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Abstract. Robert Griffiths has recently addressed, within the framework of a ‘consistent quantum theory’ that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties of a system that are logically incompatible with some premises of the proof. Hence Griffiths’ argument regarding hidden-variable proofs has a secure base. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method endorsed by his ‘consistent quantum theory’ shows that the cited proof is valid within that very restrictive framework. This necessary existence, within the ‘consistent’ framework, of long range essentially instantaneous influences nullifies the claim made by Griffiths that his ‘consistent’ framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences.   
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                                 Introduction

Robert Griffiths begins his recent paper Quantum Locality [1] with the observation that “The opinion is widespread that quantum mechanics is nonlocal in the sense that it implies the existence of long range influences which act instantaneously over long distances, in apparent contradiction to special relativity”.  He says that the purpose of his paper “is to move beyond previous discussions by employing a fully consistent quantum mechanical approach” to “argue that the supposed nonlocal influences do not exist” and to “establish on the basis of quantum principles a strong statement of quantum locality: the objective properties of an isolated individual (quantum) system do not change when something is done to another non-interacting system.” 
Griffiths’ claims, if valid, would constitute an extremely important achievement: it is difficult to find an issue as central to our understanding of nature as the question of whether or not far-flung parts of the universe are tied together by transfers of information 
over spacelike intervals.

Almost all of Griffiths’ paper is directed against arguments for nonlocality that are based on the concept of hidden variables: the paper is directed primarily against arguments that have stemmed directly from the works of John Bell pertaining to local deterministic and local stochastic hidden-variable theories. However, the local stochastic hidden-variable theories have been shown by Stapp [2], and also by Fine[3], to be essentially equivalent to local deterministic hidden-variable theories. But these latter theories are theories of an essentially classical-physics type, with statistically distributed unobservable hidden variables. Such theories could include Bohm’s pilot-wave model if it were stripped of its nonlocal-interaction feature, which is, however, essential to its structure and its success, particularly in applications to the EPR-type correlation experiments that are the basis of the arguments for nonlocal influences. 
In view of this basically classical character of the hidden-variable theories, it is obviously going to be extremely difficult to deduce, in any logically sound way, the properties of a quantum-mechanical world from the properties of hidden-variable models: How can one pass, logically, from fact that one needs to add nonlocal influences to any essentially classical model, in order to fit the quantum predictions, to conclusions about the quantum mechanical universe itself? The logical difficulty in deriving such a conclusion is that the hidden-variable premises contain classical assumptions that are incompatible with basic quantum concepts. In view of this basic logical problem, it is clear that a search for a strictly rational proof of the existence within the quantum universe of nonlocal influences should focus on arguments that do not use hidden variables; arguments that are not based on the failure of local hidden-variable theories! Griffiths nevertheless confines his attention mainly to arguments for nonlocality based on the failure of local hidden-variable theories.
Commenting upon this severe curtailment of the scope of his arguments Griffiths laments that “In an argument of modest length it is impossible to deal with all the published arguments that quantum theory is beset with nonlocal influences… In particular we do not deal with …Stapp’s counterfactual arguments.  …the problems associated with importing counterfactual reasoning into the quantum domain are treated in some detail in Ch. 19  of [4], and the conclusion is the same: there is no evidence for them.” 
In this paper I shall show that the methods that Griffiths developed lead, rather, to the opposite conclusion. His “fully consistent quantum approach” validates the counterfactual argument that he cites, but does not analyze. The validated nonlocal influence required by the assumed validity of certain predictions of quantum theory is fully concordant with the basic principles of relativistic quantum field theory, which ensure that the phenomena covered by the theory can neither reveal a preferred frame associated with these influences, nor allow “signals” (sender-controlled information) to propagate faster than the speed of light.
                   Counterfactuals in Physics

