
U S  A T L A S  P i x e l  R e v i e w ,  J u l y  2 0 0 2

K. Einsweiler          Lawrence Berkeley National Lab
US ATLAS Pixel Electronics, Jul 18 2002    1 of 24

WBS 1.1.1.3 Pixel System
On-detector Electronics

Major Topics:
•On-Detector Electronics and Test System (WBS 1.1.1.3): Status and Issues

Very brief technical status and next steps:
•Motivate near-term schedule and goals

Describe cost and schedule status, particularly for FY03
•Discuss FY03 manpower estimates, costs, and milestones

Summary and Conclusions
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Electronics Challenges and Requirem
Main challenges are in FE chips:

•Operate properly after total dose of 60 MRad (nominal ATLA
Cope with reduced signal of 10Ke and sensor leakage curre
pixel at end of lifetime. For the B-layer, this corresponds to a
years at design luminosity.

•Operate with low noise occupancy (below 10-6 hits/pixel/cros
about 3Ke with good enough timewalk to have an “in-time” t
5Ke (hit appears at output of discriminator within 20ns of ex
requires a small threshold dispersion (about 300e) and low 

•Associate all hits uniquely with a given 25ns beam crossing.
timing come from timewalk in the preamp/discriminator, digit
clock distribution on module, and relative timing of different 

•Meet specifications with nominal FE analog current budget o
digital current budget of 25 mA/chip, and MCC digital curren
This leads to the total module budget of 970mA analog and
worst case values used for the services design are 80mA/ch
mA/chip digital, and an MCC budget of 160mA, leading to th
module budget of 1290mA analog and 800mA digital.
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Deep Sub-micron Approach:
•One of dominant effects of irradiation of CMOS devices is cr

charge in the critical gate oxide layers. Below about 10nm o
charge trapping largely vanishes due to quantum tunneling e
processes are the first to operate fully in this regime (they h

•The RD-49 collaboration has studied details, confirming that
leakage paths using layout, then a commercial 0.25µ proce
hard (circuits tested to 30MRad). Many technical concerns a
basically little experience with full-scale devices, so some co

•All experience so far with analog and digital designs sugges
behaves almost exactly like the SPICE BSIM3 simulations. 
our lack of experience with these processes, we are plannin

•CERN has negotiated a frame contract for LHC with IBM for
process which extends through Mar 2004. This fixes prices 
engineering and production runs, and would provide the bas
procurement. Work is underway for an extension of this con
access the TSMC 0.25µ process in production quantities via
consortium as a back-up should problems arise.

•This path places us into commercial mainstream, where we c
prices and availability in the future. IBM and CERN frame co
towards 0.13µ process, providing a technology path for upg
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What is included in the FE-I Engineering run ?
•Complete module chipset, including two versions of FE-I1 an
•Second generation of opto-chips, including VDC-I2, VDC4-I2
•LVDS Buffer chip for use in support cards
•Test chips, including Analog Test Chip, modified CERN STS

structure) and CapTest chip including capacitance measurem
60 different M1/M2/M3 structures.

•Alignment marks for bump-bonding vendors.

•LBL has taken responsibility for global integration and verific
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Comments on overall LBL role
•We are the critical player in this area. 
•For the FE-I1 chip, the only collaborating institute was Bonn

physicist/designer and one EE student working on the chip.
significant contributions in the analog blocks, and assemble
chip. However, they have required significant help from our 
complete some of this work properly, and we do not anticipa
them in future submissions. In addition, their senior physicis
leaving for a C4 position in Mannheim this Fall. Their studen
in LBL working on FE-I2.

•We have developed the extended 0.25µ design kit used for a
run. In addition, a major effort has been invested in designin
library for both all digital and mixed-mode chips.

•We have taken responsibility for all of the final verification, re
technical contact role for the submission. This is significant 
responsibility.
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Yield results from FE-I1 run:
•Initial order was for 12 wafers, nominally considered two bac

engineering runs (we do not know what IBM actually did).
•Wafer probing gave average yield of about 15% for FE-I chip

problems occuring in a small number of circuits, particularly
(a 2880-bit shift register, segmented into 9 independent piec
position dependent, with characteristic “rings of death”.

