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The proof of an equivalence theorem was published in Epistemological
Letters of June 1978, and delivered at a colloquium on Bell’s theorem held
March 3-4, 1978, attended by J.S. Bell, A. Shimony, B. D’Espagnat, and
myself. It pertains to the need for faster-than-light effects in a physical world
in which some simple predictions of quantum theory are valid. The
following text makes electronically available a photo-copy of the parts of
that article pertaining to this proof. Section one introduces a notional
framework for a typical Bell’s theorem experiment. A sequence of n pairs of
particles is considered. All pairs are prepared in the same quantum state V.
The two particles of each pair are directed to two different space-time
regions that are space-like separated from each other. In each region an
experimenter freely chooses, and then performs, one or the other of two
alternative possible measurement procedures on the sequence of n particle
entering his region. Each individual measurement has two alternative
possible outcomes. The theoretical notion that the information about which
measurement is freely chosen in a region cannot get to the other region is
expressed by the following “local causes” condition: for both regions, and
for each of the alternative possible experiments there, the outcome that
appears must be independent of which experiment is freely chosen in the
other region. It had previously been proved that, for certain quantum states
v, it is mathematically impossible to satisfy both this locality condition and
the predictions of quantum theory pertaining to this state to an accuracy of,
say, 3%, for n larger than some large number N. The equivalence theorem
links this “local causes theorem”, which is expressed directly in terms of
possible observable variables, to certain “local hidden-variable theorems”.
These latter theorems, known as Bell’s Theorems, presume the existence of
an underlying_structure involving ‘“hidden variables”, and the theorems
specify detailed mathematical structures related to these variables. The
associated theorems can be either local deterministic or local probabilistic
hidden-variable theorems. The latter appear to be more general, but it is
shown in section two, by explicit construction, that both are mathematically
equivalent to the local causes theorem, which is not restricted by any
conditions associated with unobservable (microscopic) “hidden variables”.
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Specifically, the local  probabilistic hidden-variable theories, which
encompass the local deterministic hidden-variable theories as a special case,
postulate the existence of two probability functions Pi(r;, my, A) and Py(ra,
m,, L), and a weight function p(A), where r and m specify “result” and
“measurement type”, respectively, A specifies the hidden variable, and the
subscript 1 or 2 specifies the space-time region in which the measurement is
freely chosen and performed, and the result/outcome then appears. The joint
probability function is required (by locality) to be the product of the two
separate probability functions. The Equivalence Theorem asserts that all
expectation values of quantities depending on (r;, my, 15, my) that arise from
such a hidden-variable probability structure can be reproduces to arbitrarily
fine accuracy e%, by taking average values over a set of possible outcomes
satisfying the local causes condition, for n greater than some sufficiently
" Jarge N(e). Conversely, any expectation values entailed by a structure
satisfying the “local causes” condition can be reproduced by (an exemplar
of) some local probabilistic hidden-variable theory, and, indeed, by a local
deterministic hidden-variable theory. Thus, to prove the theorem that no
local probabilistic hidden-variable theory can reproduce the predictions of
quantum theory, it is enough to prove that no theory that enforces the notion
of no-faster-than-light transfer of information (about the freely made
choices) by invoking the “local causes” condition can agree with the
predictions of quantum theory. Consequently, the presumption of the
existence of the specific mathematical machinery associated with the idea of
“local hidden variables” is an unnecessary condition: it can be replaced with
the “local causes”, condition, which is formulated directly in terms of
observable variables, rather than hidden variables.

The background trial presumptions are that: 1), several pertinent predictions
of quantum theory are valid to within 3%; 2) what appears in a region under
either of the conditions specified there cannot depend on which experiment
is freely chosen and performed later in some frame; and 3), in view of the
fact that there are myriads of ways in which the experimenters can arrange to
have-the experimental devices put-in place, with no affect on the predictions
of quantum theory, we can, within the present context, treat the two choices
of the bivalent experimental arrangements as two independent free variables.

The principal conclusion is that these three conditions cannot all be satisfied!
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'H.P.Stapp .= Non Local Character.of Quantum
Abstfact

" The collapse of the wave function in quantum
theory is a manlifestly nonlocal change. However,
wave functions represent probabilities, and proba- -
bilities can change everywhere the instant new in-
formation 1s obtained, even in a theory that is
completely local. Thus it is conceivable that the
collapse of the wave function in quantum theory is’
not associated with any genuine nonlocal aspect of
the theory.

