dimen-
sions from above, we then find

lnU(m2
H , µ2) =

CAπαs(m2
H)

2

[

1 +
ΓA

1

ΓA
0

αs(m2
H)

4π
+ O(α2

s)

]

.

(22)
This result makes explicit that the “π2-enhanced” correc-
tions are terms of the form (CAπαs)n in perturbation the-
ory and exponentiate at leading order. The simplest way
to implement our resummation in existing codes for Higgs-
boson production would be to multiply the fixed-order re-
sult with exp[CAπαs(m2

H)/2] and subtract the expanded
form of this factor from the perturbative series. This treat-
ment is sufficient for practical purposes.

Numerically, setting µ = mH = 120GeV we obtain
lnU = {0.563, 0.565, 0.565} at LO, NLO, and NNLO from
the exact expression for the evolution function derived from
(18), indicating that the leading-order terms give by far
the dominant effect after renormalization-group improve-
ment. The analytical expressions (20) and (22) provide
accurate approximations to the exact results. The first
equation gives lnU = 0.562, while the second one yields
lnU = 0.567. The close agreement of these two numbers
shows that the running of coupling constant between µ2
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FIG. 1: LO (light), NLO (medium), and NNLO (dark) pre-
dictions for the Higgs-production cross section at the LHC in
fixed-order perturbation theory (left) and after resummation of
the π

2-enhanced terms (right).

and −µ2 is a minor effect compared with the evolution
driven by the anomalous dimension of the effective two-
gluon operator in (2).

We are now in a position to discuss our improved results
for the hard function in the formula for the Higgs-boson
production cross section. Setting µ = mH = 120GeV, we
obtain

H(m2
H , m2

H) = {1.756 (LO), 1.907 (NLO), 1.906 (NNLO)} .
(23)

This should be compared with the poorly converging series
H = {1, 1.623, 1.844} obtained using fixed-order perturba-
tion theory. Figure 1 illustrates the impact of the resumma-
tion of the π2-enhanced terms on the cross-section predic-
tions for Higgs-boson production at the LHC. The bands in
each plot show results obtained at LO, NLO, and NNLO
using MRST2004 parton distributions [21]. Their width
reflects the scale variation obtained by varying the factor-
ization and renormalization scales between mH/2 and 2mH

(setting µr = µf ). The convergence of the expansion and
the residual scale dependence at NLO and NNLO are much
improved by the resummation. The new LO and NLO
bands almost coincide with the NLO and NNLO bands in
fixed-order perturbation theory, and the new NNLO band
is now fully contained inside the NLO band.

IV. DRELL-YAN PRODUCTION

The cross section for the Drell-Yan process receives the
same type of π2-enhanced corrections as the Higgs-boson
production cross section, however in this case no anoma-
lously large K-factors arise at NLO and NNLO. Let us
briefly discuss why this is the case.

The vector-current matching coefficient CV appearing in
the Drell-Yan case is defined in analogy with CS in (2), but
with the two-gluon operator replaced by the electromag-
netic current q̄γµq [9, 10, 11]. It obeys an evolution equa-
tion of the same structure as (6), in which the cusp anoma-
lous dimension in the adjoint representation is replaced by

Ahrens, Becher, Neubert, Yang
0808.3008

lnn
−q2 − i0

µ2
⊂ CggH(−q2, µ2)
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technical ingredients

• Jet algorithm dependence and factorization properties

• Can use a global, algorithm-independent veto 

• Complicates factorization: need to ensure soft-collinear decoupling in the jet clustering

• Nontrivial logarithmic structure of the jet radius in the 0-jet rate

• Factorization and RGE properties constrains form, have calculated N3LO contributions

• Details of soft, beam function calculations

• Lorentz invariant properties of the global veto simplifies calculation

• Can group finite and logarithmic clustering effects in beam and soft function via RGE

• Nonsingular contributions to the cross section, determined using fixed order codes

