TUTORIAL IN QUANTUM MECHANICS AND THE MIND-BRAIN CONNECTION
                                           Henry P. Stapp 
I have written extensively of the topic of this tutorial. But in order to reach a broad audience I have in many of my more recent works refrained from using equations. That approach makes those works accessible in principle both to readers who are repelled by equations, and also to quantum physicists who are sufficiently familiar with the details of the quantum theory of measurement to be able to fill in for themselves the omitted equations. However, that approach means also that an important class of potential readers is not being optimally reached. This class consists of persons having an engineering or mathematical background, and possessing perhaps even some familiarity with classical physics, but who have little knowledge of quantum mechanics. 
I recently encountered two such readers.I gave them private tutorials, which they found very helpful. This tutorial is essentially the one that I gave to those two engineers.

Coordinate and Momentum Variables.

Consider first a physical system that consists of a single (rigid) bead confined to move on a wire, so that the position of the center of the bead at the instant of time t would be given by x(t), where x is a real number. Suppose that there is no rotational motion, so that the function x(t) specifies completely the positional state of the system at the instant t.

But the bead can be moving, so the full state at time t is given by a pair (x(t), v(t)), where v(t)  is a real number that specifies the velocity of the bead at time t..

For a simple (non-relativistic) case the product of the velocity v(t) of the bead times the mass m of the bead is called the “momentum”: p(t)=mv(t). It is useful to characterize the state of the system at time t by the pair (p(t), q(t)), where p is the “momentum”, and in this case the “coordinate” is q(t) = x(t).
The full physically described state of this system at the instant of time t corresponds to a point (p(t), q(t)) in (p, q) space. This space is called “phase space”. The set of points {p(t), q(t)} for all  t in the range 0≤t≤1 constitutes the phase-space trajectory of the system during this interval of time.
Diagram 1 A trajectory in phase space for a system described by one coordinate variable q and one momentum variable p. (Vertical p axis: Horizontal q axis: And a parabola facing right centered on the horizontal axis)
In this simplest example the variables p and q are one-dimensional variables, In general,
a classical system has many degrees of freedom, and p and q will be variables in the corresponding many-dimensional space. 

Classical Statistical Mechanics.

Quantum mechanics is closely connected, mathematically, to classical *statistical* mechanics. In classical statistical mechanics “our knowledge” of the system is represented by a probability density function ρ(p.q).
Representation of an increment in knowledge.

Suppose our initial knowledge of the system is represented by one particular probability density ρ(p.q).  Suppose we then acquire the added information that the system lies in region R of phase space, but acquire no other information. Then the new state of knowledge is represented by P(R) ρ(p.q), where the action of the operator P(R) on ρ(p.q) is to “project” the function ρ(p.q) onto the region R. That “projection” operation P(R) transforms to zero the value of  ρ(p.q) at all points outside region R, but leave unchanged the value of ρ(p.q) at all points inside R.

Note that P(R) P(R) = P(R). This property entails the “eigenvalue” property that if any  ρ(p.q)  is taken into some constant multiple of itself by the action of P(R), then that constant C must be such that C2 = C. But the only such numbers are zero and one.Thus the eigenvalues of any operator P that satisfies P2 =P are zero and one.  Operators that satisfy this property  P2 =P are called projection operators. 
The set of points (p,q) represent the set of possible physically defined states of our system. Physically definable properties of the system are properties that are defined as functions of p and q.  The subset of systems that possess some specific physically defined property X can be characterized as set of point (p,q) that lie in some region  (or subset) R(X) of phase space. Thus a density function ρ(p.q) that represents a statistical ensemble that possesses a physically definable property X is an eigenfunction  with eigenvalue one of a projection operator P(R(X)) corresponding to property X. If ρ(p.q) is an eigenfunction of P(R(X)) with eigenvalues is zero then property X is definitely false in the ensemble specified by ρ(p.q).
Thus the two eigenvalues, one and zero, correspond to the two answers, ‘Yes’ and ‘No’ to the query “Does property X hold?”  If ρ(p.q) represents our knowledge of the system just before an observation/measurement that reveals only that property X holds then the ρ(p.q) that represents our knowledge just after the observation is P(R(X)) ρ(p.q), where P(R(X)) is the projection operator that corresponds to our finding out that property X holds. 
The probability that we will find that property X holds is the integral of P(R(X)) ρ(p.q) 
over all (p, q)  space divided by the integral of ρ(p.q) over all (p, q) space, in case this latter ρ(p.q)  has not already been normalized to unity.

