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R&D for Ultra-High Gradient Accelerators

>25 year investment from DoE-HEP

l Driver technology l

r Laser r E-beam T

Direct laser Laser plasma Plasma wakefield Dielectric
accelerator accelerator accelerator accelerator

BELiA  FACET

BERKELEY LAB
LASER ACCELERATOR
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OUTLINE

= |ntroduction: basic concept of laser plasma accelerator
= Transverse density control: 2004 and 2006 experiments
= |Longitudinal density tailoring:

= |njection control

= Enhancing efficiency
= Radiation sources

= Colliders

= Staging of modules
= 10 GeV module with BELLA laser

= BELLA Project and ideas for experiments with 10 GeV

= Conclusion
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Laser plasma accelerator: basic concept

06 0402 0 02 04 06 o Electron 4

I. Tajima and J.M. Dawson, PRL 1979
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/\l A Blow-out or bubble regime: the highly

non-linear regime
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» Operation in bubble or blow-out non-linear

frreeeee |m

regime: most experiments to date

Distance= Omm=  0Z;4
Energy, .= 0 MeV = High gradients

= Can produce narrow energy
spread beams

BUT

» Limited control
= Self-trapping (dark current)
= Can easily go unstable

= Does not work well for
positrons

Courtesy of W. Mori, U6CLA
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/\| Linear & blowout regimes: e+/e- acceleration
9

= Blowout regime
= high field
= very asymmetric
= focuses e-
= defocuses e+

= Quasi-linear regime
= linear: symmetric e+/e-

= high a0 desired for gradient
= too high enters bubble:@

= a,~1-2 good compromise
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/\I |A Building a laser wakefield accelerator using

r n

conventional accelerator paradigm

Plasma wave\

Plasma channel

Drive
laser

Electron bunch / Laser pulse/

= Drive laser: Ti-sapphire (chirped amplification technology)
= Structure: plasma fiber

= |njection: self-trapped, triggered

W.P. Leemans et al., IEEE Trans. Plasma Science (1996); Phys. Plasmas (1998)
W. Leemans and E. Esarey, Physics Today, March 2009;
E. Esarey, C.B. Schroeder and W.P. Leemans, Reviews of Modern Physics (2009)
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/\I |$ Just like RF accelerators, we need to
machine” our cavities

10’s of cm-scale

100 micron-scale

* Transverse plasma density profile:
= Guiding the laser driver: making a high power “optical fiber”
= Shaping the accelerating and focusing fields

= Longitudinal tailoring:
= |njection control

= Phase locking particle and wave: enhanced efficiency
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/\| LOASIS lasers and target areas
:

10 TW Target

. = 100 TW Target Area —
TREX ] Ly A & B-caves }

~ 50-60 TW

BELLA 1 PW = Future
| Target Area
>1PW -

10
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/\I A Channel Guided Laser Plasma

r ]
/\| Accelerators — 2004 result
Phosphor
Drive
pulse »
Igniter
pulse
Interferometer  Mode imager ””"""“”“ t‘ ré
10 TW laser => 100 MeV e-beam —_— —
e [ Dream beam
o_g 5 pact pa 2 ators
3 v
2 v
_4.5 ;::nfi::)?:i'}h"m
68 80 92 and sea

Electron energy (MeV)

C. G. R. Geddes et al, Nature,431, p538 (2004)
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/\I ! Going to higher beam energy :I:hysics,

ga's in

Ia.ser - L
[ ] sapphire
channel
electrode
/ sapphire channel \
4 N y

= Gas ionized by pulsed discharge y 27

= Peak current 200 - 500 A

= Rise-time 50 - 100 ns
\_ /

&t b /

12

D. J. Spence & S. M. Hooker Phys. Rev. E 63 (2001) 015401 R; A. Butler et al. Phys. Rev. Lett. 89 (2002) 185003.
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A GeV module...
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/\I A Channel Guided Laser Plasma

r ||||

Accelerators — 2006 result

40 TW laser => 1 GeV e-beam

Experimental set-up

»

10

<108 (pC GeV ¥

Q\“ -0
Ap I\

Can:
aplllary

003 0450475 03 04 06 08 1.0
GeV

W.P. Leemans et. al, Nature Physics 2, p696 (2006)

nature

Long-distance relationship
p for photon pairs

iDQle .