• Physical basis for uncertainty estimation, comparison to fixed order methods

• Extension of 0-jet resummation to 1-jet bin



Ecm � 8 TeV
pTcut � 30 GeV
R � 0.4

1-jet direct resum
�1-jet resum � 2-jet FO

pToff

30 40 50 60 70 800.0

0.5

1.0

1.5

2.0

2.5

pTJ �GeV�

Σ
1�p Tcut

��pb�

pp � H � j, Scheme B

Ecm � 8 TeV
pTcut � 30 GeV
R � 0.4

1-jet direct resum
�1-jet resum � 2-jet FO

pToff

30 40 50 60 70 800.0

0.5

1.0

1.5

2.0

2.5

pTJ �GeV�

Σ
1�p Tcut

��pb�
pp � H � j, Scheme A

74

scheme A: π2 resummation, H + 1j NNLO virtuals scheme B: no π2 resummation, H + 1j @ NLO

Matching of the direct and indirect approaches is smooth across pTcut

scheme A shows significantly reduced uncertainties

⇔π2 resummation          H + 1j NNLO virtuals

matching the direct and indirect contributions
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scheme A: π2 resummation, H + 1j NNLO virtuals scheme B: no π2 resummation, H + 1j @ NLO

Matching of the direct and indirect approaches is smooth across pTcut

scheme A shows significantly reduced uncertainties

⇔π2 resummation          H + 1j NNLO virtuals

matching the direct and indirect contributions
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Σ1�pTcut�
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scheme A: π2 resummation, H + 1j NNLO virtuals scheme B: no π2 resummation, H + 1j @ NLO

Matching scale (pToff) dependence is small

mHpTcut

small pToff :
direct approach increases, 
but larger FO contributions

large pToff :
indirect approach increases, 
but larger FO contributions

intermediate pToff :
using each resummed 

prediction where it is reliable

testing the matching



Combining Jet Bins
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Signal strength: µ =
σobs

σexp
σexp = �exp0 σexp

0 + �exp1 σexp
1 + �exp≥2 σ

exp
≥2

2-jet term 
negligible for 

gg → H → WW
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Figure 12: VBF results for (a) p0 and (b) 95% CL upper limit using 8 TeV data considering VBF as

signal and ggF as part of the background. Details are given in the caption of Fig. 10.
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Figure 13: VBF signal strength parameter µ. The observed (solid black line with shaded cyan band)

and the expected result (solid red line with dashed band) are shown.

7.5 8 TeV results

The expected significance for the signal with mH = 125GeV is 3.5 s.d. corresponding to p0 = 2× 10−4.
The corresponding observed significance is 4.3 s.d. (p0 = 1× 10−5), but the highest value of 4.5 s.d.
(p0 = 4× 10−6) occurs at mH = 135GeV. The best-fit signal strength µ at mH = 125GeV is

µobs, 8 TeV = 1.26± 0.24 (stat.)± 0.21 (theo. syst.)± 0.14 (expt. syst.)± 0.06 (lumi.)
= 1.26± 0.35.

The expected best-fit µ at mH = 125GeV is

µexp = 1± 0.23 (stat.)± 0.23 (syst.)
= 1± 0.33.

28

ATLAS-CONF-2013-030

ATLAS measurement of signal strength in H > WW :



Two Clustering Effects, Two Regions of Jet Radius

Jet algorithm effects:

σ ⊃ O(Rn) , O(lnn R) terms
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Two Clustering Effects, Two Regions of Jet Radius

Small jet radius
R << 1

logarithms of jet radius important
but resummation is impossible

c s

Jet algorithm effects:

σ ⊃ O(Rn) , O(lnn R) terms

Factorization theorem
valid for small jet radius
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Two Clustering Effects, Two Regions of Jet Radius

Large jet radius
R ~ 1

Small jet radius
R << 1

c s

complicates factorization
but numerically unimportant

logarithms of jet radius important
but resummation is impossible

c s

Jet algorithm effects:

σ ⊃ O(Rn) , O(lnn R) terms

Factorization theorem
valid for small jet radius

Can induce violations to 
naive factorization
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Clustering Logs

Clustering effects give rise to logs of R

ET veto measurement at NNLO:

correction for clustering:

can write in terms of canceling IR collinear divergences

lnR : remnant of collinear 
divergence sensitive

 to jet radius

M = θ(pT1 + pT2 < pcutT )

∆M = θ(∆R > R)
�
θ(pT1 < pcutT ) θ(pT2 < pcutT )− θ(pT1 + pT2 < pcutT )

