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1. Introduction.
This is a brief account of a theory of presentiment/retrocausation in the context of a proposed binocular rivalry experiment. According to orthodox (classical or quantum mechanical) physics there can be no retrocausal effects. In order to accommodate such effects one must go beyond/outside orthodox theories. The simplest way to modify QM in a way that would permit such effects is to accept the hypothesis of Eccles (1987) that mental involvement (mental effort or emotion) can alter the orthodox statistical weighting factors associated with the observed outcomes of our experimental probing actions.
_______________________________________________________________________

John C. Eccles, Do mental events cause neural events analogously to the probability fields of quantum mechanics? Proc. Roy. Soc. London 227, 411-428 (1987). 
The way in which such a change in the orthodox statistical rules leads to retrocausal-type causation will be explained first in the context of the normal proof that orthodox QM entails the “no-faster-than-light-signaling” property.
Suppose the initial density matrix of a system is Rho. Suppose an experiment is performed whose ‘Yes’ outcome is associated with the projection operator P, and whose ‘No’ outcome is (therefore) associated with the projection operator P’= (I-P), where I is the unit operator/matrix.

A general quantum mechanical rule asserts that the density matrix Rho(Yes) after an outcome ‘Yes’ has occurred is
Rho(Yes) = (P Rho P)/Trace (P Rho P),
and that the probability of observing this ‘Yes’ outcome is

Prob(Yes) = Trace (P Rho P)/ Trace Rho. 
Similarly, this quantum mechanical rule asserts that the density matrix Rho(No)  after an outcome ‘No’ has occurred is

Rho(No) = (P’ Rho P’)/Trace (P’Rho P’),
and that the probability of observing this ‘No’ outcome is    

Prob(No) = Trace  (P’ Rho P’)/Trace Rho.
The density matrix Rho(Yes or No) that represents the condition that this Yes/No measurement has been performed, but that no knowledge is available as to whether the outcome was ‘Yes’ or ‘No’, is 
Rho(Yes or No) = Rho(Yes) Prob(Yes) + Rho (No) Prob(No)
                           = [(P Rho P) + (P’ Rho P’)]/Trace Rho.
Suppose one’s knowledge of a system is represented by Rho(Yes or No). Let P2 be an operator that commutes with P, and hence with P’. Then the general quantum mechanical rule used above asserts (in more detail) that: If one (actually) performs upon the state represented by Rho(Yes or No) the probing action whose positive outcome ‘Yes2’ corresponds to finding the quantum state to be in an eigenstate of P2 with eigenvalue +1, then the density matrix if the ‘Yes2’ outcome occurs is 

Rho(Yes2, Yes or No) = (P2 Rho(Yes or No) P2)/Trace (P2 Rho(Yes or No) P2),
and the probability of obtaining the outcome ‘Yes2’ is

Prob(Yes2, Yes or No) =Trace (P2 Rho(Yes or No) P2)/ Trace Rho(Yes or No).
By using the expression for Rho(Yes or No) given above, and the  fact that P2 commutes with P, and by using the property of the Trace operation that, for any A and B,

Trace AB = Trace BA,  and also the defining property of projection operators, PP=P and

P’P’=P’, one finds that 

Prob(Yes2, Yes or No)= 
Trace [P2 (P Rho P + P’ Rho P’) P2]/ Trace Rho Trace Rho(Yes or No) 
= Trace [ P2(Rho (P +P’)) P2]/Trace Rho Trace Rho(Yes or No)
= Trace  (P2 Rho P2)/Trace Rho Trace Rho(Yes or No)
= Trace (P2 Rho P2)/ Trace Rho.
(The omitted denominator factor Trace Rho(Yes or No), is unity.) This probability is independent of P: the dependence upon P has cancelled out. This cancellation of the P dependence is the key point in all the arguments that follow.
2. Extension to the two-system case.
We now extend this calculation to the cases of physical interest, in which there are two systems, with P acting on the first system and P2 acting on the second system. 

Suppose that Rho, P, P’, and Trace are associated with a system that is one component of a larger system that is a combination (a tensor product) of two systems that may have interacted in the past, but that after that earlier interaction have evolved as two dynamically independent systems. Suppose P and P2 act on the first and second systems, respectively, so that P ( PxI and P2 ( IxP2, where x means tensor product. Let RHO be the density matrix in the two-system space, and let TRACE be the trace operation in the full two-system space. Thus if the elements of an orthonormal basis in the two-system space are labeled by the pair (i, j), where i labels a complete set orthonormal basis vectors in the first space and j labels a complete set of orthonormal basis vectors in the second space, then 

Trace M(i, j: i’, j’) = Sum over i of M(i, j: i. j’)

is a matrix in the space corresponding to the second system. Similarly, 

Trace2 M(i, j: i’,j’) = Sum over j of M(i, j:i’, j),
is a matrix in the space corresponding to first system, and

Trace Trace2 =Trace2 Trace = TRACE.