OPTICAL LATTICES

WAKEFIELD ACCELERATORS

BLACK HOLES
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/\l m Wake Evolution and Dephasing Yield Low
reeoeocococ| |

Energy Spread Beams in PIC Simulations
Geddes et al., Nature (2004) & Phys. Plasmas (2005)

Ccovecl oV
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INCITE Proposal: 3 D simulation
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GeV-class beams parameters not (yet) stable

pC/MeV/SR

B 000

-+ 2000

100 200 300 400 500 600 700 800 900 1000 1100[MeV]

[mrad]




:—':>| ‘Regimes found where narrow energy spread beams are

’\ obtained without controlled injection
£
= Subsequent shots
during pressure scan

= Density: 5x10'8cm-3
= Laser intensity: a,=1.2 to 1.3
» Laser Pulse Length 45fs

Energy (MeV)

INCMeV/SHI

[mrad]

100 200 300 400 S00 600 700 800 SO0 1000
[(MeV]

17
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/\l A Building a laser wakefield accelerator using
recoeocoeoc| | _ _
’\| conventional accelerator paradigm

,

Plasma wave\

Plasma channel

Drive
laser

Electron bunch / Laser pulse/

= Drive laser: Ti-sapphire (chirped amplification technology)

= Structure: plasma fiber

=lInjection: source of electrons, controlled

18
W.P. Leemans et al., IEEE Trans. Plasma Science (1996), Phys. Plasmas (1998)
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“Electrons™ accelerating on a wave: controlled

Injection

Injected Electronsn‘

Self Injection
A

Y
~
-
N -
e
-
-

Trapping ri; D T
Tsunamic e

- g -‘I"_ .,'\‘\:
~=Boost electrons or sioWsdo!

a
“wave
—— e ]
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/\I A Separating injection from acceleration to
produce high energy, quality beams

/ Solution to separate injection and acceleration \

n Injector: plasma downramp

A

N

Accelerator:

\ 3 to >50 cm; n~1017-10'8cm"-3 /

= Longitudinal tailoring of density = Reduce energy spread by injecting low
= High density: AE:
= |ow phase Ve|ocity — easy to trap = Simulations® show AE conserved

during acceleration:
= AsE 1, AE/E |

= Density downramp:
= further reduce phase velocity

Reitsma et al., Phys. Rev. ST Accel. Beams 5, 051301 (2002)
S.V. Bulanov et al., PRL 78 (1997)Geddes et al., PRL 100 (2008) * B. Shadwick et al DPP 2005
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| Basic physics of downramp injection

= Bucket length ~ 1/\n

| = Phase velocity drop
. enables trapping
5 H
o
>
1 : e
c
H Laser| \&i\
-0.5 0 0.5 1.0 11
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E-beam quality: reduce energy spread

rr/r—r>| ||ﬁ

from ~2% to < 0.25%

= Approach:
= Produce MeV beam with <20% AE/E o
m : 9 Laser

Accelerate to GeV: AE/E<0.2% o - i
Sequential spectra Eﬁ
*centroid, avg

Laser
10TW

-
E———
= Stable MeV beam produced with

= = Low absolute energy spread (170keV)
0.66 p(MeV) 0.88

C.G.R. Geddes et al., PRL2008

Divergence (ea. | |mage :33mrad)
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/\I \ Gas Jet Nozzle Machined Into Capillary ;
Can Provide Local Density Perturbation