�

Msp :
1

�

∆Msp : −1

�
R�
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Clustering Logs in the Soft Function Tackmann, JW, Zuberi
1206.4312

consistency with 
the jet function: ν → mH

∆S =

�
αsCA

π

�2

ln
ν

pcutT

lnR (−4.97)

collinear
limit

eikonal
amplitude

splitting
amplitude

can be calculated using collinear limits of eikonal matrix elements:

A = Aeik Acoll

contains an overall rapidity 
divergence that generates 

a log of the veto scale

generates the log of R
when integrated against 

the measurement
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Clustering Logs from c-webs

c-web

not a
c-web

• Collinear singularities between particles in 
the same jet give rise to logs of R from 
clustering

• How do we count the number of these logs? 
c-webs

• Connected webs of partons that can 
contain collinear singularities between 
partons in the web

Frenkel, Taylor
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Clustering Logs from c-webs

• There is no collinear 
singularity between gluons in 
different c-webs

• Clustering between gluons in 
different c-webs gives power 
suppressed effects

• Constrains the total number 
of logs from clustering

A �⊃ 1

k1 · k2

k1

k2
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Clustering Logs from c-webs

• A c-web of n gluons has n-1 
collinear singularities

• This means the maximal clustering 
log is

• This is NLL (cannot resum) if

A = Aeik Acoll

Aeik

Acoll

single c-web

�
αsCA

π

�n

Cn ln
mH

pcut
T

lnn−1 R

pcut
T

mH

∼ R ∼ λ

Acoll ∼
�

2

stot

�n−1

(4παsµ
2�)n �P̂coll�

Catani, Grazzini
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Jet Algorithm Effects
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jet algorithm effects at NNLO
5

At one loop, the non-cusp soft and rapidity anomalous
dimensions vanish,

γg
S 0 = 0 , γg

ν 0(R) = 0 . (22)

The dependence on the jet algorithm starts to enter at
two loops through the two-loop ν anomalous dimension,
γg
ν 1(R), which determines the coefficient of the single log-

arithm of ln(ν/pcutT ), as well as the nonlogarithmic two-
loop soft constant, s2(R). For the two-loop coefficients
of the non-cusp anomalous dimensions we find

γg
S 1 = 8CA

[

(52

9
− 4(1 + π2) ln 2 + 11ζ3

)

CA

+
(2

9
+

7π2

12
−

20

3
ln 2

)

β0

]

= 16C2
A (−3.83) ,

γg
ν 1(R) = −16CA

[

(17

9
− (1 + π2) ln 2 + ζ3

)

CA

+
(4

9
+

π2

12
−

5

3
ln 2

)

β0

]

+ C2(R)

= 16C2
A (4.16) + C2(R) . (23)

Here, C2(R) is the clustering correction due to the jet
algorithm, and was computed earlier in Ref. [11]. It is
given by

C2(R) = 2CA

[(

1−
8π2

3

)

CA +
(23

3
− 8 ln 2

)

β0

]

lnR2

+ 15.62C2
A − 9.17CAβ0 + CRsub

2 (R)

= 16C2
A

(

−2.49 lnR2 − 0.49
)

+O(R2) , (24)

where CRsub
2 (R) ∼ O(R2) contains all subleading power

corrections in R2. Note that we define the clustering ef-
fects in C2(R) relative to the global ET veto. A different
choice, such as the pT of the Higgs used in Ref. [10],
would give a different R-independent constant in C2(R).
Nevertheless, the full result for γg

ν1(R) is independent of
this choice and our final NNLL cross section agrees with
that of Ref. [10].
For the two-loop soft function constant s2(R), which

is not determined from RGE constraints, we find

s2(R) = CA

[

(19

3
− 10 ln 2 + 8ζ3

)

CA

+
(

−
163

9
+

58

3
ln 2 + 8 ln2 2

)

β0

]

lnR2

− 18.68C2
A − 3.25CAβ0 + sRsub

2 (R)

= 16C2
A

(

0.43 lnR2 − 1.69
)