The density operator Rho2(Yes or No) in the second space (the space in which P2 acts) that gives expectations associated with P2 if the P space (Yes or No) measurement has been performed, but no information about the outcome is available, is 
Trace [(P RHO P) + (P’ RHO P’)]/TRACE  RHO 
= Trace RHO/TRACE RHO 
= Trace RHO/ Trace2 Trace RHO 

= Rho2(Yes or No).
This matrix Rho2(Yes or No) is a density matrix in the space of the second system. Although it was originally defined in a way that depended upon P, it is independent of P.
The important result here is that the density matrix Rho2(Yes or No) (which is the density matrix in the space associated with the second system when the measurement associated with the operator P acting in first system is performed, but no knowledge of the outcome is available) is completely independent of P. Thus the experimenter’s choice of which measurement is performed on the first system has no effect at all on the QM predictions pertaining to the second system. That means that the experimenter acting on the first system cannot, by his choice of which probing action he initiates upon the first system, convey any information to the experimenter acting upon, and observing, the second system. This result is the “no-faster-than-the-speed-of-light” signaling property. 

If the outcomes of the measurements on the first system were known to the experimenter who acts upon and observers the second system, then this argument would fail: it was important to the argument that we summed the contributions corresponding to the ‘Yes’ and ‘No’ possible outcomes of the observations on the first system, and that, moreover, we summed these two contributions with exactly the weightings/probabilities predicted by QM.
If, in line with the Eccles hypothesis, the QM weightings and are shifted according to 

Trace (P RHO P)/Trace RHO ([(Trace (P RHO P)/Trace RHO) + E] 

and
Trace (P’ RHO P’)/Trace RHO ([(Trace (P’ RHO P’)/Trace RHO) –E],
then, for non-zero E, the predictions for outcomes of probing actions on the second system would depend upon P, and hence upon which experiment was performed on the first system. Then the “no-FTL-signaling property” would fail: certain predictions about observations on the second system could depend upon which experiment was performed on the first system.  
Insofar as there is no empirical evidence for any significant failure of the “no-FTL-signaling” property, we can say that the empirical evidence indicates that E is very small, and consistent with zero, at least in this no-FTL-signaling context.
To maintain the general requirements that probabilities be non-negative and no larger than unity there would be limits on the size of E. For example, if Trace (P RHO P) were equal to Trace RHO then E would necessarily be non-positive, but not less than minus one.   
3. Presentiment.
Our interest, both above and in what follows, is in cases in which the two systems have become correlated by interactions that occurred at some time prior to the time T of the occurrence of our experiences, which is the time T at which abrupt changes in the density matrix can occur. But we are now interested in effects in the human brain and body, in which there are strong interactions between the systems of primary interest and their environments. The effect of these interactions is to reduce the density matrices of interest to essentially diagonal form. In this case, all of the relevant projection operators will commute.
As the simplest case, suppose both spaces are two dimensional, so that i is either plus one or zero, and similarly for j. Let the two basis vectors for the first system be |1> and |0>,

with P|i> =i|i>, and let the two basis vector for the second system be |1) and |0), with
P2|j) = j|j). Considered as operator in the full space, P |j) = |j), and P2|i> = |i>.

One conceivable density matrix associated with P and P2 is

RHO(P, P2) = ½(P P2 + P’ P2’).
This RHO(P, P2) is a 4x4 diagonal matrix with values ½ for the |1>|1) and |0>|0) elements, and values zero for the other two elements. Applied to the presentiment experiment, one can take the first system to be the aspect of the brain that corresponds to possible horror-related experiences of the subject, with |1> corresponding to a feeling of horror, and |0> corresponding to no feeling of horror. The second system is the recording element in an apparatus that interacts with the subject’s body just before t=0 and establishes during that interval a correlation between some particular activity of the brain with a record of the skin conductance, with |1) corresponding to increased skin conductance and |0) corresponding to no such increase, relative to a normal base-line value. This density matrix RHO(P, P2) represents a conceivable contribution to the t=0 density matrix of the brain-plus-record system in which the brain state associated with a potential for an experience of horror is correlated to the quantum state of the recording element of the conductance detection-and-recording apparatus.  
Let RHO(I, P2) be obtained from RHO(P, P2) by replacing P by I. It represents a contribution to the density matrix that depends on P2 but not on P. Let RHO (I, I2) be defined analogously. 
Suppose the brain-record system at t=0, at which time the connection of the record to the brain is terminated, is represented by
RHO(α, β, γ) =  α RHO (P, P2) + β RHO (I, P2) + γ RHO (I, I2)
with positive parameters α, β, and γ, satisfying  α + β +  γ =1.
This density matrix represents an initial mixture of various potentialities for what might happen under various possible conditions. 
We are going to consider, for the initial condition at t=0 specified by RHO(α, β, γ), the expectation value (average value observed by the observer, who observes the record at a time T much greater than t=0) of the skin conductance (P2 –P2’) for two different conditions. In the first condition the random choice, at t slightly later than t=0, is to present the horrible picture, and the effect of that horrible picture is to activate an automatic brain mechanism that causes to be posed at time T the von Neumann process 1 query “Is a horrible experience happening?” [See Schwartz et. al. page 13 for William James’s assertion that the “no object can catch our attention except by the neural machinery”.]  
____________________________________________________________________

