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e The show so far: the Standard Model works really well,
but...

e (Go big, go deep!
e Aview of the next ten years of dark matter searches...
e The case for LBNE

What else can you do with
something like the LBNE far
detector?

Lewis and Clark on the Lower Columbia
Charles Marion Russell, 1905

The technical challenges that
tie all this together

Conclusions and perspectives



Where do we stand’?

It looks like "we’ve” ) |
discovered the Higgs! I

It also looks like the P
Higgs from the standard ‘==
model

Physics has been lis R
chasing the Higgs at this FEgk =¥

o

energy scale since 1933! ﬁﬁ -

We now have a Current Status:
complete theory of the 1 _ 105 9 + 0.4 GeV (PDG)
electromagnetic, weak, Significance > 6 o

and strong forces.
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Higgs BR + Total Uncert

Just the Standard Model?

e The new scalar particle observed by ATLAS and
CMS, really does look like the standard model

Higgs...

e |t's the right energy scale,

e |t decays into the right things in the right

2In?» )<1 Intervals 2011+ 2012 Data

[ [ T [ | [ [

ATLAS Preliminary . PDG, 2013
W,ZH — bb g
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Vs =8TeV: fLdt 910" ‘e w=1.2 +0.3
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10 1

prO pOrtIOnS Signal strength (u)
. e o,
e There also haven’t been any hints of supersymmetry in
ATLAS or CMS data. TR -
. —Pealvaueormy ____* This does NOT mean that -
H ~ ' the energy frontier is dead! 2l
el I PRGi20ts
e (Getting afactorof2in LHC °° 7" ° 'sarios,,
energy soon,
e There are a lot of precision
: measurements to be done at the the LHC
N 0 oo as well as the ILC or something like it!
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Higgs BR + Total Uncert

Just the Standard Model?
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e (Getting afactorof2in LHC °° 7" ° 'sarios,,

energy soon,

e There are a lot of precision
: measurements to be done at the the LHC
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So, what do we do now?

e We have a prodigiously successful Standard Model, with
no more free parameters to measure

e But, we also have several confirmed departures from the
Standard Model:

e Non-baryonic dark matter

: _ _ [ These have something )
e Neutrino flavor oscillations< in common that | will talk

X about in a bit... y

e Baryon asymmetry
e Accelerating Universe/dark energy
e [nflation

e The down side is that we don’t know the energy scale
that these departures are telling us to investigate!
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Outline

The show so far: the Standard Model works really well,
b Ut -y Hayden Expedition of U.S. Geological Survey En Route to the | .

Yellowstone Country.
Photographed by William H. Jackson in 1871.

Go big, go deep!

A view of the next ten j, g -
years of dark matter [JESE=SE
searches... o

The case for LBNE

What else can you do with somethlng like the LBNE far
detector?

The technical challenges that tie all this together

Conclusions and perspectives
6



Expeditions to Higher Energies

e Because we don’t know the next energy scale to start
studying in detail, we have to go on these expeditions
looking for unified theories, based on the hints we
already have

e The good news: lots of these expeditions can be
undertaken with large, underground detectors!

* [he bad news: . doay
el > --» ne
bUIIdlng th_ese _ »---» |epton flavor e é
detectors is going to > -> quark flavor € 0
_ —» ---->» dark matter 5 <
be hard, expensive, > LHC ~

—> Tevatron

and not guaranteed ., . . . . . .

(0 pay Off In the Way 102 10* 106 108 10'© |02 |04 |0'6 |0'8

experimental reach [GeV]

We eXpeCt L. (with significant simplifying assumptions)




Big, Underground Detectors

wovos wx  ---€Specially noble gas-filled detectors!
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Hey, look! An Underground Lab!
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Outline

e The show so far: the Standard Model works really well,
but...

'. e (Go big, go deep!

e A view of the next ten
years of dark matter

Rcy gwiend;m;;ﬁmz?;ao% eia - M scarches...
Marsh t§d ng Lcet ; \° E

-//www.rockymountain tol > —

o The case for LBNE

e \What else can you do with something like the LBNE far
detector?

e The technical challenges that tie all this together

e Conclusions and perspectives
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Dark Matter Searches: Now

e No dark matter yet, but increasingly stringent
limits...

Current LUX limits
(Run03, Oct. 2013,
85 days x 118 kQ)
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Dark Matter Searches: Now

e No dark matter yet, but increasingly stringent
limits...