However, the following nonlocality property can -
be proved: There are in principle experimental si-
tuations involving two space-like~separated regions
such that the results obtained in one region must

depend on the value of a (dichotomic) variable ran-

domly chosen in the other region: The set of all
conceivable results in the four alternative experi-
mental situations corresponding to the two alterna-
tive possible settings of the two dichotomic varia-
bles contains not even a single set of four concei-
vable sets of results, one set for each of the four
alternative experimental situations, such that the
predictions of quantum theory are satisfied to
within 3% in all four cases, and the results in
each region are independent of the variables ran-
domly chosen in the other region. This nonlocality
property of quantum theory entails the result of
Bell that no local hidden varlable theory can agree
with quantum theory, but it is more general because

it does not depend on the notion of hidden varia-
bles: it is expressed, rather, completely in terms
of the observables of quantum theory.

Introduction

The question of the effect of a measurement made
in one space-time region upon experimental results
occurring in a space-like-separated region was rai-
sed already in the famous paper of Einstein, Po-
dolsky and Rosen (1). These authors assumed that no
such effect occurs, and Bohr apparently concurred
(2): "of course there is in a ecase like that Just
considered no question of a mechanical disturbance







. of the system under investigation during the last
final stages of the measuring procedure'. Heisen-
berg stated, in connection with the closely rela-
. ted question of the nature of the collapse of the
wave function (3): "when the old adage *Natura non
- facit saltus' is used as a basis for criticism of
quantum theory, we can reply that certainly our
knowledge can change suddenly and that this fact
‘Justifies the use of the term 'quantum jump'",
- Thus Heisenberg also appears to reject the idea
that the collapse of the wave function is associa-
ted with any sudden effect of the measurement made
in one region upon the results occurring in a
space-like-separated region, apart from the fami-
liar dependence of probabilities upon our know-
ledge. ' ' :

This presumption that no direct nonlocal physi-
cal influence occurs has recently been brought ine
to question by Bell's (4) discovery that a certain
nonlocality property is entailed by the assumed
validity of the statistical predictions of quantum
theory, Bell stated his result in the context of
local hidden variable theories, However, it is
possible to formulate the result in a broader con-
text that refers only to macroscopic observables,
‘not to hidden variables. This more general formu-
lation of the nonlocality property is described in
section one, where it is also compared to Bell's
result that no deterministic local hidden variable
theory can agree with quantum theory. :

[ -
ded Bell's original result to probabilistic local
hidden variable theories. In section two it is
shown that the general nonlocality property stated
in section one entails also the results of Clauser
and Horne, and of Bell, that no probabilistic lo- .
cal hidden variable theory can agree with quantum
theory.






..de The NonlocaliEzﬁPropegEx

. Consider a situation in which a large number of
two-particle collisions take place in a space-time
region Ry and in which it is determined by coinci-
dence techniques that a sequence of N pairs of
particles has emerged from Ry, that one particle
of each pair is going to pass through an apparatus
in a space-time region R1, and that the other par-
ticle is going to pass through an apparatus in a
space-time region Ry, where R{ and R2 are situated
space-llke relative to each other, Each particle
will pass through a Stern-Gerlach device in the
appropriate region and be detected in one of two
counting devices, assumed 100% efficient, The re-
sult in R1 associated with the i~-th pair will be
represented by ri1i =+ 1 or r1; = - 1 depending
on which of the two countlng devices registers,
and the result in Rs will similarly be represented
by ro4 =+ 1 or rp4 = - 1. The direction of the
axis of deflection in R1 is controlled by a compu-
ter in R1, and it is set at one of two positions
a' or a" just before the arrival of the sequence
of N particles. Similarly the direction of the
axis in Ry is set at one of two positions b' or bd",
just before the arrival of the sequence of N par-
ticles.

The choice between a' and a" is determined by a -
number picked from a table of random numbers. The
position of the number in this table is determined
by a set of irrationally chosen and apparently ir-
relevant numbers associated with far-away physical
systems., The choice between b' and b" is determi-

ned in a similar fashion.

We now form tables of conceivable results in the
four alternative cases. Each table has a set of
conceivable results for each of the four alterna-
tive experimental situations. Thus each table has
eight columns of N rows each, arranged as follows:
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Fig. 1 Table of Conceivable Results
‘ for the Four Alternative
Experimental Situations.