J.M. Schwartz, H.P. Stapp, & M. Beauregard, Quantum physics in neuroscience and psychology: a neurophysical model of mind-brain interaction. Phil. Trans. R. Soc. B doi:10.1098/rstb.2004.1598
--------------------------------------------------------------------------------------------------------

If the horrible picture is presented, and causes this query to be posed, but no account is taken of the observed outcome of that query. Then the prediction for the expectation value of (P2-P2’) is
<(P2-P2’)>H = TRACE (P2-P2’) [P RHO(α, β)  P + P’ RHO(α, β)   P’].
(The omitted denominator, TRACE RHO(α, β), is unity) On the other hand, if the randomly chosen picture is neutral, and hence no (pertinent) query is generated, then the expectation value of (P2-P2’) is simply
<(P2-P2’)>N =  TRACE (P2-P2’) RHO(α, β) . 
[I have assumed here---for the present purposes of exhibiting the effects upon the skin conductance, measured just before t=0, of presenting at t>0 the horrible picture---that the effect of presenting at t>0 the neutral picture is negligible: that presenting the neutral picture will result in the automatic brain process’s producing no query pertaining to the experience of horror. This simplifying assumption is not essential: it merely focuses attention on the effects of the experiencing of horror. Also, because P2 and P2’ commute with P and P’, the order in which the probing actions are performed on the two separated systems does not matter. The evolution of part of the quantum mechanical state of the apparatus that is carrying the record of the value of skin conductance (obtained by interactions occurring just before t=0 ) is assumed to be completely separated between times t=0 and t=T from what is going on in the brain. Hence the acts of posing the queries corresponding to the operators (P2-P2’), P, and P’, which is what the quantum predictions refer to, can all be taken to occur at the same time T, for example.]
Because P2 and P2’ commute with P and P’, the values of <(P2-P2’)>H and <(P2-P2’)>N given by these orthodox formulas are equal: the predicted value of (P2-P2’) does not depend upon whether the randomly selected picture was horrible or neutral. However, if the Eccles hypothesis is correct, in the sense that the quantum mechanical probability rules can be influenced by the quality of the experience, then the statistical weightings in the case that the question “Is a horrible experience happening?” is posed can be different from what orthodox quantum mechanics predicts. In particular, if the outcome is a sufficiently horrible experience then the statistical weighting could be different from what the quantum mechanical rules specify. In order to keep the sum of the probabilities of the alternative possibilities equal to unity, we take the probabilities to be altered in the way determined by the rules specified earlier, namely
Trace (P RHO P)/Trace RHO ([(Trace (P RHO P)/Trace RHO) + E] 

and

Trace (P’ RHO P’)/Trace RHO ([(Trace (P’ RHO P’)/Trace RHO) –E],

with RHO now equal to RHO(α, β, γ).  Thus the expectation value  <(P2-P2’)>H gets shifted to
<(P2-P2’)>HE = TRACE (P2-P2’)
            [(P RHO(α, β, γ) P)(1  + E Trace RHO(α, β, γ)/Trace (P RHO(α, β, γ) P))

        + (P’ RHO(α, β, γ) P’)(1  - E Trace RHO(α, β, γ)/Trace (P’ RHO(α, β, γ)  P’))]       
But the value of <(P2-P2’)> N does not get shifted, because no shift-producing experience is occurring. Thus, by using the fact that TRACE RHO(α, β, γ) equals unity, one obtains
<(P2-P2’)>HE   - <(P2-P2’> NE
= E TRACE (P2 –P2’)
        [P RHO(α, β, γ)P/Trace P RHO(α, β, γ)  P) 
        - P’ (RHO(α, β, γ))P’/Trace P’ RHO(α, β, γ) P’)]

=2Eα.