T ll L

Expected final LUX
limits (Run04, Late
2014, 300 days)
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Dark Matter Searches: Now

e No dark matter yet, but increasingly stringent
limits...

T ll L
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So what’s next?
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LZ

The LUX and ZEPLIN collaborations are joining forces for
a multi-ton two-phase xenon search (“LUX” + “ZEPLIN” =
‘LZ7 Get it?)

5-6 tons fiducial mass (8-9 tons total)

Will fit into the current LUX ===
water shield tank at SURF &

More sophisticated active
veto system

e Xe outside field cage
instrumented with PMTs

e Add liquid scintillator veto bt
outside cryostat inside ’
shield)



Other Physics with LZ

Low-energy solar neutrinos?

2V[3[3 is actually a background... How many 2v[33 events will slip
through the NR/ER rejection in to the dark matter signal box?

Can we get some physics out of the 2v[3 shape?

Events / keV / yea

About 350 pp neutrino
events per year!

50 100 150 200 250 300 350 400

e’ Kinetic Energy [keV]




Other Physics with LZ

Low-energy solar neutrinos?

2V[3[3 is actually a background... How many 2v[33 events will slip
through the NR/ER rejection in to the dark matter signal box?

Can we get some physics out of the 2v[3 shape?

:_ pp Soiar v § '
_..:::::::::—ZV[SB : ::::::.‘é:::::::::::::::::;:::::::::::::::::é:::::::::::::::";"":::.....:::::;:::::::::::::::::;:::::::::::::::::é:::::::: LeSS than 0.1

s s e e —

....................................................................................................................................................................

[
=
[°)

Events / keV / year
|

I L1 L1 L1 L1 I I
20 40 60 80 100 120 140 160 180 200

Energy [keV]



Can we “finish” Direct Detection?

Spin-Independent cross section limits for 50 GeV WIMP
versus time, including future projections
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Can we “finish” Direct Detection?

SuperCDMS Soudan CDMS -lite

e Yes, but because of T J— l 103
- —40/ \ \\\ 2 1104
backgrounds, not signals... 10 | 10
o 10—41, 0\2 10_5 =
g » C’O\):P\\\z’lm2 6 é
" . — —42| AN —
e (Can justify a 50-100 ton =10, e |10 5
. cc " § 1074} - N Suevc‘g\sg\o 1077 §
experiment before the “neutrino ; ./, NN R
. 8 Be . OC‘o GP\T%N\\:\‘.‘ \ ‘\“\.\._____.___ ,,,, 3 e _.--;‘;:;:;”/" ;gﬁi\’// 5
floor,” could we push past it? ) N i
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are: single, uncorrelated nuclear * " e
) 10_49 I @ MSSM: A funnel P\m'\os‘p\’\er 7 10_13
" MSSM: Bino-stop coannihilation
recoil scatters. What else could oo *vsvemesammne. S
1 10 100 1000 10
we Use? WIMP Mass [GeV/c?] arXiv:1310.8327

e Direction: if we could see tracks from WIMP interactions point away
from the earth-sun system’s orbital velocity, that could differentiate
those recoils from coherent neutrino scatters.

e |ndirect detection: annihilation of WIMPs into standard model particles
(usually photons or neutrinos). Messenger particle gets the full mass
of the WIMP, makes dark matter astronomy something to think about!
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Can we “finish” Direct Detection?
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of the WIMP, makes dark matter astronomy something to think about!
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Can we “finish” Direct Detectlon’?

Yes, but because of
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Can we “finish” Direct Detection?

Yes, but because of

SuperCDMS Soudan CDMS -lite

l SSSSSSSSSSSSSSSSSSSSSSSSSSS
X
hreshold (2011)

10—39 ‘

ENON 10 S2 (2013)
— 4 COMS-I| ‘Ge Low Tt old (2
\
SERNER\\ N S

ba( What would a 100-ton dark matter experiment look like?

» Two-phase liquid could be hard because of drift fields. Probably not
impossible... Lots of parallel LZ’s?

* Big, single phase (scintillation only) experiment? Light collection is
hard because or Rayleigh scattering...

e Superheated liquid detectors?

Ca
ex
flo

way
ate

1073
1074
oo 00121107
W -6
-\\ Ge \2009 110
dan
S SO="10-7
lra\‘\f\SL ,e:/’/ -8
,103( \ /’ 10
sl
{-e-(;(‘)}{ﬂ 10
e G2 -]
L Gice 95710
RS 10
10—11
10—12
10—13
0—14
10!1

articles
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e Direction: if we could see tracks from WIMP interactions point away
from the earth-sun system’s orbital velocity, that could differentiate
those recoils from coherent neutrino scatters.

e |ndirect detection: annihilation of WIMPs into standard model particles
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of the WIMP, makes dark matter astronomy something to think about!
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Can we “finish” Direct Detection?