Laser-machined gas jet

Gas flow in jet
region
i 1
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/\I \ Gas jet triggered injections provides
for enhanced stability & tuning
Input Parameters: N, =2 x 108 cm-3,a, = 1 (25TW), Laser pulse length = 45 fs
IhCMeV/SHI

[mrad]

Jet Pressure 150 psi

100 200 300 400 500 600 700 800 900 1000
[MeV]
600-

= Pointing + 0.8 mrad >500- i
=
—400- ‘é

g?:OO- . 9°$ $

= Peak energy 300MeV + 7MeV W 500-

= Divergence <3mrad

© §, o
= Energy spread ~ 5-6% a 100- g § g
O- ; ]
100 150 200

Jet Pressure (psi)
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Energy Control by Varying Jet Pressure

= Energy of the beam tuned without significant increase in energy spread
= Beam loading effects result in energy spread increase

— /_\IOO- —-500
; E\i 30 | 400
. &8, 60- -300 2
- 7 <
Q &5 40- 2002
25 =
% 2 20- 1005
S
6 é O_I |'O
09 1.1 13 15 17 19
Gas Jet Density (10°cm™)
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/\I |$ Optimization of capillary and gas jet is

underway, guided by simulations

309

» Simulations indicate <0.25 % can be reached ~ [Ferg Spectumat.
= 2D simulation done in VORPAL* of injector
+ accelerator up to 3mm P 1.5MeVic |
= |njector peak density 2x10'® cm=3, FWHM AP 200keVic

900um | o
= Accelerator density 3x10'7 cm-3 _ -7 - -

- 1.0 2.4 3.8

Inject low AE - e

#/P, (MeVi/c)

_Er{ergy Spécfrufn at |

3mm

Q)
>
é’ . P 20MeV/c
~ AP 200keV/c _
Q.
T

P, (MeV/c)

Geddes et al., PRL V 100, 215004 (2008) *Nieter et al., JCP 2004
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THz  X-rays
Energy 7 v
VR
D v v
Charge V4 V4
Bunch W4 V4
duration
Avg. N AN
power
/:OKas is

A\: increase needed
V: decrease needed

FEL
(betatron) (XUV)

> N N N €N

Gamma-
rays

v

v
v
A
v
A

Areas of improvement in LPA
performance for various applications

FEL
(X-rays)

()
W

3
v
v
0

A
47

W
A

e

MM

Collider

27



’\l A Radiation from THz to Gamma Ray —

rererrrerer 1] ]
synchronized and ultra-short
Thomson Scattering — Multi keV/ Betatron radiation during

MeV x-ray/gamma ray acceleration — Multi keV
.

e-beam

ee— L 11

1111

Free Electron Laser-> XUV, x-ray

[ i~ AN
Transition radiation from beam
exiting plasma — MV/cm THz
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A
% Beam brightness studies are underway

= Charge:
= Phosphor screen calibration vs. ICT at storage ring (up to 1.5 GeV)
= Activation studies

= %-level agreement between various diagnostics

= Emittance & energy spread: Slice energy spread?

= Source size and divergence >
= OTR (COTR) experiments :

= Undulator based diagnostic

e -

~ = -

= Bunch duration:

e

999)

= Fluctuational interferometry (P. Catravas et al., PRL 1

= THz radiation -- upper bound

29/26
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/\I v Coherent THz is emitted at plasma-vacuum

r ||||

boundary: diagnostic and source

= We achieved > 5 uJ in a single pulse

= Fields near 1 MV/cm

= Ready for expts using intense THz

Leemans et al. PRL 2003; POP2004; IEEE2005 Schroeder et al., PRE 2004;
van Tilborg et al., Laser Part. Beams2004; PRL2006; POP2006; Optics Lett. 2006



Betatron experiment provides upper

N
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bound for e-beam source size
betatron
motion 6 ~ ag /y = 1-10 keV x-rays
] ) = Directional source
= Vi synchrotron \