The word “counterfactual” engenders in the minds of minds of most physicists a feeling of deep suspicion. This wariness is appropriate because counterfactuals, misused, can lead to all sorts of nonsense. On the other hand, the argument presented here for the need, in a universe in which the predictions of quantum mechanics hold, for some faster-than-light transfer of information requires considering in a single logical analysis the predictions of quantum theory associated with four alternative possible measurements. Probably the only logically sound way to do this, without bringing in hidden-variables, is to use counterfactuals. This can be done in a completely logical and rational way. Indeed, Griffiths takes pains to show how valid counterfactual reasoning is to be pursued and validated within his “consistent quantum theory”. His conclusion pertaining to valid counterfactual reasoning is the basis of the present work.
Griffiths begins his discussion of counterfactuals [4, p. 262] by noting that “Unfortunately, philosophers and logicians have yet to reach agreement about what constitutes valid counterfactual reasoning in the classical domain.” It is certainly true that philosophers fall into disputes when trying to formulate general rules that cover all of the conceivable counterfactual situations that they can imagine, in a classical-physics, and hence deterministic, setting. But such a setting is strictly incompatible with the notion of “free choices” that underlies the idea of alternative possibilities. But what will be examined here is only a very simple special case, one in which the quantum mechanical laws (predictions) themselves specify all that we need to know about the outcomes of the contemplated measurements, and in which alternatives arising from alternative possible choices become theoretically possible because of the allowed entry of elements of chance---and possibly even of extra-physical mental causes---into the dynamics of the choices of which measurements will be performed. 
As a brief introduction to the subject of counterfactual statements, consider the following simple classical example: Suppose an electron that is moving in some fixed direction with definite but unknown speed is shot into a region in which there is an electric field E that is known to be uniform at one or the other of two known values, E1 or E2, with E2 twice E1. And suppose two detectors, D1 and D2, are placed so that one can assert, on the basis of the known laws of classical electromagnetism, that “If E is E1 and detector D1 clicks, then if, instead, E is E2, the detector D2 would have clicked.”  Under the appropriate physical conditions this can be a valid theoretical assertion, even though it cannot be empirically verified, since one can not actually perform both of the contemplated alternative possible experiments. The postulated physical laws allow one to infer from knowledge of what happens in a certain performed experiment what would have happened if, instead, an alternative possible measurement had been performed, all else being the same. The concept “if, instead,” becomes pertinent in a quantum context in which this choice between E1 and E2 is controlled by whether a certain quantum detection device “clicks” or not. This choice of which measurement is performed is then not determined by the known quantum mechanical laws. Whimsical human choices might also depend on aspects of reality not fixed by the known laws of orthodox quantum mechanics.
Consider in this light the following formulation of a putative argument for the need for faster-than-light transmission of information.
Suppose in each of two space-like separated regions, L and R , with L earlier than R (in some frame) there will be performed one or the other of two alternative possible measurements, with each measurement having two alternative possible outcomes. The choices between alternative possible measurements are to be specified in way that can be considered, within the quantum framework, to be “free choices”: they are not specified by any known law or rule.  The question at issue is whether, under these conditions, it is possible to satisfy the orthodox predictions of quantum mechanics in the four alternative possible measurement situations, without allowing information about the free choice made in either region to be present in the other region. 
Notice that the only things that enter the argument are the choices of which macroscopically described measurement is performed in each region, and the predictions of the theory about which macroscopically described outcomes then appear. No microscopic quantities or properties enter into the argument. 
         Griffiths’ Consistent Quantum Theory  
The proof in question of the need for faster-than-light transfer of information was given in [5], and repeated in the last two pages of [6].  But the purpose of this paper is not to recall old results. It is rather to comment upon Griffiths’ “consistent quantum theory” approach, which has attracted interest due to references to it by Murray Gell-Mann and Jim Hartle (who, in contrast to Griffiths, use it in a “Many-Worlds” context), and in particular to show that the counterfactual argument cited but not analyzed by Griffiths is, contrary to Griffiths’ implicit claim, validated within his “consistent quantum theory” framework, as currently defined. This validation of the need for faster-than-light transmission of information within the “consistent quantum theory” framework constitutes a serious failing of that approach, insofar as it claims to be superior to the orthodox von Neumann approach because it does not lead to nonlocal influences. 

I begin by describing Griffiths’ general theory and its relationship to the orthodox quantum theory of von Neumann, to which it is contrasted.