SuperCDMS Soudan CDMS -lite

Yes, but because of PR 107
backgrounds, not signals... 07BN
& 1074 —
= 2 a
Can justify a 50-100 ton =10, ZTo 107
. . 8 1074 0 OSSR ] 5
experiment before the “neutrino ;| ./, 00 W) . LS
I g Liitrm:)f OHERENTSGATJ “\T~\~\\‘l\_‘_\\“\'_‘--—-:-— vvv - / ----- ;’;','L::’_:/;/\’Q;g»%\__’_/_/.: 5
floor,” could we push past it? = 10 N T e B,
% 1046, C?:' ‘\"'6E/Ai360 4____5__?’.-./- ---- __?:k.s-.@é@?f-"lo_lo g
: G T g
Currently, dark matter signals ¢ o e B 7 e 0
: 2 1074 ol e o E
are: single, uncorrelated nuclear * ' o o
recoil sc _ _ _ — g
we use? It requires slightly different assumptions about the coupling 10
‘| between dark matter and Standard Model particles, but R
. . I I i | .
Direction indirect detection searches are no less reasonable! int away
Direct Indirect Collider j .
from the DM><DM DM><SM SM ><DM entiate
those rec SM SM DM SM SM DM
& J

Indirect detection: annihilation of WIMPs into standard model particles
(usually photons or neutrinos). Messenger particle gets the full mass
of the WIMP, makes dark matter astronomy something to think about!
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Can we “finish” Direct Detection?
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Long-Baseline Neutrino Oscillations

Lots of outstanding questions in Neutrlno/oscnlatlon

I (m, ) (m2)2— | —

physics: e
e Determination of the neutrino mass L
hierarchy .. e
e CP violation in the neutrino sector ——
(inCIUding phase measurement) normal hierarchy | 3 inverted hierarchy
. |ve) C12€13 o sia 5 s13e”"0cP 12 v)
o Is Bpq really maximal? () oo v S ) (00
e Stringent test of the three-neutrino flavor paradigm

e Are there non-standard interactions?
e Are there other (sterile) neutrino states?

Cross section and other interaction measurements

16



Long-Baseline N Oscillations

Lots of outstanding ¢

Baryogenesis
requires matter-antimatter

phySICS. asymmetry ~5 X 10-10. ey
The quark sector provides enough | "'~ =~
e Determination of t CP violation for ~10-2

(Am®),,.,

Neutrinos might make up
(part of) the rest!

hierarchy

CP violation in the neutrinC _
(including phase measurement) worml hirachy

(m3)2| I

inverted hierarchy

s Bzs really maximal? (7)) (oo o e ) (G
Stringent test of the three-neutrino flavor paradigm

® Are there non-standard interactions?

e Are there other (sterile) neutrino states?

Cross section and other interaction measurements
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A Long-Baseline Neutrino Experiment
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Why FNAL to Homeste? Just beause of convenient facilities?

NO! 1000 - 1500 km is actually a well optimized baseline that allows us to “run
the table” on dcp, mass hierarchy, and 0623 octant. (arXiv:1311.0212)

Too short a baseline: not enough “matter effects” to see the hierarchy

Too long a baseline: “matter effects” swamp dcp

A much longer baseline would give more sensitivity to non-standard interactions
17



A Long-Baseline Neutrino Experiment

( : 228 ~ \
P(v, — 1) ~ sin? ?1;_ 1;?; sin?((A — 1)A)
sin d¢cp cos O3 sAin 2912Asin 2015 sin 2093 sin(A) Sil’l(AA) sin((1 — A)A)
A(l—A)
cos 0o p cos O3 sAin 2912Asin 2015 sin 2053 cos(A) sin(flA) sin((1 — A)A)
A(l—-A)
2 .2
2808 023A81n 2015 sin2(AA)
A2
\_ Am%?) 4EU Am%3 y
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e NO! 1000 - 1500 km is actually a well optimized baseline that allows us to “run
the table” on dcp, mass hierarchy, and 623 octant. (arXiv:1311.0212)
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e TJoo long a baseline: “matter effects” swamp dcp

e A much longer baseline would give more sensitivity to non-standard interactions
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A Long-Baseline Neutrino Experiment
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e Why FNAL to Homestake? Just because of convenient facilities?