R radiation = |mage crosshair - size

)\,/3 i (2')/)1/2)\,

4 Xhair S
E t al., Phys. Rev. E (2002); R
e lp R >
2005; Leemans et al. TPS 2005, others X
Jet C;arx
: : M ti
= Single beam experiment spesﬁgfn';er
= Pump = 0.45J, 45fs, 7um ’
= n = 3x1 019cc Experiment in collaboration

. _ with Stoehlker, Thorn et al., GSI
Image crosshair - size Battaglia, Denes et al., LBNL
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/\I » Single shot and integrated crosshair image:
Beam stability and emittance

Single shot image ~2e5 photons on cam.
est order 1e7 total dependlng on dlverg

= crosshair imaged at 10:1

= |ntegrated source size /
fluctuation ~ 6 ym — stable
beam

= |mportant for TS source

= Automated correction not
used for this run

= Simulations indicate < 2 ym
= Divergence ~1 mrad

= “GGeometric emittance’:
* <1Tmrad X6 ym =6 nm

= Couldbe <2nm




)\I » Proof-of-principle experiments of Free Electron

f ]
Laser driven by LPA-beam underway
olasma magnetic
spectrometer

—
—>
B Xuv@10- 30 nm

source \ :[[[[[
o il

— =

laser pulse 0.5-1GeV \ < >
e-beam focusing ~5m

Schroeder et al., Proc. of FELO6 (2006)
magnets undulator Jaroszynski et al., Philos. Trans. R. Soc. A (2006)
Griner, et al., Appl. Phys. B (2007)

= First step achieved:

= Spontaneous emission of LPA beam through
undulator at 17 nm (@ MPQ-Garching)

= Next step: FEL (with high harmonic seeding)

Fuchs et al.,Nature Physics (2009)

33
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/\I A FEL places tight constraints on
f(reeeee |||| i
N e-beam quality
O°OO1_ T T T [ v v T T [ fr T T T [ T Tt Tt T [ T T T T =
= 7.5 kA - SASE =
~ - 10 kA - SASE —
>~ 1074L 5 kA - SEEDED i
> E 7.5 kA - SEEDED ;
o - -
© 10-5; /
L g .
) 7.5 kA 5 kA 7.5 kA
%) -6
R SN é
-~ Seeded Unseeded
107 e o v A Sy
0 1 2 3 4 S
4 N\
/ LWEFA Electron Beam: \ = (m)
Beam Energy 0.5 GeV
Peak current 10 kA 7 Photon beam-
Charge 0.2 nC 2=31 nm
Bunch duration, FWHM 20 fs 1013 photons/pulse in 5 fs
Energy spread (slice) \ y

Norm. Emittance

0.25 %
1 mm-mrad

34
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/\I |Q Undulator based diagnostic under

development
y

- L R
&, T“ { .. - ‘

Undulator from Boeing corp.

Measure beam properties by
looking at radiation properties

GeV module




N

“/;}l A Undulator based diagnostic:
single shot AE/E and ¢

Changing energy spread Line Width vs. Energy Spread
I I [ [ [ [
— 0
200000 — o,y = 0.25% 30
= 2 .
X 150000 — 1 mm-mrad _ > 20 A
— ~ A —<— 1st Harmonic
8 = 15 A A g O 3rd Harmon.ic
E L A O A 5th Harmonic
S 100000 — _ = 1 -
'ﬂm TR A O
~ A O
= 5 3 " P e
S 50000 — _ 80 o o 0
o O T T T T T 1
f ) 0 0.5 1 15 2 25 3
0 u Energy Spread (%)
| | | | | |
0 80 160 240 320 400 . .
] ‘ [ | ‘ | Flux Ratio vs. Emittance
| — 0 _
o somo o,y = 2.5% i
A 40000 | Q9 04 O
= 1 mm-mrad 8 035 -
= O
S 30000 — x 03 —"
2 i 025 i ~ & 2nd/1st
@ 20000 — — g 0.2 = o Pa O 2nd/3rd
= S 0.15 I
5 £ e ¢ °
8 10000 — ] c 01 & =&
Q ®
= I 0.05
(ol
07 — 0 T T T T T 1
| ! | ! ! | 0 2 4 6 8 10 12
0 80 160 240 320 400