,
“Measurements” play a very important role in orthodox quantum mechanics. But they are not generated by the quantum evolution in accordance with the Schroedinger equation. The physical act of performing a measurement on a quantum system and getting a positive empirical outcome is represented in the quantum mathematics by the action of a corresponding projection operator on the prior quantum state. Generalizing from the concept of a measurement at one single time one arrives at the concept of a “framework”, which involving a sequence times {t0, t1, t 2 , …, tf},  with   ti+1 > ti   and for each of these times ti a set of orthogonal projection operators that sum to unity . 
A “history” is a time-ordered set of (Heisenberg Picture) projection operators with one projection operator selected from the set at each time ti . The different alternative possible “histories” labeled by index k are mapped (by Griffiths chain operator) into operators represented by the symbols Fk. For each Fk the hermitian conjugate of Fk is represented by Gk.  Let “rho” represent the initial density matrix. Then the set of histories is called a “consistent” if and only if Trace (Gg rho Fk) is zero when g is different from k. This condition is automatically satisfied if, as in the case to be examined here, all of the occurring projection operators, in context, commute. In our case, every nonzero Fk can be represented by a trajectory that moves from left to right on a temporal tree graph that starts from a single line on the far left, and ends at one of sixteen possible lines on the far right, with each non-final segment of the tree graph having a binary branching into two lines at its right-hand endpoint, which occurs at one of the four times ti  at which a choice (of a measurement or an outcome) is made. This leads to sixteen lines on the far right of the tree graph. Purely for simplicity, one can take the evolution between measurements to be represented by the unit operator.
Griffiths’ procedure for checking the validity of counterfactual reasoning is to draw a tree graph that starts at the far left with a single horizontal line that represents the original (in our case, Hardy) state. In our case this line bifurcates at time t1 into an upper branch labeled by ML1, and a lower branch labeled by ML2. These two branches represent the two alternative possible observer-selected settings of the device in the earlier region L. Then at time t2 the line ML1 bifurcates into an upper branch labeled by ML1+, and a lower branch labeled by ML1-, and the branch ML2 bifurcates in similar way into ML2+ and ML2-. These branches represent the two alternative possible states of the outcome indicator (pointer) on device ML set at state of readiness ML1, and, alternatively, on the device ML set at state of readiness ML2. At time t3, each of these four branches bifurcates  into an upper branch MR1 and a lower branch MR2, and then at time t4 each of the eight branches bifurcates into a plus and a minus branch, giving one branch for each of the sixteen orthogonal states of the pair of apparatuses together with their respective pointers. This graph represents one single framework, within which the entire argument can be carried out, thereby satisfying Griffiths’ crucial “single framework rule”. Due to the orthogonality of the states representing the alternative possible device settings and of the alternative possible pointer locations in each region, and the orthogonality of the apparatus-pointer “outcome” states in the two regions L and R, Griffiths’ condition of “consistent histories”  is satisfied. Thus we can proceed to check Griffiths’ condition for valid counterfactual reasoning.

The pertinent counterfactual statement has the form: 

SR: “If MR1 is performed and the outcome MR1+ appears, then if, instead of MR1, rather MR2 is performed then the outcome MR2+ must appear.”
If the initial state is the Hardy state, then Hardy [7] gives four pertinent predictions of quantum theory: 

S1: If ML1 and MR1+, then ML1+.                                       [Hardy’s (14.a)]
S2: If ML1+ and MR2, then MR2+                                        [Hardy’s (14.c)]
S3: If ML2+ and MR1, then MR1+.                                       [Hardy’s (14.b)]
S4: If ML2+ and MR2, then sometimes MR2-.”                    [Hardy’s (14.d)]

[Connection to Hardy’s notation:

  Hardy’s   U1 = 0        Stapp’s  ML1+   

                  U1 = 1                      ML1-

                   D1 = 0                     ML2-
                   D1 = 1                     ML2+
                   U2 = 0                      MR1-

                   U2 = 1                      MR1+

                    D2 = 0                      MR2+
                    D2 = 1                      MR2-
Statement S1  follows from Hardy’s (14.a), which entails that, in the Hardy state, if

ML1 and MR1 are performed and outcome MR1+ (U2  = 1) appears, then outcome  ML1+(U1 = 0) must appear---since ML1- (U1 = 1) cannot appear. Statement S2 follows from (14.c), [If MR2 and ML1 are performed and MR2 has outcome -, then ML1 must have outcome -: Use the fact that A(B is equivalent to NotB(NotA. Statement S3 is a direct translation of Hardy’s (14.b), and S4 follows from Hardy’s (14.d), which asserts that the probabability that both ML2+ (D1 = 1) and MR2- (D2 = 1)  appear is (with nonzero A and B) nonzero.]  
It is a straightforward exercise to show that if the initial state is the Hardy initial state, and if it is assumed that an outcome that occurs and is recorded in the earlier region L is left unchanged if instead of MR1 rather MR2 is performed later in R, then the statement