This result says that if the Eccles-effect parameter E is non zero, and if the initial t=0 density matrix RHO(α, β, γ)  has a component of nonzero weight α, then the expectation value (say at time T) of the skin conductance observable (P2-P2’) (which is the observable corresponding to the record of a physical measurement that occurred at t<0) would be correlated to the random choice made at the later time t>0 between the horrible picture and the neutral one.  Thus non-zero values for both E and α would allow the random choice to present a horrible picture at t>o to “effectively cause” a “measurable effect” at t<0.  
This result arises from essentially the same considerations that would allow faster-than-light signaling if the Eccles-effect parameter E were nonzero. But the effect is likely to be small even if E is not small, because α, which measures the part of the pre-existing density matrix in which there is a strong correlation between skin conductance and horrible experience, is likely to be small. In particular, there would seem to be a very large part of the t=0 density matrix RHO that simply has nothing to do with correlations between horrible pictures and skin conductance. These parts enter our calculations via the parameters β and γ. If these parameters are large then α must be small. 
This expected smallness of α motivates looking for the analogous retrocausal effect in binocular rivalry, where the steady input from the “face” eye is producing a strong tendency to produce a “face” experience. This strong tendency should be associated with a correspondingly strong activation of the face/fusiform region. Thus the binocular rivalry analog of α might be large.
4. Binocular Rivalry.
In the proposed binocular rivalry experiment a picture of a “house” is presented continuously to one eye, and a picture of a “face” is presented to the other eye, with constant face luminosity up to a time t=0. At time slightly later than t=0 a random choice is made either to “Do nothing” (continue with the constant luminosity) or, alternatively, to “Flash the face”. To “Flash the face” means to increase, rather abruptly, the luminosity of the face for a brief period, and to then return the luminosity its prior value. The variable (P2 –P2’) is the record of the values of a measurement during a brief interval slightly prior to t=0 of the brain signals from the “face/fusiform” region of the brain. This record is dynamically disconnected from the brain just prior to t=0. 
The subject presses a button if and only if he sees a house. During some preliminary runs one plots the histogram of the time intervals during which the button is held down in cases when there is no flash. This is the “normal” histogram, which is expected to peak somewhere around 2 to 3 seconds. During the preliminary runs the timing of the t=0 point relative to the start of the run (signaled by the pressing down of the button) is adjusted, along with the abruptness and magnitude of the flash, so that the histogram for the cases in which the flash does occur has a significant, but not overwhelming, “bump” above the “normal” histogram, with this bump centered somewhat earlier than the peak of the “normal” histogram. 
Orthodox physics predicts that there will be, over the long haul, no dependence of (P2-P2’), which is the result of a t<0 measurement, upon whether the Flash or No-Flash option was (randomly) selected at t>0. This result follows from computations essentially the same as those given above for the “faster-than-light signaling” and “presentiment” cases. But, as in those cases, this result will generally fail to hold if the Eccles parameter E is nonzero. However, in this binocular rivalry case, the initial (t=0) density matrix RHO should have a large component that will, even if the flash does not occur, lead to an experience of a face that will be strongly correlated to the earlier “face/fusiform” activity. This expected correlation between earlier “face/fusiform” activity and the later experience of a face can be checked out if the experiences are recorded. In the first (main) experiment, which was to check for evidence of a retrocausal effect, absolutely no reference was made to which experiences were occurring in the main experimental run. That was crucial. But a later checking of which experiences occur can verify the expected correlation between earlier “face/fusiform” activity and the later appearance of a face. This measures the analog of the parameter α of the presentiment case.  
The above description of the binocular rivalry case was simplified in order to exhibit the main point. It was simplified by assuming, in the quantum mechanical computation, that all the experiences, hence all the quantum events, occurred at time T. It was also assumed that this experience would be a “face” experience if the face was flashed, but either no experience, or a neutral experience with no pertinent Eccles-type effect, if no face was flashed. But the binocular rivalry situation is actually more complicated than that. There is, during the run, a sequence of “house” experiences, followed normally in the end, by a “face” experience. The “Flash the face” presentation merely causes the face experience to occur earlier than normal in many of the trials.  Thus, in order to treat the simple binocular rivalry case accurately, one would need to do a more complicated analysis. 
However, one can, instead, modify the protocol to bring it more in line with the simple calculation. 
[I propose that, three seconds after the pressing of the button that indicates the appearance of the “house”, a random choice be made between a ‘Yes’ and a ‘No’. In the ‘Yes’ cases the luminosity of the presented “face” will be abruptly increased and held in place for, say, 400ms, and then all luminosities in both eyes dropped to zero; In the ‘No’ cases the “face” luminosity will begin to gradually drop to zero, and, as in the “Yes” cases, all luminosities will be dropped to zero after 3.4 seconds. The abruptness of the increased “face” luminosity in the ‘Yes’ should be enough to cause the “face” to appear roughly half the time. (May 19, 2009)]
A failure to see a significant effect in this binocular rivalry setting would indicate the probable inadequacy of this simple quantum theoretical attempt to account for the reported presentiment effects. 
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