Emittance (nm-rad unormalized
Photon energy (eV) ( )

36



)\I A Compact Thomson scattering

reeocoeococ| |
’\| gamma-ray source using LPA
o Thomson
LPA foomng  Scattering
I pres laser:
aser: :
1-2 J, ~40 fs ||~ ~cm —_— | — II 40 J, 0.8 micron
olasma  0.2-1 GeV AVAVAV/sq

channel electron MeV gamma rays

~10718 cm-3 beam
Y

N, = %afNWNeai ~1.7x10° phipulse

f —
2 20
= >
= A=A /4
compact > 15| /47
(O}
gamma-ray S Lol
source S o
E 1235 NRF photofission
o
\_ 0

0.2 0.4 0.6 0.8 1
Electron beam energy [GeV]

= Compact source of tunable, narrow energy spread, small divergence, MeV
photons: active stand-off interrogation of special nuclear material (SNM)

Leemans et al., IEEE Trans. PS (2005); Geddes et al., Proc. CAARI (2009)



How about a
collider ?
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Plasma Accelerator Progress

“Accelerator Moore’s Law”

107

108

[ it b
[=] o o
T . O

|

BEAM ENERGY (MeV)

—
(aw)
V)

10

1

AE/E

_ Laser driver

eBeam driver

“Shmear” Quality beam

Current Energy Frontier

ILC

BELLA

1930

1940

1950

1960

1970
YEAR

1980

ANL

LLNL
UCL
0

2000 2010
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Conceptual LPA Collider

= Based on 10 GeV modules (BELLA)
= Quasi-linear wake: e- and e+

= Driven by 40 J, 130 fs pulses

= 80 cm plasma channels (107 cm-3)
= Staging & coupling modules
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rerce |‘ echnical challenges in next 10 years

BERKELEY LAB




/\I ‘QProper choice of plasma density and staging

RN | minimizes main linac length
* Number of stages N ocp = Linac length will be
: determined by staging
Total Length of 5 TeV Staged LPA technology
2000 —————g g )
[ E 7 B - ’
E ‘:V H [ i Laser
' AN / : i :
1500 ‘.“\\_// H ’_" : N\ 5 LPA
€ : ] : \
¥, ; :

Total Length of Staged LPA (m)

' -
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f\l \ Staging: solving the issue of
depletion of laser energy

Injector)-\l-capillary

=i/ \/\/\/\/
)
Y
Renewable mirrors Structure-to-structure
1
laser —= 10 E ' ' ' . \
= / Regular mirror |
e < 10°1
[@)) ¥
c [
L (0] I
liquid —I i
capillary stage jet g’ I
2 107l
3 |
= Reflectivity and flatness _— _
) i Plasma mirror |
= Preserve quality of electron beam ,

= Non-contaminating, renewable

&

200 200 600 800 1000
Laser Power, TW 43




:r_r>| |..“. Prototype plasma mirrors are being tested

BERKELEY LAB

© ©
N o
1

Reflectivity
© o o
= (3] (7]

o
N
L

\/§ o 2 4 6 s 10 12 14
: Intensity, x1015 W/cm?

