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Outline

Motivations -- Why am | doing this?

Integrated Sachs Wolfe (ISW) Effect
-> study the geometry of the Universe

Weak Lensing (WL) of CMB (mini-version)

—-> study the matter between us and the last scattering surface

Kinetic Sunyaev Zeldovich (kSZ) Effect

-> finding Missing Baryons!
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Q b is the baryon density expressed in terms of critical density

Q2 ~ is the cold dark matter density expressed in terms of critical density
QK = —K/Hg is the curvature expressed in terms of critical density
Q2 pg is the dark energy density expressed in terms of critical density

HO is the Hubble constant which dictates how fast the Universe is expanding

Og measures how strong the fluctuation of matter density is
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Outline

Motivations -—- Why am | doing this?

Integrated Sachs Wolfe (ISW) Effect
-> study the geometry of the Universe

Weak Lensing (WL) of CMB (mini-version)

—-> study the matter between us and the last scattering surface

Kinetic Sunyaev Zeldovich (kSZ) Effect

-> finding Missing Baryons!



Physics of ISW:

CMB photons

ST ¢ ¢ , Gravitational
() - 2f dn—~ Potential of
- L The Universe

*Photons gain energy going down potential well, lose energy climbing out.
* As ®>0 and a blue-shift is observed in overdense (®<0) regions.

Thus we see a positive correlation between CMB temperature and density.
-> Unique Probe into the change of gravitational potential of the Universe



Physics of ISW:

*Since the change in temperature due to ISW is very small compared to the primary fluctuations of CMB, we
can only detect the ISW by looking at where ISW effect happens.

b= 5_g describe how galaxies are dN ' describe how many galaxies
- 5,0 related to cold dark matter dz are there at each dz bin
1
D( Z) describe how matter grows [ + — | describe how matter cluster

p(_z) (matter powerspectrum)

X
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What can ISW do?

Unique Probe to the change of gravitational potential of the Universe.

Puts independent constraints on parameters of Universe such
as curvature, dark energy equation of state.

ISW is expected to be a strong discriminator of modified
gravity models, which have very distinctive ISW predictions
(Song et al. 2007).
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Large scale structure samples:
2MASS(2-Micron All Sky Survey)
LRG(SDSS Luminous Red Galaxies)
QSO(SDSS Quasars/Quasi-Stellar Objects)

Qso0 0s01

Ho, Hirata, Padmanabhan & Seljak (2007, being reviewed)




Looks easy:

« We cross correlate the CMB sky (from WMAP) with the
large scale structure which traces the mass, thus

potential wells of the Universe: =
‘Cl (Data)‘

* But in order to determine cosmological constraints
from C¥ (Data) , we need to be able to predict the

correlation amplitude.
« To do that, what do we need? |C,gT’SW (Theory)|

l+l

39 HOTCMB fb* dN H(z) D(Z)—[D(z)(l+Z)]P(—2)dZ
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Bias and Redshift distributions:

« What we know:

2MASS positions, colors of galaxies

LRGs positions, colors of galaxies, has good photo-z
QSOs positions, colors of quasar, has photo-z.

NVSS positions, measure of “light” at 1 frequency.

«  What we don’t know: their bias and redshift distribution.
e What do we do?

(a) Get spectroscopic redshifts (when you can) to estimate a preliminary dn/dz
(b) Use clustering data to estimate the b*dn/dz

(c) Then this will only give you b*dn/dz for 2MASS, LRGs and QSOs,

how about NVSS?

-> Cross correlate with datasets that we know their distributions!!
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Bias and Redshift distributions:
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Looks easy:

« We cross correlate the CMB sky (from WMAP) with the
large scale structure which traces the mass, thus

potential wells of the Universe: =
‘Cl (Data)‘

* But in order to determine cosmological constraints
from C¥ (Data) , we need to be able to predict the

correlation amplitude.
« To do that, what do we need? |C,gT’SW (Theory)|

l+l
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There is more to it... systematics!

glemp gl gy
C, =,

8leys _ 8T sw 8 aust Lems 8stars Lcmp 81rg 871 ps 8Trs,
Cp o = Cp B Cpa s pCruemcams 4 O 4+ Crrs + C

Dust extinction:

Cross correlate the Dust Galactic (Izqcl ntl StOU rce

extinction map with CMB . Xtragalactic sources

map. Foreg rOU.ndS . emitting in microwave):.
Cross-correlations Estimate the strength of
between galaxy point sources by
overdensity and looking at correlations
foreground of galaxies with
templates. different frequency CMB

: _ maps.
Stellar contamination:
a) Check for any dependence of galaxy density on Therma| SZ (Hot electrons in

stellar density
’ : . cluster Compton scatter CMB photons):
b)cross-correlate the stellar density map with CMB Using Halo models (Komatsu & Seljak