Each entry is_gither plus one or minus one.
Thus there are 28N possible tables. These will
be labelled by the index I. Thus I represents
a set of conceivable individual results for each
of the four alternative experimental situations:

v I E{(rli(a’b,I)’ 1'21(8,5,1)); i € (l,o.oo’N),
a e(a'ya") be (b',b") }

The mumber K15 supposed to be large enough so
that almost all sets of results that ocecur in na-
ture are predicted by quantum theory to conform to
tge averages predicted by quantum theory to within
3%. :

The set Q is the set of I such that the averages

<r> g =2 ) rq.(a,b,I)
1@,y - ¥ Z r1sta,

. o 6
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" ‘econform to the predictions of duantum theory to
within 3% for all four values of (a,b),

‘In the actual world one particular value of the
pair (a,b) is realized, and the other three pairs
are not realized. However, quantum theory gives
predictions for all four possible values of the
pair (a,b): it deals conceptually with the various
‘alternative possibilities on an equal footing.

Our intuitive idea of locality says that it should
be possible, in some theoretical realm of possible
worlds, to change the value of the parameter a in
R; without disturbing the results in Ro, and to
change the value of the parameter b in Ry without
disturbing the results in Rj, Thus we define L to
be the subset of the set of all conceivable sets
of results I in which the results in Ry are in-
dependent of b and the results in Ry afe inde-
pendent of a.

That is, L is defined to be the set of I such
that for all i -

riy (a'yb',I) = rqy (a'yd",I)
rqy (a"yb',1) = i Tqq (a",b",I)
.. (at.b'. = M, b, T)
4N
and
ry; (a'yb",I) = r,y (a",b",I) .

We may now state the basic mathematical result:
Theorem I (Nonlocality Property)
There is no I such that I belongs to both L and Q:
LNQ = ¢, |
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This result asserts that there is rot even a
single set of conceivable results for the four al

"ternative experimental situations such that the -
predictions of quantum theory are satisfied in al
cases and the results in each region are indepen-
dent of the parameter randomly chosen in the spac
-like-separated region. This result has been prove
in references (7) and (8), . = ., . S !

This result states that there is no:conceivabl
way to independently change the parameters a and
in such a way that the results in Ry are indepen-
dent of b and the results in Ry are independent o
a, without violating the prediGtions. of quantum.
theory. . . . e T oy

We now compare this result to the reésult obtai.
ned by Bell for deterministic local hidden varia-
ble theories. These theories are those in which i
is possible to find some set of (hidden) variable,
A such that a, b, and A can be regarded as inde-
pendent variables and the following locality pro-~
perty is satisfied: o

for all i and A
rq; (atyb',2A) = rqy (atyb",2)

rq; (a",b',A)

rli (a",b",l)

n

rp; (a'y,b',A) Ty (ayb'y2)

and
‘r21 (a'y,b",A) = rpy (a",b",2)

We first observe that if one identifies A\ with
I then these conditions are the same as those that
define L. Thus if one takes the hidden variazbles )
to be the sets of variables T e L then the formal
requirement on the hidden variables are satisfied.
Our theorem says immediately, in this special case
that ‘there is no choice of the hidden variable -

S RETel thetsatistiesARIeQr .
theiqgéntuﬁ,ﬁﬁédi&tipﬁicﬁnﬁat'bé'éﬁ%iﬁfﬁ§a¢
‘ | . e







More genérally, local deterministic hidden-variablé theories
can be treated as special cases of local probabilistic hidden-
variable theories.

..2. Connection to Probabilistic Local Hidden :.:
Variable' Theories _ Co e w e
Clauser and Horne (5) and Bell (6) have consi-
ldered local hidden variable theories in which the -
llocal hidden variables (a,b,1) determine not the -
lindividual results themselves but only the probabi-
lities of those results, In principle this sort of
L heory is no more general than a deterministic lo-
scal hidden variable theory, since by the addition
of stochastic variables one can convert the proba-
*bilistic theory to a deterministic one. However,
Clauser and Horne and Bell have extracted their
Jlocality condition for the probabilistic theories
&ot directly from the individual event locality
condition but rather from certain models that are
‘considered to characterize probabilistiec local
hidden variable theories. The model of Clauser and
Horne differs from that of Bell, which is much
more general, but the final probabilistic locality
condition is the same, Thus the question arises:
what 1s the connection between the probabilistic
locality condition of Clauser and Horne and Bell
and the individual-event locality condition of
section one ? It is shown in this section that
these two conditions are essentially equivalent,

and that consequently theorem I of section one ime
plies th i

hidden variable theory can agree with quantum
theory,

The work of Clauser and Horne (5) concerns "ob-
Jective local theories", These are theories in
which the two-particle system at a given time can
be characterized by a "state" A, and there is a
relationship ' '

(231) py,(A,a,b) = p1(24,a) pz(l,b),

where pl(l,a) and pZ(A,b) are the probabilities of
9






.- certains counts in R; and Ry, respectively, if the
state at a certain time isX, and where p12(},a,b)
is the probability of coincident counts in both Ry
and R2. These probabilities depend on the parame-

- ters a and b, - .