= Pressure in the chamber limited by water vapor sat. pressure (~20 torr)

= Water jet based:

= Differential pumping system with limited volume kept at high pressure required

= Ultra-thin (micron) foils: limited debris, will test tape drive (from SLAC)



Staging experiments will start with TREX in A-cave

= Three stages (injector + cap + cap) — driven by TREX
Laser

= Current concept relies on water jet based in-coupling
= Powered by TREX: x GeV +y GeV ~ O(1 GeV)

Office of Science




Lay-out for staging in A-cave

Current
GeV
setup




= BELLA laser will enable forefront
accelerator and radiation science

1000 TW <100 cm
40 fs

= 10 GeV compact linac:
= Collider module
= X-ray FEL driver with seeding, coherent THz, gamma rays
= Ultra-fast magnetic switching
* Positron production and acceleration

= Access to non-linear QED
47
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Point designs: 10 and 100 GeV

W
a, P/P, | P(PW)| W, to(fs) | ro(um) | Ay (um) | no(cm3) Lyo ( Gei/)
2 2.2 0.38 40 J 98 53 80 1.7x10"7 | 38 cm 10

1.5 1.1 0.30 40 J 130 63 99 1.1x10"" | 79 cm 10

1 0.45 0.22 40 J 170 82 140 | 6.0x10% | 24 m 10

2 2.2 3.8 1.3kJ | 310 170 250 | 1.7x10' | 12 m 100

1.5 1.1 3.0 1.3kJ | 390 200 310 | 1.1x10'® | 25m 100
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/\l v BELLA Project underway: state-of-the-art
‘ facility for laser based accelerator science

BERKELEY LAB

= High rep rate (1 Hz), Petawatt class laser (>40 J in < 40 fs)
= Laser bay and target area
= Laser diagnostics

BELLA Lser

Plasma

-a = =N

= 3 years for project 49



= A
% BELLA — Project details from 30,000 ft

= Scope:

= Provide a 1 PW, 1 Hz laser system with diagnostics, optical
transport and facility infrastructure to support reliable operation
for an extensive laser plasma wake-field accelerator development
program

= Project completion CD-4 is meeting laser performance specs
= Funds:

= DOE-HEP funding: ARRA (~ $20.7 M) and Program (~$8M)
= Schedule

= Three and a half year project: 30 Months to build laser
= Aspects

= Will ensure US competitiveness in this important technological
area for next decade



BELLA Team

A
Il

frreerer
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BELLA Project & Integration with LOASIS
Program

BERKELEY LAB

LOASIS Program — TREX/Godzilla/Chihuahua

BELLA Project - PW laser plus BELLA

—
FYO08 FYO09 2010 2011 2012 2013 2018
YEARS

= FY09-FY12: LOASIS Program — current (Godzilla/Chihuahua/
TREX) + development of meter-scale plasma and diagnostics

= FY09-12: BELLA Project: concurrent with LOASIS program
activities

= FY13-18 LOASIS Program — augmented with BELLA
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/\I |A Progress in laser accelerator science quickly
frreerer ]

/\‘ follows after increasing laser power
— e GeVEBeam 10 GeV beam:
10'* L 2006 NG
n 10'2 L : |
@ ! ‘Dream Beam”
S - ; EEEWAE] 2004
£ 2100 L N\
= E . :
-9 : | . .
o s
0 g 108 |- _ :
% = - Radio-isotope
8 10° | POP exp’t 2001
— Elefctrons! l
ot L 11/8/99
B Ié;nitorlHea:t r :
2 - 2 H
107 gasis startChannels
l , 1 H I

" x
2000 Year _.+2005 2010,

L
L
L ]
L
L

Chihuahua Godazilla BELLA

on-line

on-line on-line
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/\I » Capillary discharge technology and diagnostics
wiII be refined for the 10 GeV module

= |ntegrated injector+cap S Titorrronics
= Capillary discharge:
= Longer capillary discharges
= Radial density shaping
= Deep, shallow or hollow channels

= Longitudinally tapered channels

= Wall ablation issues: magnetic confinement
= Beam diagnostics:
= Building on B&A-cave experience:
= Present spectrometer covers 0.03 -1.1 GeV
= New 0.1 - 11 GeV spectrometer will be built

= Undulator based diagnostic will be implemented 54
on BELLA beam line
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2/:“\>||"A" Single-Shot 0.1-11 GeV Electron Spectrometer