•Received 4 additional wafers from this run. They were initiall
processing, then metallization was completed. These wafer
more significant pathologies, and we found a yield of only 3

•Finally, IBM agreed to process two additional lots of wafers (
received the wafers from the first of these lots in early June,
basis. Both Bonn and LBL have confirmed a high yield of 80
tests. A more complete menu of selection criteria, including 
at reset and during operation, 100% efficiency for digital inje
current reference and DAC slope cuts, etc. leads to a yield o
5 wafers probed so far in LBL.

•CMS APV25 project has suffered a similar history, with more
engineering run gave yield of 70-80%, followed by two bad 
5% on some wafers, with “rings of death”), one good lot, an
lots (30-40% yield). 
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•Foundry has performed significant analysis and does not un
Claims no other customers (besides CERN) see such widel

•For production, assume “average” yield of about 50%. Do no
have seen the end of the bad lots. In the frame contract, the
contractual basis for returning wafers based on user-defined
(requires a minimum of 3 lots to establish). For example, if w
target yield of 50%, then CERN can return wafers with less t
we can establish a 70% target yield, CERN can return wafer
yield. Not clear how this will be handled by CMS and ATLAS
discussions are starting. CMS APV needs about 500 wafers
300 wafers, and they are foreseen to be the major initial IBM
TRT and LArg, plus CMS pixels, and many other smaller pr
customers at a smaller scale. Initial TRT engineering run for
good yield (more than 80%).

Production assumptions:
•Use assembly yield projections from Maurice, assumption of

yield, plus projection that production wafers containing only 
provide 300 die/wafer. Maurice calculates that we need a to
disk production and 171 wafers for barrel production for two-
would be 62 and 255 for full 3-hit system.
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Next Steps towards a production F
•After several months of study in the lab, with irradiated asse

testbeam, we start to have a fairly clear picture of the perfor

FE-I1 Testing:
•Using bare single chips, and single chip assemblies, have ca

measurements of electrical performance.

•Have irradiated 8 bump-bonded single chip assemblies to no
equivalent and 65 MRad) at the PS using 20GeV protons. T
have been evaluated in detail, and the electronics performa
unchanged.

•All basic performance parameters have been measured, inc
dispersion, noise, threshold tuning performance, TOT meas
cross-talk, timewalk, and timing uniformity.

•Still some areas requiring further work, including absolute TO
more complete measurements of irradiated assemblies.

•Most recent summaries of measurements can be found in E
CPPM Pixel Week in June. Many new measurements made

•Conclusion: chips are close to meeting ATLAS requirement
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Comments on Irradiated Sensor Perfor
Some issues with sensor performance after ir

•Observe some changes in both CIS and Tesla sensors. Thes
increase in noise (at -30C where leakage is less than 2nA/p
inter-pixel cross-talk, and degradation of timewalk performan
isolate what is an electronics effect and what is a sensor effe
suggests that inter-pixel capacitance increases somewhat a
1015. This could be related to overcompensation of the low d
surrounds the n+ pixel implants by the trapped charge in the

•Observe significant increase in noise in most Tesla assembli
leakage monitoring circuitry indicates that there is an excess 
supplied by the HV bias supply), which is most significant at
This suggests a problem on the n-side of the sensor. Further
the problem is the bias grid. Normally, this grid is connected
order to turn off the punch-through biassing mechanism (the
held at roughly +1.0V by the preamplifier biassing). It appea
through voltage is significantly reduced by irradiation in the T
causing the bias grid connection to inject current into the pre
simulating excess leakage current. A better strategy would s
bias grid float, and to decouple it to analog ground to preven
frequency noise. This needs to be studied in more detail in th
sure there are no major problems, such as loss in charge co
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Remaining areas of concern for FE-I1:
•Before irradiation, the major area of concern is the threshold

threshold control. The threshold tuning procedure for FE-I1 
non-ideal behavior of the threshold control. First, the thresh
pixel is a non-linear function of the adjust current, second th
linear (and even non-monotonic) due to layout systematics,
performance of different pixels is very strongly row-number 
problems with the bias current distribution.