+O(R2) , (25)

where sRsub
2 (R) ∼ R2. This result for s2(R) is new and

also constitutes the first calculation of the pcutT indepen-
dent clustering terms in the soft function.
The terms not proportional to lnR2 in C2(R) and

s2(R) involve complicated phase-space integrals, which
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T
=25 GeV, µFO =mH)

γ
g
ν 1

s2

2b2

Rsub

FIG. 1: Jet-algorithm dependent O(α2
s) contributions to the

fixed NNLO cross section from different sources, for µFO =
mH and pcutT = 25GeV. The ν anomalous dimension coeffi-
cient γg

ν 1 is given in Eq. (23), the O(α2
s) soft function con-

stant terms in Eq. (25), the beam function constant terms
in Eq. (39) and the following paragraph, and the clustering
effects on uncorrelated emissions in Eq. (40).

are computed numerically. The contributions of γg
ν 1(R)

and s2(R) to the fixed NNLO cross section including their
full R dependence are shown in Fig. 1.

As mentioned above, the jet algorithm corrections in
the soft function start at O(α2

s). They have the all-order
structure

∆Sjet
gg (p

cut
T , R, µS, νS)

=
∑

n≥2

αn
s (µS)

(4π)n

[

Cn(R) ln
νS
pcutT

+∆sn(R)
]

, (26)

where Cn(R) and ∆sn(R) contain up to n− 1 powers of
lnR2. The Cn(R) in the soft function are the same as in
Eq. (2) for the cross section. The beam functions contain
an equivalent set of terms ∼ αn

sCn(R) ln(mH/νB). In
the fixed-order cross section (i.e. for νB = νS = ν) they
combine with the soft function terms to give the total
clustering correction ∼ αn

sCn(R) ln(mH/pcutT ) in Eq. (2).
For R2 ∼ pcutT /mH , the leading lnn−1 R2 terms in Cn(R)
formally count as NLL in the exponent of the cross sec-
tion. Similarly, the leading lnn−1 R2 terms in ∆sn(R),
as well as the lnn−2 R2 terms in Cn(R), formally count
as NNLL. The anomalous dimension γg

ν (R) includes the
Cn(R), so its perturbative series explicitly contains the
lnR2 terms, which means that the NLL and higher log-
arithmic series from lnR2 clustering corrections are not
resummed here. A formalism for this resummation is not
currently known. Since these clustering corrections are
numerically large at O(α2

s), we perform an estimate of
the potential size of the higher-order clustering effects as
part of our uncertainty analysis.

NNLL term (single veto log)
contains log R

finite terms in soft, beam functions 
contains log R

power suppressed terms
in small R limit

NNLL and finite terms
at NNLO, the log R effects are large

also relatively large cancellation 
between NNLL and finite terms 

(for pTcut = 25 GeV)

what about at higher orders?
are the clustering terms large?

could be a source of large uncertainties

clustering effects start at NNLO
log R dependence not resummed
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�αs

4π

�2
ln

mH

pcut
T

C2 lnR

�αs

4π

�3
ln

mH

pcut
T

C3 ln
2 R

�αs

4π

�4
ln

mH

pcut
T

C4 ln
3 R

form of 
leading clustering logs

C2 = −716.3in this basis,

contribution to 
the cross section: σ(2)

clus
= 0.14σLO

mH = 125 GeV, pcut
T

= 25 GeV, R = 0.4 :

ln pcut
T

/mH = lnR/2

if we take the logs to be of the same order, 
the clustering terms are of the form

�αs

4π

�n
Ln Cn

formally NLL, each term 
is equally important

knowing the higher order 
coefficients helpful in determining 

uncertainties from clustering
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Alioli, JW - 1311.5234
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xc � 0.1

sample raw fits for C3

C3 can be determined via an NLO soft function calculation

σ(pcutT ) ∼Hgg(µ)
�
Ba(p

cut
T , µ, ν)×Bb(p

cut
T , µ, ν)× S(pcutT , µ, ν)

�
+ σns(µ)

SCET 
factorization

QCD collinear 
factorization

NLO 
subtractionsC3

relevant soft function matrix elements 
can be written in terms 

of universal splitting functions, 
calculation done with NLO subtractions

result: C3 is small, contribution to the 
resummed cross section is <1%

uncertainties under control