e NO! 1000 - 1500 km is actually a well optimized baseline that allows us to “run
the table” on dcp, mass hierarchy, and 623 octant. (arXiv:1311.0212)

e Too short a baseline: not enough “matter effects” to see the hierarchy

e TJoo long a baseline: “matter effects” swamp dcp

e A much longer baseline would give more sensitivity to non-standard interactions
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The LBNE Far Detector

Cryogenics

\[ Filtration
|

Foam Insulation

Concrete Liner

e Modular TPC design allows for flexible drift distances
e Wire planes designed to be slung under the cage at SURF

e Photon collection done with sensors inside the anode plane
assemblies (doing this better would dramatically improve
energy resolution!!!) 8



The LBNE Far Detector

e Modular TPC design allows for flexible drift distances
F

i

e WWire planes designed to be slung under the cage at SUF

e Photon collection done with sensors inside the anode plane
assemblies (doing this better would dramatically improve
energy resolution!!!) 8
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but...

e (Go big, go deep!
e A view of the next ten years of dark matter searches...
e The case for LBNE

e \What else can you do with
something like the LBNE far
detector?

The technical challenges that tie
all this together

Conclusions and perspectives
19



Other Physics with the LBNE FD

® Supernova burst neutrinos

e [ndirect dark matter (y x— v v)

e Atmospheric neutrinos

* Nucleon decay (esp. p—K+v) §

o WA, & :’ ?
he Crab Nebula)@ HUBBLESITE.org
L0 2% »

+
n
/
K+ 3 /"’
\ o
+ +
Ki'—p'v,
Py X velocity
distribution
Sun Earth

v mteractions

capture

. !
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Core Collapse Supernova Neutrinos

Galaxy Edge  LMC Andromeda
T T — 1]

= 34 kton

e Fewer than 20 neutrinos detected from
1987A, lead to thousands of publications
over the intervening years!

— 20 kton
MRS =:=1 15 kton
o, t =:=: 10 kton

e ~99% of the proto-neutron star’s energy
release goes into neutrinos.

Number of interactions

e Too many uncertainties from collective 10
effects, etc. to do a lot of neutrino physics :
with a supernova, but there is A LOT of
astrophysics we can learn: 10°
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e Binding energy and net lepton number
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e Time evolution (“neutrino light curve”)
provides structural information about the
collapse, including things like the
neutronization burst and black hole w000
production!
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e Early warning (minutes to hours) in advance 5 é | |
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e High densities and astrophysical object sizes
could provide a wealth of information on

neutrino interactions in matter N A
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Core Collapse Supernova Neutrinos

e Fewer than 20 neutrinos detected from S 108
1987A, lead to thousands of publications ¢
over the intervening years! £

O.4n3

e ~99% of the proto-neutron star’s energy &'
release goes into neutrinos. 5102

e Too many uncertainties from collective 10
effects, etc. to do a lot of neutrino physics :
with a supernova, but there is A LOT of
astrophysics we can learn: 107

e Binding energy and net lepton number 1%

of the proto-neutron star

e Time evolution (“neutrino light curve”)
provides structural information about the
collapse, including things like the
neutronization burst and black hole
production!

e Early warning (minutes to hours) in advance
of optical pulse

e High densities and astrophysical object sizes
could provide a wealth of information on

neutrino interactions in matter
21
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Core Collapse Supernova Neutrinos
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WIMP-nucleon SD Cross section[pb]

Indirect DM from Neutrinos

e (Operates on the assumption that WIMPs can get gravitationally
trapped in heavy things (Earth, Sun, galactic center)

e Search for neutrino emission from WIMP annihilation above
backgrounds like atmospheric neutrinos

e Then assume that WIMP capture rate equals the annihilation
rate (equilibrium) for a constant WIMP density in the object

spin-independent Already done in SuperK.

M. Smy

SKI-IV 2013, bb-bar channel Spin—dﬁp.

SKI-IV 2013, Tt channel
SKI-lll 2010, bb-bar channel z
mterpret.

SKI-1l1 2010, W*W" channel
SIMPLE 2011

PICASSO 2012

DAMA/LIBRA 2008 3sigma
IceCube 2012, bb-bar channel
IceCube 2012, tt channel
Baksan 2012, bb-bar channel
Baksan 2012, vt channel
Baksan 2012, W*W" channel

WIMP-nucleon SI Cross section[cm?]

First Result below 10 GeV

10 10
WIMP mass(GeV)

Interpretation

22
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WIMP mass(GeV)

LBNE should do it too.