If we know that a certain measurement/observation on a system will give either the answer that the system definitely does have property X or definitely does not the property X,  then our knowledge of the state of the system after we know that the measurement has been performed, but before we have observed the outcome is 
ρ‘(p.q) = P(R(X)) ρ(p.q) + P(R’(X)) ρ(p.q)., 
where R’(X) is the complement (I-R(X)) of R(X), with I representing the whole (p, q) space.  Notice that ρ’(p.q) is the same as ρ(p.q).  This identity does not generally hold true in quantum mechanics.
Transition to Quantum Mechanics.

In quantum mechanics the states ρ and the projection operators P are represented by matrices. 
In classical mechanics the density function was a function in (p, q) space and the projection operators were projections onto subsets. Consequently, the order of application of two projection operators did not matter: the projection operators all commuted with one another. But if the projection operators are represented by matrices then the order of applying projection operators can matter.

The law of multiplication of matrices asserts that if M is a matrix that has matrix element

Mij in the ith row and the jth column, and N is a matrix with similarly labeled elements Nij , then the matrix called MN has elements (MN)ij  = ∑ Mik  Nkj.where the sum is over the repeated (inner)  index k.    
As the simplest example consider the case of 2x2 matrices. It is convenient to introduce
the four Pauli matrices.

σ0 =  1  0                σ1 =1  0            σ2  = 0  1          σ3 =  0  - i
         0  1                       0 -1                   1  0                    i    0
The square of each Pauli matrix is the unit matrix 1= σ0 , and  σ1 σ2    = iσ3 = - σ2  σ3 , together with its analogs under cyclic permutations (1(2(3(1).

Note that ½(1-σi ) is a projection operator for all i = 1, 2, or 3, but these three operator do not commute.

If ρ represents our knowledge of system before a measurement that will inform us, after our observation of the results, either that property X definitely holds, or that property X definitely does not hold, then the implementation of this measurement is represented by the action

ρ  (   ρ’ = P ρ P + P’ ρ P’,
where P’ =(1-P). 
If the answer to the query “Does property X hold?” turns out to be ‘Yes’.then  

ρ’( P ρ P.

If the answer to the query is ‘No’, then

Ρ’ ( P’ ρ  P’

That is, in quantum mechanics, the reduction to the ‘Yes’ outcome places the ‘Yes’ projection operator P on both sides of the matrix ρ that represents our prior knowledge, and similarly for ‘No’ and P’= (1-P).

By comparing ρ’ to the identity

 ρ = (1-P)ρ(1-P) + (1-P)ρP +  Pρ(1-P) + PρP.
we see that, in contrast to the corresponding classical situation, ρ’ is not generally equal to  ρ. The parts of the prior ρ that have a P on one side but a P’ on the other are absent.
The quantum counterpart of the integral over all (p, q) space is the trace operation.
The trace of any matrix M is the sum of the diagonal elements Mii of M.

Notice that that, for any M and N, 

Trace MN =∑i∑k  Mik  Nki  = Trace NM.

The probability the answer to the query is ‘Yes’ is

Prob (Yes) = Trace P ρ P/Trace  ρ = Trace P ρ /Trace ρ
The probability that the answer is ‘No’ is

Prob (No) = Trace P’ ρ  P’/Trace ρ = Trace P’ ρ  / Trace ρ 

The transformation from the first to the second forms of these two equations 

(i.e., the elimination of a P or a P’) is achieve by using the identity 

Trace MN = Trace NM to move that P or P’ around to the front, where it can be eliminated by using PP=P or P’P’=P’. The second form is similar to the classical formula mentioned above, and ensures that Prob (Yes) + Prob (No) = 1.

