
Computer Physics Communications 134 (2001) 41–46
www.elsevier.nl/locate/cpc

The HepMC C++ Monte Carlo event record
for High Energy Physics✩

Matt Dobbsa, Jørgen Beck Hansenb,∗
a University of Victoria, Department of Physics and Astronomy, P.O. Box 3055, Victoria, Canada V8W 3P6

b European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23, Switzerland

Received 22 June 2000

Abstract

HepMC is an Object Oriented event record written in C++ for High Energy Physics Monte Carlo event generators. Many
extensions from HEPEVT, the Fortran HEP standard, are supported: the number of entries is unlimited, spin density matrices
can be stored with each vertex, flow patterns (such as colour) can be stored and traced, random number generator states can be
stored, and an arbitrary number of event weights can be included. Particles and vertices are stored separately in a graph structure,
reflecting the evolution of a physics event. The added information supports the modularization of event generators. The event
record has been kept as simple as possible with minimal internal/external dependencies. Event information is accessed by means
of iterators supplied with HepMC. 2001 Elsevier Science B.V. All rights reserved.

PACS:07.05.Tp; 07.05.Kf

Keywords:Event record; High Energy Physics; C++

1. Introduction

The High Energy Physics (HEP) community is
moving towards Object Oriented (OO) computing
tools (usually C++): most upcoming experiments are
choosing OO software architecture, the development
of Pythia 7 [1] in C++ is underway, and the design
phase of a C++ version of Herwig [2] has started.
Currently no standard OO event record has been

✩ Available via the following web-address: http://home.cern.ch/
mdobbs/HepMC/.

* Corresponding author.
E-mail addresses:Matt.Dobbs@cern.ch (M. Dobbs),

Jorgen.Beck.Hansen@cern.ch (J.B. Hansen).

adopted by the HEP community.1 In order for an event
record to be accepted it must be simple for the end user
to access information, while maintaining the power
and flexibility offered by OO design. The HepMC
event record has been developed as a proposal to
satisfy these criteria and is proposed as a replacement
and extension of HEPEVT [5], the Fortran HEP
standard.

HepMC is an object oriented event record written
in C++ for Monte Carlo Generators in High Energy
Physics. It has been developed independent of a par-
ticular experiment or event generator. It is intended
to serve as both a “container class” for storing events

1 A simple HEPEVT style event record has been proposed by
the StdHep [3] group at Fermilab. Several experiments have defined
their own event records, see for example [4].

0010-4655/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(00)00189-2



42 M. Dobbs, J.B. Hansen / Computer Physics Communications 134 (2001) 41–46

Fig. 1. HepMC supports the concept of modularized event generation (illustrated above) by containing sufficient information within the event
record to act as a messenger between two modular steps in the event generation process.

Fig. 2. Events in HepMC are stored in a graph structure (right), similar to a physicist’s visualization of a collision event (left).

after generation and also as a “framework” in which
events can be built up inside a set of generators. This
allows for the modularization of event generators –
wherein different event generators could be employed
for different steps or components of the event genera-
tion process (illustrated in Fig. 1).

2. Structure of the HepMC event record

Physics events are generally visualized using di-
agrams with a graph structure (Fig. 2, left) which
HepMC imitates by separating out particles from ver-
tices and representing them as the edges and nodes
of a graph2 (Fig. 2, right). The extension to multiple
collisions is natural – a super-position of many non-
connected graphs – and so the event may contain an
unlimited number of (possibly interconnected) graphs.

2 Ref. [4] uses a similar structure.

Particles and vertices can be combined into any graph
structure – there are no restrictions about closed di-
rected cycles, multiple particles connecting vertices,
or multiple graph roots.

The components of the event are separated into
a set of C++ classes which form the event record
and contain the information which is specific to a
particular event. A separate modular set of classes
forms an index of particle properties, containing the
data which are common to all particles of a given type,
i.e. charge, mass, lifetime, etc. The HepMC classes are
described in this section and the relationships between
classes are shown in Appendix A.

2.1. Event

In HepMC, an event is a container of all vertices
belonging to the event. Optionally a pointer to the pri-
mary root vertex can be stored. To allow the possibil-
ity of many processes being generated within the same



M. Dobbs, J.B. Hansen / Computer Physics Communications 134 (2001) 41–46 43

job, a process id can be stored. Extended event features
such as a container of event weights and a container
for states of random number generators have been im-
plemented such that if left empty or unused perfor-
mance and memory usage will be similar to that of an
event without these features. A container of tags spec-
ifying the meaning of the event weights and random
number generator state entries is envisioned as part of
a higher level class – which describes the complete
generation job and is beyond the scope of an event
record.

