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VIII. Digitization of Pulse Height and Time –
Analog to Digital Conversion

For data storage and subsequent analysis the analog signal at the
shaper output must be digitized.

Important parameters for ADCs used in detector systems:

1. Resolution
The “granularity” of the digitized output

2. Differential Non-Linearity
How uniform are the digitization increments?

3. Integral Non-Linearity
Is the digital output proportional to the analog input?

4. Conversion Time
How much time is required to convert an analog signal
to a digital output?

5. Count-Rate Performance
How quickly can a new conversion commence after 
completion of a prior one without introducing deleterious 
artifacts?

6. Stability
Do the conversion parameters change with time?

Instrumentation ADCs used in industrial data acquisition and control
systems share most of these requirements. However, detector
systems place greater emphasis on differential non-linearity and
count-rate performance. The latter is important, as detector signals
often occur randomly, in contrast to measurement systems where
signals are sampled at regular intervals.
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1. Resolution

Digitization incurs approximation, as a continuous signal distribution
is transformed into a discrete set of values. To reduce the additional
errors (noise) introduced by digitization, the discrete digital steps
must correspond to a sufficiently small analog increment.

Simplistic assumption:

Resolution is defined by the number of output bits, e.g.

13 bits   →

True Measure: Channel Profile

Plot probability vs. pulse amplitude that a pulse height 
corresponding to a specific output bin is actually converted
to that address.

Ideal ADC:

         output bin number:

Measurement accuracy:

• If all counts of a peak fall in one bin, the resolution is ∆V.

• If the counts are distributed over several (>4 or 5) bins,
peak fitting can yield a resolution of 10-1 – 10-2 ∆V,
if the distribution is known and reproducible (not necessarily
a valid assumption for an ADC).
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In reality, the channel profile is not rectangular as sketched above.

Electronic noise in the threshold discrimination process that
determines the channel boundaries “smears” the transition from
one bin to the next.

Measured channel profile (13 bit ADC)

The profiles of adjacent channels overlap
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Channel profile can be checked quickly by applying the output of a
precision pulser to the ADC.

If the pulser output has very low noise, i.e. the amplitude jitter is much
smaller than the voltage increment corresponding to one ADC
channel or bin, all pulses will be converted to a single channel, with
only a small fraction appearing in the neighbor channels.

Example of an ADC whose digital resolution is greater than its analog
resolution:

8192 ch conversion range (13 bits)

2048 ch conversion range (11 bits)

2K range provides maximum resolution  – higher ranges superfluous.
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2. Differential Non-Linearity

Differential non-linearity is a measure of the inequality of channel
profiles over the range of the ADC.

Depending on the nature of the distribution, either a peak or an rms
specification may be appropriate.

or

where            is the average channel width and ∆V(i) is the width of
an individual channel.

Differential non-linearity of < ±1% max. is typical, but state-of-the-art
ADCs can achieve 10-3 rms, i.e. the variation is comparable to the
statistical fluctuation for 106 random counts.

Note: Instrumentation ADCs are often specified with an accuracy of
±0.5 LSB (least significant bit), so the differential non-linearity
may be 50% or more.

Typical differential non-linearity patterns (“white” input spectrum).

An ideal ADC would show an equal number of counts in each bin.

The spectrum to the left shows a random pattern, but note the
multiple periodicities visible in the right hand spectrum.
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3. Integral Non-Linearity

Integral non-linearity measures the deviation from proportionality of
the measured amplitude to the input signal level.

The dots are measured values and the line is a fit to the data.

This plot is not very useful if the deviations from linearity are small.

Plotting the deviations of the measured points from the fit yields:
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The linearity of an ADC can depend on the input pulse shape and
duration, due to bandwidth limitations in the circuitry.

The differential non-linearity shown above was measured with a
400 ns wide input pulse.

Increasing the pulse width to 3 µs improved the result significantly:
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4. Conversion Time

During the acquisition of a signal the system cannot accept a
subsequent signal (“dead time”)

Dead Time =

signal acquisition time →   time-to-peak + const.

+ conversion time →   can depend on pulse height

+ readout time to memory →   depends on speed of data
       transmission and buffer 
       memory access -
       can be large in computer-
       based systems

Dead time affects measurements of yields or reaction cross-
sections. Unless the event rate << 1/(dead time), it is necessary to
measure the dead time, e.g. with a reference pulser fed
simultaneously into the spectrum.

The total number of reference pulses issued during the
measurement is determiend by a scaler and compared with the
number of pulses recorded in the spectrum.

Does a pulse-height dependent dead time mean that the
correction is a function of pulse height?