[ ] [ ]
CDMS_;Si:c58:2013, 99% .
CDMS_:Si:c58:2013, 68% ! u I I
[ DAMAAIBRA no-ion-channeling:--
oGeNT 2010
Il 730kg-days 2011
i d.20£3
5 S M icleol

In argon higher than
water

» Excellent tracking
capability for pointing
back to astrophysical
sources



e Hard to imagine doing just this in LBNE, but we’re going to

Atmospheric Neutrinos

e @ives an “independent” cross check of much of the
neutrino beam physics

get these events whether we like it or not, so we might as
well do something smart with them

Sensitivity (6=VAy’

LAr Detector Simulation
350 kt-yrs

Normal Hierarchy

— Beam Neutrinos
- Combination

- —— Almospheric Neutrinos {}

Mass Hierarchy
Determination

Inverted Hierarchy

Input Parameters
simd,,=0.40, sins, =0.242
1/2(Am,+ A, =42 4x107eV?

—
o™N

AX

(o

(0]

Sensitivity
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LAr Detector Simulation
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Lifetime Sensitivity (90% CL)

Nucleon Decay

e Liquid argon has a high efficiency and low background for
kaon modes

e These are favored by SUSY, and very difficult to see Iin
water Cherenkov detectors!

~ LAr 100 kton
10 HiR - —
-~ LAr 34 kton
* o P | +
7" : ‘fm M’/A
¥ 2 o ... LAr 10 kton o
."/ b o 8 pe %% o’
10 34| / /,// 8 = il + ’/’
L (@\! il o
7 J ."_ w# -~ | \/
ll /,-' o Super-K 260 kt-yrf2013, preliminary) i + +
| / / K —— lyl. V
i . Assuming “.
I f 96.5% effici
R 0.1 events BG/100 ktonyr |
3 s
1033 F | g 1 : : i Decay Water Cherenkov Liquid Argon TPC
o 2 4 6 8 10 12 14 16 18 20 Mode Efficiency Background | Efficiency Background
T p—>vK™ 19% 4 97% 1
p— ptK° 10% 8 47% <
p—=u wtK* 97% 1
n—e K+ 10% 3 96% .
o4 | n—retm” 19% 2 44% 0.8




Outline

e The show so far: the Standard Model works really well,
but... e

e (Go big, go deep!

e A view of the next ten
years of dark matter
searches...

e The case for LBNE

e \What else can you do
with something like the
LBNE far detector?

e The technical challenges that tie all this together

e (Conclusions and perspectives
25



Non-Beam Events

S0, what do you need to see all of these events that
aren’t associated with a beam spill at Fermilab?

e Reliable, efficient trigger based on argon scintillation
e Threshold low enough to see these events
¢ Understanding of backgrounds in this region

e Understanding of detector response in this region

26



Noble Gas Scmtlllatlon

e Argon is an excellent scintillator, g
but, the light is in the vacuum .

ultraviolet

III|III
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e Rayleigh scattering goes like A4
(position information gets
scrambled)

Scintillation Probability Density [nm™]
<> (=]
= 2

S
S
)

180

Wavelength [nm]

e VUV light is strongly absorbed
by nearly everything

e Best bet is usually to turn that
VUV light into visible, with some

fluor, but...

WLS Acrylic, Ar, Ne, Vacuum, ??? PMT, SiPM, APD, ???
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Noble Gas Scmtlllatlon

Argon is an excellent scintillator,
but, the light is in the vacuum
ultraviolet

Rayleigh scattering goes like A4
(position information gets
scrambled)

VUV light is strongly absorbed
by nearly everything

Best bet is usually to turn that
VUV light into visible, with some
fluor, but...

very few of the efficiencies of
these fluors have been measured,
and if they have, often not at the

wavelength you want, or under the

conditions you care about -
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Just started a project to
extend these measurements to
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WLS Plastic for LBNE

Got WLS doped bars that match the LBNE baseline (25 x 6 x 525
mm) last year

e Measured the fluorescence efficiency at the end of the bar resulting
from illumination at three points along its length

e Two bars (one TPB and one BisMSB) are already at CSU for
further tests, some more may be going to Tall Bo.




UV to Vis. Conversion Eff. [%]

WLS Plastic for LBNE

Got WLS doped bars that match the LBNE baseline (25 x 6 x 525
mm) last year

Measured the fluorescence efficiency at the end of the bar resulting
from illumination at three points along its length

Two bars (one TPB and one BisMSB) are already at CSU for
further tests, some more may be going to Tall Bo.