2P 2002) to find the upper limit of
contribution from tSZ (and other
systematics)



Summary for ISW systematics %
0]
» We select a specific multipole range such that these multipol
are not affected by i) non-linearities, ii) systematic effects
« We discard the first multipole bin, and also discard a
multipole bins that correspond to scale smaller thart k=0.05 Mpc/h.
* We then check for the total effects of systema#Cs on these chosen bins
by checking the upper limit on the total number of sigmas of
contaminations that can be introduced by the specific systematics:

T T T T T T T
Cig CMB — CES’ ISW +C2gdust CMB _I_Cigstars CMB . C;’ FG 4 Cig PS 3 C;g TSZ

Dust extinction: Galactic
' Foregrounds: | Point Source:

0.23 0.66 0.49 (could

double count
with foregrounds)

Thermal SZ: 0.11

Stellar contamination: 0.15

Ho, Hirata, Padmanabhan & Seljak (2007, being reviewed)



Summary for ISW systematics

A contamA
o (A)

» We select a specific multipole range such that these multipoles

are not affected by i) non-linearities, ii) systematic effects

Sample

Ka

Amplitude A

Q

1,".‘"

"i,.ﬁ.."

2MASS0
2MASS1
2MASS2
2MASS3
LRGO
LRG1
Q500
Q501
NV5S5

—9.04 = 8.21

L.80 = 3.97
2.16 £ 2.66
1.74 + 1.72
2.00 4+ 1.44
2.67 £+ 1.04
(.62 4 1.90
2.41 4 1.90
2.56 £+ 1.01

—3.54 £ 5.19

2,73 + 3.94
2.95 + 2.65
2.00 + 1.72
2,05+ 1.44
2.509 4+ 1.04
(.39 4+ 1.92
2,174+ 1.92
2.80 4+ 1.01

—2.01 £ &.11

217 £+ 3.93
2.42 £+ 2.63
2.08 £ 1.72
156G &+ 1.45
2.85 £+ 1.05
(.61 £ 1.89
2.30 £ 1.90
3.04 £+ 1.02

—3.38 = 7.79

1.64 £+ 3.56
2.04 £+ 2.61
2.39 £+ 1.69
1.92 4+ 1.46
2.92 4 1.06
(.63 £ 1.94
1.95 4 1.90
2.88 £+ 1.02

bins

0.49 (could

double count
with foregrounds)

Thermal SZ: 0.11

Stellar contamination: 0.15

Ho, Hirata, Padmanabhan & Seljak (2007, being reviewed)




ISW Cross-correlations
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ISW Cross-correlations
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Outline

Motivations -—- Why am | doing this?

Integrated Sachs Wolfe (ISW) Effect
-> study the geometry of the Universe

Weak Lensing (WL) of CMB (mini-version)

—-> study the matter between us and the last scattering surface

Kinetic Sunyaev Zeldovich (kSZ) Effect

-> finding Missing Baryons!



Weak Lensing of CMB (mini-version)

Probe matter in between us and the last scattering surface!

We find evidence for a positive cross-correlation at the
2.5 o level

The cross correlation amplitude is 1.06 +/- 0.42 times

that expected for the WMAP cosmological parameters.
(@amplitude =1 implies that this is exactly as expected by WMAP

cosmological parameters)

Our analysis extends other recent analyses in that we
carefully determine bias weighted redshift distribution of
the sources, which is needed for a meaningful
cosmological interpretation of the detected signal.

We investigate contamination of the signal by Galactic
emission, extragalactic radio and infrared sources, thermal
and kinetic Sunyaev-Zel’dovich effects, and the Rees-
Sciama effect, and find all of them to be negligible.

Hirata, Ho, Padmanabhan & Seljak (2007, being reviewed)



Outline

Motivations -—- Why am | doing this?

Integrated Sachs Wolfe (ISW) Effect
-> study the geometry of the Universe

Weak Lensing (WL) of CMB (mini-version)

—-> study the matter between us and the last scattering surface

Kinetic Sunyaev Zeldovich (kSZ) Effect

-> finding Missing Baryons!



Cosmological parameters

* First likelihood analysis using both ISW and WL of
CMB that allows all cosmological parameters to vary.

« Using markov chain monte carlo to search through
all the parameter space in these models:

a) LCDM
b) CDM + Q (allowing curvature)
c) CDM + w (allowing dark energy equation of state)

* Further Constraints on modified gravity models.