Usually not. If events in different part of the spectrum are not
correlated in time, i.e. random, they are all subject to the same
average dead time (although this average will depend on the
spectral distribution).

• Caution with correlated events!
Example: Decay chains, where lifetime is < dead time.

The daughter decay will be lost systematically.
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5. Count Rate Effects

Problems are usually due to internal baseline shifts with event rate
or undershoots following a pulse.

If signals occur at constant intervals, the effect of an
undershoot will always be the same.

However, in a random sequence of pulses, the effect will vary
from pulse to pulse.

⇒ spectral broadening

Baseline shifts tend to manifest themselves as a systematic shift in
centroid position with event rate.

Centroid shifts for two 13 bit ADCs vs. random rate:
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6. Stability

Stability vs. temperature is usually adequate with modern 
electronics in a laboratory environment.

•  Note that temperature changes within a module are typically
much smaller than ambient.

However: Highly precise or long-term measurements require
spectrum stabilization to compensate for changes
in gain and baseline of the overall system.

Technique: Using precision pulsers place a reference peak at
both the low and high end of the spectrum.

(Pk. Pos. 2) – (Pk. Pos. 1) → Gain, … then

(Pk. Pos. 1) or (Pk. Pos. 2) → Offset

Traditional Implementation: Hardware,
spectrum stabilizer module

Today, it is more convenient to determine the corrections in
software. These can be applied to calibration corrections or
used to derive an electrical signal that is applied to the
hardware (simplest and best in the ADC).
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Analog to Digital Conversion Techniques

1. Flash ADC
     Vref

  comparators    decoder

       data
       output

The input signal is applied to n comparators in parallel. The switching
thresholds are set by a resistor chain, such that the voltage difference
between individual taps is equal to the desired measurement
resolution.

2n comparators for n bits (8 bit resolution requires 256 comparators)

Feasible in monolithic ICs since the absolute value of the resistors in
the reference divider chain is not critical, only the relative matching.

Advantage: short conversion time (<10 ns available)
Drawbacks: limited accuracy (many comparators)

power consumption
Differential non-linearity  ~ 1%
High input capacitance (speed is often limited by the

analog driver feeding the input)
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2. Successive Approximation ADC

    Pulse Stretcher Comparator Control Logic,
Register + DAC

     Output
      Address

Sequentially add levels proportional to
2n, 2n-1, … 20 and set corresponding
bit if the comparator output is high
(DAC output < pulse height)

n conversion steps yield 2n channels,
i.e. 8K channels require 13 steps

Advantages: speed (~ µs)
high resolution
ICs (monolithic + hybrid) available

Drawback: Differential non-linearity (typ. 10 – 20%)

Reason: Resistors that set DAC output must be
extremely accurate.

For DNL < 1% the resistor determining the 212 level 
in an 8K ADC must be accurate to < 2.4 . 10-6.
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3. Wilkinson ADC

The peak signal amplitude is acquired by a pulse stretcher and
transferred to a memory capacitor. Then, simultaneously,

1. the capacitor is disconnected from the stretcher,
2. a current source is switched to linearly discharge the capacitor,
3. a counter is enabled to determine the number of clock pulses

until the voltage on the capacitor reaches the baseline.

Advantage: excellent differential linearity
(continuous conversion process)

Drawbacks: slow – conversion time = n . Tclock

(n= channel number  ∝ pulse height)
Tclock= 10 ns  → Tconv= 82 µs for 13 bits

Clock frequencies of 100 MHz typical, but 
>400 MHz possible with excellent performance

“Standard” technique for high-resolution spectroscopy.
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Time Digitizers

1. Counter

Simplest arrangement.

Count clock pulses between start and stop.

Limitation: Speed of counter

Current technology limits speed of counter system
to about 1 GHz

⇒ ∆t = 1 ns

Multi-hit capability

2. Analog Ramp

Commonly used in high-resolution digitizers (∆t = 10 ps)

Principle: charge capacitor through switchable current source

Start pulse: turn on current source

Stop pulse: turn off current source

⇒ Voltage on storage capacitor

Use Wilkinson ADC with smaller discharge current 
to digitize voltage.

Drawbacks: No multi-hit capability
Deadtime
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3. Digitizers with Clock Interpolation

Most experiments in HEP require multi-hit capability, no deadtime

Commonly used technique for time digitization (Y. Arai, KEK)

Clock period interpolated by inverter delays (U1, U2, …).
Delay can be fine-tuned by adjusting operating point of inverters.

Delays stabilized by delay-locked loop

Devices with 250 ps resolution fabricated and tested.

see Y. Arai et al., IEEE Trans. Nucl. Sci. NS-45/3 (1998) 735-739
and references therein.