Photodiode Current vs. Propogation Distance, 160 nm Input

E— — I— EEERR. S— — TPB C, 160 nm

W Fl. Eff. [9%] Att. Len [mm]

—e— TPB B, 160 nm

T 3.0 £0.11 449.1 + 40.3

. . l 3.2 +0.039 980.1 +51.8
__________________________________________________________________________________________________________________________________________________________________________ 4.3 +0.12 657.9 + 61.4
g 335032 | 8956 £350.5

Propogation Distance Along Bar [mm]




WLS Plastic for LBNE

Got WLS doped bars that match the LBNE baseline (25 x 6 x 525
mm) last year

e Measured the fluorescence efficiency at the end of the bar resulting
from illumination at three points along its length

e Two bars (one TPB and one BisMSB) are already at CSU for
further tests, some more may be going to Tall Bo.

Photodiode Current vs. Propogation Distance, 160 nm Input

°F I e——— Fl. Eff. [o/o] Att. Len [mm]
e — 3.9 +0.22 1798.9 + 770.6

e 43+017 | 1008.9 £177.5

UV to Vis. Conversion Eff. [9%]

0 R e 3.8 + 021 1195.6 + 347.2

Propogation Distance Along Bar [mm)]



WLS Plastic with Embedded Fibers

e Also bought some wider
panels to experiment with
fiber readout

e Sent a drawing off to the
shop at LBL on January
20.

e Will begin with some 250
nm LED tests once this is

back from the shop.
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Radioactive Backgrounds

e Cosmic ray shower backgrounds (including neutrons)

e Cosmogenic radioactive backgrounds

¢ |ntrinsic rad|oact|ve backgrounds
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E_vent Rate [number/s/MeV]
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Radioactive Backgrounds

e Cosmic ray shower backgrounds (including neutrons)
e Cosmogenic radioactive backgrounds

e |ntrinsic radioactive backgrounds
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Radioactive Backgrounds

e Cosmic ray shower backgrounds (including neutrons)
e Cosmogenic radioactive backgrounds

e |ntrinsic radioactive backgrounds

Sum of Beta Spectra from Cosmogenic Activation at Depth

— e e
o o o

- oy Ly
BOCE

Rate [MeV 'days 'kton]
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107 o
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RatelkeV's ]

Radioactive Backgrounds

e Cosmic ray shower backgrounds (including neutrons)
e Cosmogenic radioactive backgrounds

e |ntrinsic radioactive backgrounds

Energy Deposition Probability per Million ***U Decays Energy Deposition Probability per Million ***Th Decays

12
yJ —

Rate[keV's™]

7000 8000
T [keV]
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Radioactive Backgrounds

e Cosmic ray shower backgrounds (including neutrons)
e Cosmogenic radioactive backgrounds

e |ntrinsic radioactive backgrounds
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Detector Modeling

e There’s already an LBNE simulation and reconstruction package, called
“LArSoft,” but...

e |t’s REALLY interwoven with the specific version of Scientific Linux for FNAL

e The learning curve is quite high because of the very large number of
package dependencies

e 5o, we're talking about promulgating an alternate simulation package that could
be fed into other reconstruction and analysis software...

Software Function Implementation Output/Result
. —3| Beam Simulation EX';E?,{%\/;E}NE
Code exists already T
Truth-level Analysis
Background Studies)
Model
L (eng"rg;e{c‘g'Sngecgfron / BACCARAT | | Detector
photon transport) (GEANT4, NEST) Optimization
Detector Response LArSoft > Detector Design
Physics Object ;
31 Reconstruction PANDORA > Physics Reach




Detector Modeling

e There’s already an LBNE simulation and reconstruction package, called
“LArSoft,” but...

e |t’s REALLY interwoven with the specific version of Scientific Linux for FNAL

e The learning curve is quite high because of the very large number of
package dependencies

e 5o, we're talking about promulgating an alternate simulation package that could
be fed into other reconstruction and analysis software...

Software Function Implementation Output/Result

Existing LBNE

Beam Simulation Software

ll Truth-level Analysis
the last slide... > Background Sudes)
Model
L Material Effects
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Detector Modeling

e There’s already an LBNE simulation and reconstruction package, called
“LArSoft,” but...

e |t’s REALLY interwoven with the specific version of Scientific Linux for FNAL

e The learning curve is quite high because of the very large number of
package dependencies

e 5o, we're talking about promulgating an alternate simulation package that could
be fed into other reconstruction and analysis software...