.. One considers ensembles of systems all characte-

" .rized by the same value of A in order to relate
probabilities to averages over individual results.
For each state A one considers alternative possible
values of the parameters a and b, That is, the -«
theory treats a and b as free variables.

The motivation for the factorized form (2.1) of
the probability is that this form emerges if one
considers a classical picture in which the two-
particle system consists of two localized objects.

The requirement that the two-particle system
should be characterized by such a time-dependent
state A is very restrictive. Quantum theory sug-
gests that particles are intimately associated
with the devices that produce and detect them. i
Thus it may not be possible in a fundamental theo-
ry, to represent particles as separate and dis-
tinct time-dependent entities. Also the results in
Ry might depend on things located throughout the
backward light-cone of Ry, rather than on a state
that represents things at a particular time.

Bell (6) considers a much more general type of
local theory in which the probability of any re-
sult is completely determined by all real things
that lie in the backward light-cone of the region
in which the result appears. From this condition

he derives a locality condition
(2.2) {a,8] A, M8} = {a]A,n] {BlM,N}

This locality condition, like that of Clauser and

Horne, says that for fixed hidden variable the pro-

bability of result A and B (together) is the
___product of the. probabilITles of each result separa--

tely. The quantities N, My, N represent the real
things (called local beables) in the regions indi-

[O






The probabilities referred to by the above
equation are the probabilities associated with a
single instance i, or, 1In any case, with a set of
instances i1 for which the probabilities are all
identical. -

Bell then considers situations in which the pa-
rameters a and b are changed, for the same instane
ces i Thus he also considers alternative situa-
tions. Later, as emphasized by Shimony, Horne and
Clauser (9), Bell (10) and Shimony (113, Bell
makes the essential assumption that the parameters
a and b can be regarded as effectively free, i.e.,
as independent variables,

Both models dlscussed above deal only with the
probabilities, not with the individual results
themselves., Consequently the locality property is
expressed as a condition on the probabilities, .
namely that the probabilities can be expressed as
a certain sum of products of two factors, one de-
pending on ry and a, and the other depending on r
and b, rather than as the condition that the indi-
vidual results in each region be independent of

the parameter chosen in the other region. However,
these two forms of the locality condition are
equivalent, apart from terms that tend to zero as
N tends to infinity. In particular, if the indivi-
dual results in each region satisfy the locality
propertiles

rqy (a,b) = ryy (a) and 1y, (a,b) = 1,y (b)

{1






then the probabilities ' L
(2,3) {l,rala b 1 Zeli(a,rl eZi(b’rZ).

-
(2.4) {rll a} = _1%-4.. 911 (ayrq)
av 4
and "
_ 1 N
(2.5) {1‘2 | b} == / 0,y (byry)
av il
where { ,
1 ifr,,(a) =1r
(2.6) eli(a’rl) ={ 11 1
: ' 0 if rq,(a) # rq
and
1l if r (b) =7
(2.7) e2i(b’r2) = {' 24 2
0 if r2i(b) # r,

can be written in the forus

(2.8) {r’i,’féla,b} =% P(J\) pl(/\,a,rl) pz(l,b,rz)

(2,9) {rll a] = ZP(’\) Py (A,a,rl)
A
(2.10){r2| b} = Zf(l) P, (A,b,rz)
A
where the range of A is finite and
(2.11) Zp = 1
(2.12) Z Py (A,a,rl) = 1 (all A, a)
r1=-l
(2.13) 0 p (Abyr,) = 1 (all A, b)
.Ty=I1

(%






and

f2.18  p =lpl , py=p|y b, =1p,)

To see this one identifies A with i, set
p,(%a,rq) = 911(a,r1) and p,(A,b,r,) = O, (b,r,) |

- and notes that each rli(a) and rZi(b) is either

plus one or minus one.

Conversely, any probabilities that can be ex-
pressed in the form (2.8) - (2,14) can be expressed -
also in the form (2,3) - (2.7), up to terms that
tend to zero as N tends to infinity.