•Once the threshold dispersion has been tuned for a given ch
to many things. Significant changes in temperature degrade
dispersion, small increments in radiation dose (even after a 
degrade the tuned dispersion, and finally small changes in t
degrade the tuned dispersion.

•The performance of the “ganged” pixels is sufficiently differe
larger capacitive load, that we will provide an optimized prea
for them in the future. They require several times larger pre
the nominal performance specifications.

•After irradiation, the threshold dispersion increases significa
threshold control becomes even more difficult. The timewalk
further degraded, although this seems more likely to be a se
an electronics problem. In addition, the SEU-tolerant latche
have a much higher upset rate than expected.
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Major issues for FE-I2:
Threshold dispersion:

•Will begin from FE-I1B front-end design, and possibly further
decreasing Cfb from present observed value of about 6fF to

•Analyzing contributions of individual devices to dispersion, a
increasing size of some transistors to improve matching in t
this does not have a significant speed penalty.

•Reworking threshold control in pixel, implementing high-qua
DAC, and new bias distribution scheme. This should improv
flexibility of threshold adjustment, and reduce row-depende

Optimized preamplifier for ganged pixels:
•Large load presented by these pixels results in double the n

times the timewalk for nominal bias conditions. Long pixels 
slightly worse performance. Therefore, modify preamplifier o
pixels per column that are connected to ganged pixels.

Improve SEU management:
•Present design uses SEU-tolerant latch for Global and Pixel

information. Measured upset rate at PS was larger than exp
•Restore Global Register checksum in real-time to detect crit
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Improve pixel control design:
•Present design has power sequencing problems with VDD/V

other minor flaws.

Improve sense amplifier margin:
•At highest column hit transfer rate, needed for B-layer opera

only works to about 47MHz. Improve sense amplifier design
margin, to be sure the readout will work after high radiation 

Improve chip-wide signal distribution:
•Indications that some yield issues arise from very large, min

used in pixel chip. Improve these by buffering and reducing 

Miscellaneous:
•Fix timing problems in RCU and PixClk generator
•Fix mirror sizing errors
•Improve self-trigger
•Improve leakage monitoring control
•Improve overvoltage protection circuits
•Improve integration of linear regulator to allow better evaluat

VDD/VDDA at FE chip level.
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Milestones for FE-I (tentatively revi
Milestones exist for FE-I1 evaluation:

•Major milestones all completed now, but still analyzing irradi
module data, and testbeam data.

•Given the delays in FE-I2 compared to the original schedule (
and the high yield of the recent new lot, we have decided to
generation of chips to prepare a large number of “pre-produ
approximately 50 with each bumping vendor.

Milestones for FE-I2 (almost exactly FE-I1 + 1
•FE-I2 FDR: 10/8/02, Joint MCC-I2 and FE-I2 FDR to be held

October pixel week
•Submit FE-I2: 11/25/02
•FE-I2 wafers return: 1/20/03, assuming 8 week turnaround t
•FE-I2 wafer testing complete: 2/17/03, assuming 4 week tes
•FE-I2 bumped assemblies available: 3/24/03, assuming 4-6 
•FE-I2 module irradiation at PS completed: 5/03
•FE-I2 module evaluation in lab and at SPS completed: 7/03
•Complete relevant problem/change list: 7/03 
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Milestones for FE-I Production (FE-I3):
•PRR requirements are to demonstrate electronics performan

characterization of single chips and modules using FE-I2 ar
Consider that system test with at least 1-2 sectors and 1 bi-
required. Consider that irradiation and operation of 8 compl
and characterization in lab and SPS is also required.

•FE-I PRR: 8/03
•FE-I production submission: 9/03
•This aggressive schedule assumes that essentially no chang

FE-I2, so that preparation of the FE-I3 production run would
with most characterization work (unlike with FE-I2, where ch
next submission are largely sequential efforts).