CDM+€2,

» Testing the flatness
of universe!
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CDM +QK Independent probe to Geometry

and Vacuum Energy

WMAP +ISW+WL............ Q. =-0.006"0 ... Q2, =0.74420

398

TABLE 12

SPERGEL

JOINT DATA SET CONSTRAINTS ON GEOMETRY AND VAcuUM ENERGY

Data Set Qg Q\
WMAP + h = 0.72 4+ 0.08 ....... ~0.014 + 0.017 0.716 + 0.055
WMAP + SDSS...cooeveirrerrnnn. —0.0053 100008 0.707 + 0.041
WMAP + 2dFGRS..................... —0.009310000% 0.745002>
WMAP + SDSS LRG .............. ~0.012 4+ 0.010 0.728 =+ 0.021
WMAP + SNLS .......oovovrrrenns ~0.011 + 0.012 0.738 =+ 0.030
WMAP + SNGold..................... ~0.023 + 0.014 0.700 + 0.031

Spergel et al. 2007



CDM+w Solid: CMB+ISW+WL
Dotted: CMB only

« Constraining w to 15%
better than CMB alone

0.9

0.8

0.7

Ho, Hirata, Padmanabhan & Seljak (2007, being reviewed)



Future of ISW and WL of CMB

« Constraints on modified gravity models will be coming soon.
« CMB+ISW+WL of CMB will improve further on the following:

a) Deeper galaxy surveys with better redshift determination, such as
SDSSIII

b) Upcoming/future CMB data such as PLANCK, ACT, APEX, SPT will
significantly improve the weak lensing by lower-noise
reconstruction.



Future of ISW and WL of CMB

Signal Lo noise for galaxy lensing cross correlation
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Mini-conclusion

ISW (Integrated Sachs Wolfe) effect:

(1) We go beyond reporting detections towards developing a reliable
likelihood analysis that allows one to determine cosmological constraints
from ISW observations.

(2) Independent and complementary probe into characteristics of the
Universe

-> We learn about the Geometry of the Universe.

Weak Lensing of CMB:

(1) We find evidence for a positive cross-correlation at the 2.5 - level.
(2) This is the first analysis to use it for cosmological constraints).

-> We learn about the Matter density of the Universe.

Cosmological Constraints from first likelihood analysis of ISW and WL of
CMB that allows all the cosmological parameters to vary:

Now, looking into the future, there is another important

cosmological piece that we can deal with using the same
technique

= finding the Missing Baryons using Kinetic Sunyaev
Zel’dovich Effect!



Outline

Motivations -—- Why am | doing this?

Integrated Sachs Wolfe (ISW) Effect
-> study the geometry of the Universe

Weak Lensing (WL) of CMB (mini-version)

—-> study the matter between us and the last scattering surface

Kinetic Sunyaev Zeldovich (kSZ) Effect

-> finding Missing Baryons!
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| We are trying to find the gas not only
in the galaxies but also along these filaments
or just in the intergalactic medium!

B Courtesy simulation of gas from
Renyue Cen and Jerry Ostriker




Physics of KSZ:

—-Kinetic Sunyaev Zeldovich:

1)electrons interact with photons!

-> a incre/decrement of the
photon energy depending on the
direction of the velocities. SEFORE

-> amount of ionized electrons _ ¢~ ™~ _

-> baryon fraction in the universe.

oT,

ksz

cmb

= —[n,0,(= Al
C

» (A




How to find Missing Baryons?

Galaxy field




How to find Missing Baryons?

Galaxy field




How to find Missing Baryons?

Parameterize gas profile KSZ template to
around each galaxy/region of cross-correlate with
interest: observed CMB.

lOgas = pgas(r)



How to find Missing Baryons?

KSZ template to

cross-correlate with
observed CMB.

See what gas
profile gives the best
correlation.

=p (I’) Average gas profile around
gas gas any types of galaxies!
or regions! [such as filaments or
just intergalactic space]




KSZ Applications!

Applicable to any high resolution cosmic microwave

background maps with any spectroscopic large scale survey,
such as:

1) ACT (Atacama Cosmology Telescope)
with SDSS (Sloan Digital Sky Survey) or

BOSS (Baryon Oscillation Spectroscopic Survey)
2) SPT (South Pole Telescope)

with SALT (South African Large Telescope) or

ADEPT (Advanced Dark Energy Physics Telescope) or
LSST (Large Synoptic Survey Telescope)
3) PLANCK

with SDSS or BOSS or ADEPT or LSST



KSZ estimated S/N

ACT APEX SPT PLANCK
2000 deg® | 200 deg® | 100 deg?2 | 10,000 deg?
SDSS N].O (only N].O(only N].OO
SDSSII/ | ~15 ~15 ~100
BOSS
SALT  |~10 ~10 ~5
ADEPT/ |~100 ~15 ~8 ~400
LSST

Ho, Dedeo & Spergel 2007, in prep




Conclusion

« More to learn about the Universe

* Lots to gain by cross correlating Cosmic
Microwave Background with Large Scale
Structures with current and upcoming
experiments!

= Geometry of the Universe
= Dark Energy, Dark Matter...
= Missing Baryons

THANK YOU for listening!