Software Function Implementation Output/Result
BACCARAT Beam Simulation Exigggsjvgrl_zNE
“Basically a Component-Centric Analog 1 P
Response to AnyThing” | vlinteractions GENIE 50 (Physics Parameter
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Detector Modeling

e There’s already an LBNE simulation and reconstruction package, called
“LArSoft,” but...

e |t’s REALLY interwoven with the specific version of Scientific Linux for FNAL

e The learning curve is quite high because of the very large number of
package dependencies

e 5o, we're talking about promulgating an alternate simulation package that could
be fed into other reconstruction and analysis software...
[ Also a need for “connective tissue” j

software that passes data back and forth Software Function Implementation Output/Result
BACCARAT Beam Simulation Exigggsjvgrl?éNE
“Basically a Component-Centric Analog 1 —
Response to AnyThing” > vinteractions GENE Pl (Physics Paramoter
« Grew out of the LUX simulation framework [Background l Studies)
* Requires Geant4 and ROOT, but e
everythin_g elsg works “batt_eries included! L (engf'rgtyelfgfgfecgfm | BAccARAT | Detector
« Geometries exist for generic, and several — >| photontransport) | (GEANT4. NEST) Optimization
real detectors J
e Plan for ana|ytic detector response Detector Response LArSoft > Detector Design
functions to start, will feed into real _* _
reconstruction software later 31 Hosarsiruoton PANDORA >  Physics Reach




CAPTAIN: Cryogenic Apparatus for Precision Tests of
Argon Interactions with Neutrinos

e Will examine neutron and neutrino

cross sections and event topology VME Crates
e Started with LANL LDRD Funding Work Deck
Top Head
e Now, a multi-institution collaboration Baffle Assembly
e “Portable” liquid argon TPCs being L
built at LANL
TPC
e 500 V/cm drift field
e 3 mm wire spacing e A
ewar Access Ports
e Photon detection system \
(Hamamatsu R8520-500 PMTs)
Liquid Argon Volume
e | ASER system to calibrate on Vacuum Jacket

straight tracks

e Uses MicroBooNE electronics
32



CAPTAIN: Cryogenic Apparatus for Precision Tests of
Argon Interactions with Neutrinos

e Will examine neutron and neutrino
cross sections and event topology

e Started with LANL LDRD Funding

e Now, a multi-institution collaboration Baffle Assembly

VME Crates

Work Deck gﬁi
Top Head 4 \mi—
/3 R

=

e “Portable” liquid argon TPCs CAPTAIN Collaboration

built at LANL

I. Stancu
University of Alabama

e 500 V/cm drift field Z. Djurcic

Argonne National Laboratory

e 3 mm wire spacing

V. Gehman, R. Kadel, C. Tull
Lawrence Berkeley National Laboratory

e Photon detection system | |
H. Berns, C. Grant, E. Pantic, R. Svoboda, M. Szydagis
( H am am ats u R8520_5OO P University of California, Davis

M. Smy
® LAS E R SySte m to Cal I b rate University of California, Irvine
Stralg ht traCkS D. Cline, K. Lee, H. Wang, A. Termourian
University of California, Los Angeles
e Uses MicroBooNE electroniq 0. Prokofiey
Fermi National Accelerator Laboratory

J. Danielson, S. Elliot, G. Garvey, E. Guardincerri, D. Lee,
Q. Liu, W. Louis, C. Mauger, J. Medina, G. Mills,
J. Mirabal, J. Ramsay, K. Rielage, G. Sinnis, W. Sondheim
C. Taylor, R. Van de Water, A. Yarritu
Los Alamos National Laboratory i

S. Mufson
Indiana University

T. Kutter, W. Metcalf, M. Tzanov
Louisiana State University

C. McGrew, C. Yanagisawa
State University of New York at Stony Brooke

C. Zhang
University of South Dakota

R. McTaggart
South Dakota State University
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CAPTAIN: Cryogenic Apparatus for Precision Tests of
Argon Interactions with Neutrinos

e Photon detection system
(Hamamatsu R8520-500 PMTs)

e LASER system to calibrate on
straight tracks

e Uses MicroBooNE electronics

——— VME Crates

Work Deck
o my 1op Head

Dewar Access Ports

e

Liquid Argon Volume

Vacuum Jacket
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CAPTAIN: Cryogenic Apparatus for Precision Tests of
Argon Interactions with Neutrinos