2.2. Vertex

The vertex forms the nodes which link particles into
a graph structure. The basic information associated
with a vertex is the listing of its incoming and outgoing
particles, its position in terms of a Lorentz vector and
a possible vertex identifier.

For each vertex a container of weights is included
with the intention of storing additional information as-
sociated with the vertex, such as amplitude decompo-
sition in terms of colour flow and/or helicity (spin den-
sity matrices). It is envisioned that a generator pack-
age choosing to assign, e.g., spin density matrices to
particle production vertices should provide the func-
tional form of the frame definition for the matrix as a
method for interpreting the weights. This implementa-
tion is intentionally generic to give maximum freedom
to the sub-generators – allowing for different form de-
finitions.

The number of vertices in each event is open-ended.

2.3. Particle

The particle is the basic unit within the event record.
A particle is composed of the Lorentz vector, flow,
and polarization information. In addition pointers to
the particle’s production and end vertex are included,
which provide an intuitive and fast access to the rela-
tionships of a particle. In order to ensure consistency
between vertices/particles – these pointers can only be
set from the vertex. Thus adding a particle to a vertex
as incoming will automatically set the end vertex of
the particle to point to that vertex.

Optional extended particle features like flow and
polarization have been implemented such that if left

empty/unused there is no impact on performance or
memory usage.

The flow property of a particle is used to keep
track of flow patterns within a graph. The flow pattern
information is stored as a series of integer flow
codes and indices. Each type of flow (helicity, colour,
charge, etc.) is assigned a unique flow index (i.e.
colour flow uses index 1 and 2) and each pattern
of a given flow type is assigned its own unique
integer code. These codes are attached to each particle
through which the pattern passes. This is similar to
the method used for colour flow in Herwig [2], with
the exception that there is no limit to the number
of flow types that may be stored. Herwig’s method
features the possibility of storing non-conserved flow
patterns (such as baryon number violation in SUSY
models).

Polarization information is stored as the polar and
azimuthal angles of a normal three-vector.

The number of particles in each vertex is open-
ended.

2.4. Particle data

General particle data information is not a property
of an event record, but for completeness a basic par-
ticle data table container of particle data has been
included in HepMC. There are no dependencies be-
tween the particle data objects and the other elements
of the event as the access to general particle data is
implemented in HepMC as a particle identifier code
lookup (the Particle Data Group [6] (PDG) convention
is adopted). This keeps the event record modular from
the particle data table allowing applications to use the
event record independently of the particle data table.

The particle data information available in HepMC
is a PDG particle identifier code, name, charge, mass,
lifetime (c× τ ) and spin.

3. Accessing information in the event record

3.1. Iterators

Intuitive and fast access to vertices and particles in
an event is provided by the use of iterators following
the C++ Standard Template Library [7] (STL) style.

Methods to build lists of particles or vertices are
not provided, as the STL provides these functionalities



44 M. Dobbs, J.B. Hansen / Computer Physics Communications 134 (2001) 41–46

with algorithms such ascopy and iterator adaptors
such asback _inserter giving a clean generic
approach. Using this functionality it is easy to obtain
lists of particles/vertices given some criteria – such
as a list of all final state particles. Classes which
provide the criteria (denoted predicates) are alsonot
provided, as the number of possibilities is open ended
and specific to the application, however, implementing
a predicate is simple.

Two implementations of vertex and particle iterators
are provided with HepMC.

The first type of iterators is a simple re-definition
of the STL set::iterator defined so that all
HepMC iterators look similar. These iterators should
be used to traverse all vertices or particles in the event
exactly once.

The second type of iterators has both a starting
point and a range allowing the user to step into a
specific part of a particle/vertex graph and obtain
targeted information about it. The starting point is the
vertex – called the root – from which the iterator was
instantiated, and the range is defined relative to this
point. The user may choose a range which traverses
all parents and/or children (meaning the immediately
adjacent particles/vertices going into and/or out of
the root) or ancestors and/or descendants (meaning
all recursive parents and/or children). The iterator
algorithm traverses the graph by converting it to a
tree (by “chopping” the edges at the point where a
closed cycle connects to an already visited vertex) and
returning the vertices in post order. These iterators
require more logic than the first type and thus access
time is slower (the time required to return one vertex
goes like logn, wheren is the number of vertices
already returned by the iterator).