L Large gap dipole magnet* Trajectory (x-y plane)
B=14T,L=1.75m, width =150 mm, gap =116 mm NY
magnet yoke
58
chambe coi
B=1.4T

6.4 8.6 1 Gq@ﬁ
Too © ot \/28 50

\ 4o

Ui

Trajectory (x-z plane)

0.05

-0.05

-U l y —
-05 0 05 1 15

*S. Prestemon, and R. Schlueter, LBNL
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1 TeV

7

100 GeV .
_ Science
V Opportunities HEP relevant

Particle physics

QO Detector testing

0’0 . Non-linear QED

00 Advanced concepts
& Science Other science applications

Opportunities AMO science

Ultra-fast pump probe
Ultra-high harmonic generation
Non-linear carrier dynamics with T-RAYS

Science LWFA driven free electron lasers
Opportunities Ultra-fast magnetic switching
v-ray generation for nuclear physics

High energy density physics
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plasma
40 J, 100 fs channel
10'8 W/cm? 1017 cm-3

Laser beam ~m

LPA electron beam:
Beam energy 7.7 GeV
Peak current 30 KA
Relative ener%_?’spread

Normalized emittance 1 micron

FEL Radiation:
Resonant fundamental wavelength
Photon energy
Bandwidth at saturation
FEL parameter
1D gain length
3D gain length
Saturation length
Cooperation length
Slippage length
Energy/pulse (fundamental)

Laser-plasma accelerator driven

soft x-ray FEL

7.7 GeV,
electron beam

focusing
optics

1 nm
1.2 keV
7 eV
5x10-3
0.4 m
0.6m
13 m
8 nm
0.3 mircon
8mJ

single-pass, high-gain FEL

111111

5 cm period, K

111111

FEL output:
A=1 nm
~10"13 photons/pulse
A\ A
Coherent

soft x-ray
radiation

Undulator ~15m

1.E+12

1.E+11

1.E+10

1.E+09

1.E+08

1.E+07

1.E+06

1.E+05

Average fundamental power <P> (W)

S 1) L 0 L L L O LALLM AL

T T T T T T T T T T

GINGER
o . Simulation

corvvel o ovvsel o ovsel v veseel o ovsel 3 vaspl 3 vl 3o

1.E+04
0.0

25 50 7.5 10.0
Undulator length (m)

125 15.



/\I » R&D with BELLA: Proof-of-principle
positron acceleration experiment

Converter TREX
y \3’ Capture  _
10 GeV e-LINAC 40 o o TR
Linear
PWFA
e
BELLA
LASER

1.0

! osf

! 1 osf E

1 04 -

00F i
[ 1 02

[ | oof
05} :
' 1-021

BELLA laser will enable basic collider components to be developed
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T ) Detector test facility at BELLA: one stop
shopping for 0.1 — 10 GeV electrons

Pair Production Experiment at BELLA /N
= Battagl talk at CD-0
a a g I a g ave a a I\‘dkj or source of background at ILC is due'to paits produced in intense beam interaction;

review: . |
= Need for Test Facilities =1 ..

Tesponse to

= Pair production expt’'s on | i

B E L L A » Study detector response to pair background:

need to characterise cluster shape of low momentum electrons (0.05-0.5 GeV) and

validate simulation to assess occupancy level and pair hit rejection feasibility;

| =
S ee C D O tal kS » Study pair production in dedicated experiment and validate simulation code:
Bethe-Heitler process e”y = e e” e” colliding BELLA beam with intense laser,
important experiment to gather data to compare with simulation.