To see this int:pduce ] a set.of four signs
g = dau dana d1-_,!’ db") ,’
E ( d,,s - e=1ia

where v runs over the four parameter values a', a",
b', and b"., The four probability functions
pl(A,a,r) and pz(l,b,r) can be expressed in a sym-

metrical form as p(A,v,r). Then properties (2.12)
and (2.13) give '

(2.15) ;E: p(Ayv,r) =1 (all A,v),
p=ly

 The set of four signs & has sixteen possible
values. Sixteen weight functions w(A, &) are de-
fined by

(2.16) w(A, c) = p(k) .{S p(A, v, 68,).
Note that

(2.17) ) w,¢) = 1

A6 :
- by virtue of (2.11) and (2.15),

Take a large number N of indices i and appor-
tion them among cells C,, 1in accordance with the
weights w(A, ¢ ), For finite N there may be discre-

__pancies but these will tend to zero as N tends. to.

Infinity.

2 e






Let (1) = (6,.(1), S 4n(i), db.(i), d.b"‘(i)) ,

and A(i) 1label the cell in which index i is pla-
ced, Then - :

(2.18)  wid,¢) = Nlo)

where
(2,19) N(A, 8) = (¥ of 1's in which
! - A(1) = A and o
. | G(1) = @) N L
1 = (*® of i's in which
A1) = X and .
(i) =.¢é,for all v),

We now specify the results corresponding to i in
all four alternative cases (a,b) by the equations

(2.20) rqy (a,b) = S, (1)
(2.21) r,y (a,b) = 6b (1)
Then _
(2.22) {rlla'} E—I:\LI— (¥ of i's  sueh that
av rqy(a") = ry)
= —N]=- (* of i's  such that

da|(i) = r1)

< > A, 8)

{l; (< I da- = rl}

Z W (l,_o)

{>"oida' = rl}

= 2 pn 2 e, oy)
Aa v

- R

) ‘0;' S, = ri S
(# means "number" ) { e o

14






. |

= 3 P, m)

! * 3 {rl ‘ 8 } .
as required. The similar equations with a' replaced
by the other values of y follow in the same way. .

Similarly |
(2.23) { ry,2, | a'yb']
: ' Toav

1 (¥ |
&5 { of 1's such that
| rli(a',b') = r, and

ryylatyb!) = r, }

=—N1—Z N (A, &) ;
: {.x’d;da' = rl’ db' = rZ}
~ 7w (A, 8) -
{285 og=rs Sp =y

ZPO‘) Z-D_p()\,\’, é,)

{d 38 g1 = Ty and Sy = Ty

Z?\ P()\) pl()\, a'y rq) pz()\,b',r2)

Py -

= { Ty rzl a', p'}
as required,
The result just proved can be summarized as fol=-

lows:
Let P ’ {rzlb} y ‘Lrl, rzl a,b] )

‘ "'f—’xfrvbabi—l*rti_ y 1C he four va=

(s






1ues of (a,b). Let Lp be the set of P that satisfy
the probabilistic locality conditions (2.,8) -
(2,14). Let P(I) be the set of values P obtained
Ey averaging over the sets of individual results
. 4n I.

Let & mean equal to within any preassigned
difference &>0., Then we have the following
Theorem II (Equivalence Theorem)

a) If I € L then P(Del, »
b) If P e Lp then there is an ' '
I € L. such that P (I) &

Let Qp be the set of P that conform to the pre-
dictions of quantum theory to within 3%. Then
Theorem I can be expressed in the form

Theorem I' (Nonlocality Property)
There is no I such that I € L and P(I) e QP.

These two theorems entail Theorem III (Nonloca-
lity Property - P form) _

I, N Q = 0.

That 1s, there is no set of probabilities P that
satisfy the probabilistic locality condition and
the predictions of quantum theory to within 3%

(i e., tO < 3%)0

Proof. Suppose there were a P such that P e Lp
and P e Qp. Since P € Lp we conclude from theorem

N

IT(b)—th =P, .
Since P is in Qp, the P(I) will be within Qp, if we
chose & appropriately.'Thus there must be an 1

such that I € L and P(I) € Qp. However, this possi-
bility is excluded by theorem I', Thus there is no

16






P such that P < L, and P < G s

(1)

(2)
(3)

P’-.I ! - .
"ALP./\ QP = g ‘;'.'QﬁE.D.
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