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V.2. Signal Acquisition

• Determine energy deposited in detector

• Detector signal generally a short current pulse

Typical durations

Thin silicon detector
(10 ... 300 m thick): 100 ps – 30 ns

Thick (~cm) Si or Ge detector: 1 – 10 µs
Proportional chamber (gas): 10 ns – 10 µs
Gas microstrip or microgap

chamber: 10 – 50 ns
Scintillator + PMT/APD: 100 ps – 10 µs

The total charge Qs contained in the detector current pulse is
is(t) proportional to the energy deposited in the detector

• Necessary to integrate the detector signal current.

Possibilities: 1. Integrate charge on input capacitance

2. Use integrating (“charge sensitive”)
preamplifier

3. Amplify current pulse and use integrating
(“charge sensing”) ADC

E Q i (t) dts s∝ = ∫  
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Signal integration on Input Capacitance

 ↑
System response depends
on detector capacitance !

Detector capacitance may vary within a system or change with
bias voltage (partially depleted semiconductor diode).

⇒ make system whose gain (dVout /dQs) is independent of
detector capacitance.
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Active Integrator (“charge-sensitive amplifier”)

Start with inverting voltage amplifier

Voltage gain dVo /dVi = -A ⇒ vo= -A vi

Input impedance = ∞  (i.e. no signal current flows into amplifier input)

Connect feedback capacitor Cf  between output and input.

Voltage difference across Cf : vf = (A+1) vi

⇒ Charge deposited on Cf : Qf = Cf vf = Cf (A+1) vi

Qi = Qf (since Zi = ∞)

⇒ Effective input capacitance
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Qi is the charge flowing into the preamplifier ....

but some charge remains on Cdet.

What fraction of the signal charge is measured?

Example:

A = 103

Cf = 1 pF ⇒ Ci = 1 nF

Cdet = 10 pF: Qi /Qs = 0.99

Cdet = 500 pF: Qi /Qs = 0.67

  ↑
Si Det.:  50 µm thick

500 mm2 area

Note: Input coupling capacitor must be >>Ci for high
charge transfer efficiency.
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Calibration

Inject specific quantity of charge  -  measure system response

Use voltage pulse (can be measured conveniently with oscilloscope)

Ci >> CT ⇒ Voltage step applied to test input
develops over CT .

⇒ QT = ∆V . CT

Accurate expression:

Typically:     CT /Ci = 10-3 – 10-4
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Summary of Amplifier Types

1. Simple Amplifiers

Output voltage Vo = voltage gain Av × input voltage vs.

Operating mode depends on charge collection time tcoll and the
input time constant RiCdet :

a) Ri Cdet <<  tcoll detector capacitance discharges rapidly

current sensitive amplifier

b) Ri Cdet >>  tcoll detector capacitance discharges slowly

voltage sensitive amplifier

In both cases the ouput signal voltage is determined directly by
the input voltage.

⇒ ∝ ∫    V i t dto s( )

⇒ ∝   V i to s( )
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2. Feedback Amplifiers

Basic amplifier as used above.

High input resistance: Ri Cdet >>  tcoll

Add feedback capacitance Cf

Signal current is is integrated on feedback capacitor Cf :

Vo ∝  Qs / Cf

Amplifier output directly determined by signal charge,
insensitive to detector capacitance

⇒ charge-sensitive amplifier

Qs

Vo
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Cdet Ri

Cf
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Realistic Charge-Sensitive Preamplifiers

The preceding discussion assumed idealized amplifiers
with infinite speed.

• How do “real” amplifiers affect charge response?

• How does the detector affect amplifier response?
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A Simple Amplifier

Voltage gain:

     gm ≡ transconductance

    ↑   ↑
        low freq.   high freq.

↑  upper cutoff frequency 2π fu
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Pulse Response of the Simple Amplifier

A voltage step vi (t) at the input causes a current step io (t) at the
output of the transistor.

For the output voltage to change, the stray capacitance Co must first
charge up.

⇒   The output voltage changes with a time constant τ = RLCo

    Frequency Domain    Time Domain

Note that τ  is the inverse upper cutoff frequency 1/(2π fu)
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Input Impedance of a Charge-Sensitive Amplifier

Input impedance

Amplifier gain vs. frequency

       Gain-Bandwidth Product
Feedback Impedance

⇒ Input Impedance

Imaginary component vanishes ⇒ Resistance:  Zi  →  Ri
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Time Response of a Charge-Sensitive Amplifier

Closed Loop Gain

Closed Loop Bandwidth

Response Time

Alternative Picture:  Input Time Constant

Same result as from conventional feedback theory.
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