The particle iterators behaves exactly like the vertex
iterators, with the exception that they return particles
rather than vertices. As a particle defines an edge or
line (rather than a point) in the particle/vertex graph,
it is intuitive to define the particle iterator relative to
a vertex (point in the graph), thus the starting point
(root) is still a vertex, and the range is defined relative
to this root.

3.2. Input/output interface

Various input/output strategies are provided with
HepMC. The interface for these strategies is specified

in an abstract base class. These strategies are capable
of input/output of events and particle data tables – as
such they depend directly on both the event record
classes and particle data table classes.

4. Technical information

HepMC is written within the HepMC:: namespace
and consists of 8 core classes (GeneratorEvent, Ver-
tex, Particle, Flow, Polarization, ParticleData, Particle-
DataTable, IO_BaseClass) and several utility classes
(i.e. IO_HEPEVT, IO_Ascii, IO_PDG_ParticleData-
Table, HEPEVT_Wrapper, PythiaWrapper).

The HepMC dependencies have been limited to the
C++ Standard Template Library [7] (STL) and the
vector classes from the Class Library for High Energy
Physics [8] (CLHEP). A simple wrapper for Pythia [9]
is supplied to allow the inclusion of event generation
examples.

Acknowledgements

The authors would like to thank the ATLAS Col-
laboration which motivated the HepMC project as
a general purpose event record to interface external
Monte Carlo event generation packages. In particular
we would like to thank Ian Hinchliffe for his support,
contributions and discussions. We further extend our
thanks to P. Mato, H.T. Phillips, A. Ryd, R.D. Schaf-
fer, M. Smizanska, and B.R. Webber for useful discus-
sions and suggestions.

One of the authors, M. Dobbs, acknowledges sup-
port from the Natural Sciences and Engineering Re-
search Council of Canada.

Appendix A

Class diagrams for the event record classes (Gener-
atorEvent, Vertex, and Particle), the data table classes
(ParticleData and ParticleDataTable), and IO classes
(IO_BaseClass, IO_HEPEVT, IO_Ascii, IO_PDG
_ParticleDataTable) are shown in the Unified Model-
ing Language [10] notation.



M. Dobbs, J.B. Hansen / Computer Physics Communications 134 (2001) 41–46 45

References

[1] L. Lönnblad, Development strategies for PYTHIA version 7,
Comput. Phys. Commun. 118 (1999) 213.

[2] G. Marchesini, B.R. Webber, G. Abbiendi, I.G. Knowles, M.H.
Seymour, L. Stanco, HERWIG: A Monte Carlo event genera-
tor for simulating hadron emission reactions with interfering
gluons, Version 5.1, April 1991, Comput. Phys. Commun. 67
(1992) 465.

[3] L. Garren, StdHep 4.08 Monte Carlo Standardization at FNAL,
Fermilab PM0091, http://www-pat.fnal.gov/stdhep.html.

[4] S. Protopopescu, MC++ interface, http://www-d0.fnal.gov/
newd0/d0atwork/computing/MonteCarlo/MonteCarlo.html.

[5] T. Sjöstrand et al., in: G. Altarelli, R. Kleiss, C. Verzegnassi
(Eds.), Z Physics at LEP 1, CERN, Vol. 3 (8), CERN, Geneva,
1989, p. 327.

[6] C. Caso et al., Review of particle physics, European J. Phys.
C 3 (1998) 1, http://pdg.lbl.gov/.



46 M. Dobbs, J.B. Hansen / Computer Physics Communications 134 (2001) 41–46

[7] A.A. Stepanov, M. Lee, The standard template library,
Technical Report HPL-94-34, Hewlett-Packard Laboratories,
April 1994, revised July 7, 1995, ftp://butler.hpl.hp.com/stl/.

[8] A Class Library for High Energy Physics (CLHEP), http:
//wwwinfo.cern.ch/asd/lhc++/clhep/.

[9] T. Sjöstrand, High-energy physics event generation with
PYTHIA 5.7 and JETSET 7.4, Comput. Phys. Commun. 82
(1994) 74.

[10] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modelling
Language Reference Manual, Addison-Wesley, Reading, MA,
1999; ISBN 0-201-30998-X.