VME Crates

Work Deck

Dewar Access Ports ol
e Photon detection system .,.;.
(Hamamatsu R8520-500 PMTs)

Liquid Argon Volume
e LASER system to calibrate on Vacuum Jacket

straight tracks

e Uses MicroBooNE electronics
32



The CAPTAIN Detectors

Prototype (Mini-CAPTAIN) Full-scale (CAPTAIN)
Cryostat from UCLA holds 1700 L of LAr ¢ 7,700 L cryostat (Diameter = 2.72 m;
(Diameter = 1.5 m; Height = 1.64 m) Height =2.92 m)
TPC has a total of about 1000 wires (3 * TPC has about 2000 wires and a max.
planes) and a max. drift length of 32 cm drift length of 100 cm

Will allow for early development of DAQ
software and provide much needed
operational experience

Slide from C. Grant



CAPTAIN Physics

Start at LANSCE WNR at LANL:

Measure lots of spallation neutron cross
sections, at higher energies than ENDF

Look at neutrino-like interactions, esp.
final state de-excitation gammas

Pion production in liquid argon

Build a library of neutron event

topologies, to help with neutrino energy

reconstruction

Then move CAPTAIN to Fermilab for
neutrino running:

near the Booster Neutrino Beam at
MI-12 (stopped pion v > 60 MeV),

in the NuMI beam line (1 - 15 GeV)

Y (n/p/MeV/Sr)

da/dn A*? (mb/sr)
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1 Pion production for C, Al, Cu and W
]
1. P gz —emmmmemm——
1 P —— ————a
o ,--;_.;;,_;_.‘,.,::’ff:':_._f-. ................... e j
TR -
1
o 30*
A AD°
+ 60*
X BO°
¥ 1300 ()
//"%_' - —_——— e
k__'_.o-“
10 1rvrry R e B e e
0 25 50 75 100 °s 150 175 200

ATOMIC MASS NUMBER



+ +
T U+, C
+ /—\\

+ — { \|
u —e+v, -I-‘\\Ve/,

~ -

. >_<1 0°
“E 4500 _—,
o = —_—
L 4000— Vy (v, 4V 4V 4V)
% Y 2" N . o SNS Ve
= 3500— SNSv,
AN [ vV
S 3000 SNS¥,
@ -
Q 2500 —
»n [ %%
O : ’0‘
= 2000
‘g‘, -
£ 1500
8 — ‘.‘
© 1000} .
S -
o 500 ? -
0 L )

40 50
Neutrino Energy (MeV)

e Then move CAPTAIN to Fermilab for
neutrino running:

e near the Booster Neutrino Beam at
MI-12 (stopped pion v > 60 MeV),

¢ inthe NuMI beam line (1 - 15 GeV)
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Outllne

e The show so far: the
Standard Model works
really well, but...

Go big, go deep!

A view of the next ten years
of dark matter searches...

The case for LBNE

e What else can you do with something like the LBNE far
detector?

* The technical challenges that tie all this together

e (Conclusions and perspectives
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Conclusions and Perspectives

e |t’s easy to think of particle physics as a victim of its own
success...

e We have an embarrassingly successful Standard Model,

and no clear indication of what the scale of new physics
should be!

e But we have a bunch
of hints that the
Standard Model isn’t
the whole story.

e S0 we are embarkmg
on several
expeditions to learn
more about these
hints.

E gL : Roald Amundsen's South Pole party, en route to the pole November 1911 .

;. ] From Amundsen, Reald: The South Pole, Vol. Il, first published by John Murray, London 1912. Photo facing page 32



Conclusions and Perspectives

e Like all expeditions, we are essentially exploring and don’t know what
we’re going to find.

e These expeditions are going to be hard, expensive, and not
guaranteed to pay off in the way we expect.

e But physics has been here before, and we responded by learning
more about the Universe in a way that opened up our understanding

of it! | RosSaverr WATAMIG- S NARES

* Andthe techniquesand | oo ;ﬁ(‘; bt
instruments | have F-. 2 "N
discussed here are 3
strongly applicable LOTS i““’ T~
of physics! :

e This allows us a high
degree of flexibility in the [#
face of uncertain national AR 3 L
priorities and funding. osepm——— | -

i http://www.theodore- rooseve J.L
-‘-_ ‘ﬁg @sevelt in Sao Paolo, examining a snake on the Rondon Scientific Exped
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< iy Thank you for your attention...
o Any questions?

Berkeley Marina at sunset.
Photograph-by R. Coles, July 4, 2013.