LAWRENCE BERKELEY NATIONAL LABORATORY

A 10 GeV beam in the TeV era eeendd]

BERKELEY LAS

10 GeV-e beam ideal for detector beam test characterisation & calibration;

* Need large enough energy to minimise multiple scattering (~1/p) and have
dynamic range to calibrate response;

B T o ) e

o e‘e’ > HZ->bbp '

* Despite large|c.m energies, energy of at ILC at 0.5 TeV
final state particles remain low|due to
large number of partons/hadrons
produced:

Sac g s DB Bhaos |
© liin u [memmes |

DSy pesvin e 1060 125 |0 perna
so b b i b
I T O (T R =

LAWRENCE BERKELEY NATIONAL LABORATORY
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* Need beamline with bend Section
to suppress laser background and
optics to reduce beam intensity and magnify-beam spot
(from 10%-10° e=bunch*en pm! spot to few 10%-103 e~ cm?);

* Narrow, intense beam essential|for pair generation experiment.

LAWRENCE BERKELEY NATIONAL LABORATORY
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/\I A BELLA laser will provide access to

ultra-relativistic physics

Focused Intensity (W/cm?)

Electron
Characteristic
/_ 5 \ i —>» * Schwinger critical field
10" Ll ENCEOWRIRED  Vacuum breakdown
* Non-linear QED
/4 * Accessible by Compton
102+ scattering part of BELLA
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beam against 10 GeV beam

Positron-
Electron Era

20
10
® - Ultra-high gradient acceleration
10
....................... P * Photon and Particle Foundry
~—— mode-locking 1evV
10/ 4f = Qswitching Alomic Era « AMO science
| f f 1 f f HEDP
1960 1970 1980 1990 2000 2010
Year

« Pathway to Ultra-relativistic physics
Focused Intensity vs. Year

(after T. Tajima and G. Mourou, PRSTAB2002)
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"" Intensity Frontier: reaching non-linear QED

= Schwinger critical field: E_;=1.3x10"8 V/m

= Requires >2x10%° W/cm? with laser...

= | orentz boost: scatter on 1-10 GeV beam
= Requires >6x102° - 6x10%2 W/cm?

= Doable with 0.2 - 1 PW laser !

= Scattering intense laser off laser accelerated GeV
e-beam opens ultra-relativistic intensity regime

= VVacuum breakdown

= |ntense positron production via e-beam/laser scattering

= \What can we learn from this?



Conclusion
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= Laser-plasma accelerators have produced GeV beams (~% AE/E)

= Key LBNL technology: guiding structures and controlled injection

= Could potentially be used for DUSEL Cerenkov calibration work (R. Kadel et al.)

= Demonstration experiments underway at LOASIS:
= Beam control, plasma structure control for improved beam quality — foundation for LPAs
= LPA driven FEL at 30 nm — foundation for novel light source

= Staging technology — foundation for a collider

= BELLA: will allow 10 GeV module development
= Detector calibration — need to develop diagnostics for measuring 10 GeV beam
= Positron production
= X-FEL

62
= Non-linear QED, muon production
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~ 400 kW average power laser
gep

* Beam power: P, = fNE_

—

N~ 3x10°
E ~1TeV

—

* AC wall-plug power: ~ 200 MW = 2% efficiency

= |aser to plasma wave efficiency: ~50%
. Y ° =>~10% laser to beam efficiency

= Plasma wave to beam efficiency: ~20% 2 ~20% wall-plug to laser efficiency
= Collider based on 10-GeV stages:

= (total beam energy ~240 J)/(50 stages) = ~4 J/stage
= ~40 J/laser at 10 kHz = ~400 kW average power laser

\ beyond state-of-the-art laser technology
=>» Laser technology development required

rfr—”\rrl ’m BERKELEY LAB , US. DEPARTHENT oF

LAWRENCE BERKELEY NATIONAL LABORATORY Of'ﬁce of Science
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= Task force for roadmap on laser technology:

= Proposed as core activity of ICUIL with ICFA
panel as partner

= Workshop planning underway for April 2010

= |nvite international panel of experts on laser
and accelerator technology

= Develop science and technology strategies
towards multi-kW lasers for light sources,
colliders

ICUIL = International Committee for Ultra-Intense Lasers
ICFA = International Committee for Future Accelerators