SR is true if ML1 is performed in L but is false if ML2 is performed in L: The truth of the statement SR about possible happenings in R depends upon which experiment is “freely chosen” in the region L, which is spacelike separated from region R
Griffiths’ validation of SR in the ML1 case follows from the fact that if the choice in L is ML1 then starting on branch MR1+, the quantum prediction S1 justifies the move back to the “pivot point” where ML1+ branches into MR1 and MR2. Then S2 justifies the move forward to MR2+. 
But if the choice of measurement in L had been ML2 then sometimes the outcome ML2+ appears. But under that condition, if MR1 is chosen on the right, then S3 implies that the outcome on the right must be MR1+.  But in this case where MR1+ must appear, if, instead, MR2 is chosen in R then, virtue of S4, MR2+ sometimes does not appear, and we have a counter example to what was proved true in the case that ML1 was chosen in L. All parts of the argument are represented in the tree graph that corresponds to a “single framework”, in accordance with Griffiths very restrictive “single framework rule”.
Before submitting this paper, I sent it to Griffiths to find out his reaction to it. He said that:  “I think you have spotted a defect in my book CQT, in that I should have stated that in terms of the sorts of counterfactual reasoning that I use in discussing Hardy’s paradox one needs a “firm” pivot. I looked through my section on quantum counterfactuals and also discussion of Hardy’s paradox, and I think every place I actually discuss quantum systems I do use a firm pivot, so with that qualification in place the arguments in my book go through. So I have added this matter to a list of revisions should I ever get around to revising CQT. As I told you, this is not what I regard as the strongest part of the book.”
This issue of a “firm” pivot arises in connection with the first core statement in my proof:
“If measurements ML1 and MR1 are performed and MR1+ appears, then if instead of

MR1 rather measurement MR2 were to be performed then the outcome appearing in R 
must be MR2+.”
The truth of thus core statement is unambiguously entailed by the assumed validity of

the predictions of quantum theory in this Hardy experiment, together the “locality” requirement that we are trying to maintain, which entails that a change in the free choice made in the later region R cannot alter what has been observed and recorded in the earlier region L, which is spacelike separated from R. 
Griffiths does not question that the correctness of this assertion follows from these assumptions.  But laws of quantum mechanics do not entail that 
“If measurements ML1 and MR1 are performed and MR1+ appears, then
  if measurements ML1 and MR1 are performed then  MR1+ must appear.

This extra requirement is the mentioned “firm” pivot requirement. It was satisfied in the particular counterfactual cases studied by Griffiths, but is not satisfied under the conditions of in my proof.  It holds automatically in a deterministic theory, but generally not in quantum theory. Indeed, in his book [4, p. 267] Griffiths say, with respect to this very point: “But in a world that is not deterministic there is no reason why the random events should not have turned out differently.”  
The “firm” pivot condition must indeed hold in a classical-physics deterministic universe, and it did happen to hold in the counterfactual cases that he (Griffiths) had examined. But there is, as he says, no reason why it should hold in the quantum universe. And he advances no reason why this demand for firm pivots should hold in a quantum universe. The fact that the cases he previously examined had this deterministic aspect built in is not a rational reason to demand it hold in the quantum universe.
Incidentally, the issue of ‘firm pivots’ sheds additional light on the incompatibility of elementary predictions of quantum theory with the precepts of local realistic (i.e., hidden-variable) theories of the kind pursued by J.S. Bell and his followers. As mentioned before, the existence [2,3] of a local hidden-variable stochastic theory entails the existence of a local deterministic theory that accounts for the same data. But a local deterministic hidden variable theory has ‘firm pivots’: the ‘and’ premise places a condition on the hidden variables that entails the ‘must’ conclusion. This is a general property of local hidden-variable models, prior to the consideration of any predictions of quantum theory. But this ‘firm pivot’ property is contradicted already by the first two of the predictions, S1 and S2, of quantum theory in the Hardy experiment: the usual four predictions are not needed. These considerations reinforce the conclusion that the local hidden variable theories are essentially disguised forms of classical determinism, and their incompatibility with the predictions of quantum theory in no way proves that quantum mechanics itself involves faster-than-light transfer of information. Griffiths arguments reinforce that conclusion.
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