.

Measurement and Environment.
Suppose we put behind one slit of a double-slit experiment an apparatus that has a movable element that is initially in a location close to the beam that passes through this slit. Suppose that this element is very light, and is such that if the beam particle passes through this slit, then the element is moved far away from its initial location. We can suppose that the beam particle is very heavy and that its motion will not be significantly affected by the presence of the light element. 
In the absence of the apparatus just described let the probability of finding the beam particle in some small region of the screen is give by

Prob = P ρ P = (ψ1+ ψ2)* (ψ1+ ψ2),
where ψ1 represents the amplitude associated with the path that passes through the first slit, and ψ2  the amplitude associated with the path that passes through the second slit.

The apparatus will now be placed behind the second slit. Now we have a system of two particles, the heavy beam particle and the light apparatus particle. The ψ1 will now be multiplied by initial wave function φ1 of the apparatus particle, whereas the ψ2  will be multiplied by the greatly displaced wave function φ2 of the apparatus particle. If no measurement is performed on the apparatus particle then the associated projection operator in φ space is unity.  Then
Prob = Traceφ (ψ1φ1  + ψ2φ2)*(ψ1φ1  + ψ2φ2).
The Traceφ instructs us to form the inner products of the φ*  factors with the factors φ

These two functions are both normalized (because we have normalized the initial  Traceφ  to unity), and the assumed large displacement means that their inner product is essentially zero. But then the effect of taking this trace is to eliminate the interference term.
Prob =  ψ1* ψ1 + ψ2* ψ2.
Thus the effect of allowing the beam to interact with the light movable element of the apparatus, but not observing the effects of the beam on that movable element, destroys the interference between the two beams. If we later do observe the light moveable to be in one or the other of these two far apart locations then we can say which slit the heavy particle went. Still, without observing the apparatus particle we cannot conclude that the beam particle went through only one slit. Because if we bring the two parts φ1 and φ2
back together and perform a measurement whose observed outcome shows them to in phase, then the interference between the two beams will again be observable
Discussion.
The simple calculations given above are the basis of the quantum theory of measurements. The way the theory is formulated in order to get predictions about future possible increments of knowledge on the basis of information provided by past knowledge, revolves around the idea of human knowledge and specific human actions that are intended to produce new increments of “our knowledge”. Key parts of the theory involve the reduction events described above, which are specified by human choices of specific questions put to nature.
The theory described above of the interactions of systems with their environments raises the question of whether these measurement/observation reduction events ever really actually occur. Of course, we seem to experience “facts”: the definite resolutions one way or the other of certain ‘Yes-No’ questions. .But scientists are generally reluctant to put human beings in a really privileged place in the general scheme of things, and the results exhibited above raise some doubts about whether such reductions ever really occur.

But the direct interpretation of the non-emergence of facts in that treatment is that facts do not emerge from a consideration of the physical aspects of nature alone. In the quantum formalism facts emerge only in association with the actions of a knowing agent!

Quantum theory provides a framework, tested in actual practice, for introducing facts into our understanding of reality, and it does so only in association with the physical actions of knowing agents
But I believe that no rationally coherent explanation of the occurrence of facts concordant with quantum mechanics has been found that removes from the dynamics knowledge carrying agents such as ourselves. I believe a useful, and very possible the only useful, approach should build upon the essential components of quantum theory as it is used successfully in actual practice. This involves an acceptance of the key element of non Neumann-Heisenberg quantum formalism, namely that the generation of facts involves actions by agents that pose questions that nature answers in accordance with the probability rules described above. I follow von Neumann’s idea of pushing the mind-matter interaction up to the level of mind-brain interaction. This does not mean that the only allowed mind-matter interactions in involve human beings, but it means that a main topic of scientific interest is the human-brain case, where the empirical data of science of is directly available on both sides of the mind-brain dualistic description..
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