•This is roughly three months later than the schedule we work
US ATLAS Pixel review. It continues to increase the pressur
assembly proceed with great efficiency and no unpleasant s
strongest justification for the fabrication of 50+50 modules w
advance the schedule of all module assembly work (as well 
system tests with many modules).
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Test System for FE Chips and Mod
•New generation designed. Incorporated experience with pre

optimized to cover complete range of production needs with
hardware and software, keeping same basic interfaces to pr

•Includes upgrades for greater range of test capability (vary a
timing), plus optimized buffering and variable frequency test

XIV

Architecture is directly based upon the original PLL approach, which had prove
ideally tailored to our needs and which represents the model upon which the A
ROD design was developed.  

System Architecture  
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Design Goals:
•New system uses current generation FPGA for much more p

flexibility (old FPGA completely full, making code revisions v
•New system allows partial (TPCC) or complete (PICT) evalu

margin available in each chip. Optimized cuts can then be u
modules that should continue to work properly after full lifeti

•Cover wider range of needs, including parametric testing at a
wafer probing, to module testing, and module burn-in.

•System designed to allow operation over wide range of supp
minimum of 1.6V up to 4V, to cover testing of 0.8µ and 0.25
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Test System Status and Schedul
TurboPLL:

•TurboPLL design is complete. Two versions fabricated, and 
Have now produced full 22 final modules. First seven have b
extensively in the collaboration for FE-I testing in the lab, PS
Remaining boards loaded, and will be tested at LBL over th

•TurboPLL VHDL is almost complete, with a relatively short m
bug list. We hope to clear this list by the end of July to have
version of VHDL. Significant flexibility remains in FPGA for 

PICT:
•PICT design completed in late 2001. Eight boards fabricated

one largely debugged and tested. This board has been ope
the lab, and allowed us to get all the problems out of the cor
TPCC. It has not yet been fully commissioned for wafer prob

•Expect PICT to be used only by probing groups (Bonn and LB
needing two functional setups plus a spare, or a total of 6 bo
Need to complete this work once time pressure for FE-I1 pro
now, Bonn and LBL have developed simpler probing system
most features, but not evaluating the margins. Expect to com
probing on remaining FE-I1 wafers, and be ready to go for F
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TurboPCC:
•Design was completed in March, and first prototypes were fa

during the PS irradiation. They worked well, but an additiona
in multiplexed mode.

•The board was revised, and production parts orders were co
have loaded three of the production TPCC boards, and they
extensively used in Geneva during the recent testbeam per

•The parts are waiting at the loaders for the final go ahead to lo
boards. We have issued that approvall yesterday, after reso
issues with the new board. loaded boards will return in two 
debugging starts. Expect to distribute cards during August.
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Evolution of testing systems
•Present testing has emphasized single chips or single modu

PLL/PCC design was optimized for. Simple tests can now b
modules using TPLL and TPCC, but the return data is only 
module at a time. This will take us through a “3-module” tes
partial stave.

•Next major step is basic system test with a sector or a half-s
Given present state of pixel opto-links, propose to proceed w
BOC. This is called the SimpleBOC, and uses LVDS links ov
for two groups of 7 modules. It would operate comfortably o
module end would be plug-compatible with the opto-daughte
would plug into PP0. This copper link could be transparently
opto-links as the necessary hardware/software becomes av

•This scale of test system will evolve into the object used dur
(module mounting onto sectors, and assembly of sectors int
ROD-based testing could be quite important during assemb
approach would be to use PLL-based system to exercise in

•Intend to build a 10% scale system for commissioning purpo
about 2004 in the SR building at CERN. Not clear when the
system testing would move from macro-assembly institutes 
system might not be set up significantly before delivery of b
CERN.
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Production Testing Plans

•New system addresses range of needs from wafer probing t
XVIII

IC Wafer Production  

Under -bump metallisation  

Bump deposition  

Wafer thinning  

Wafer dicing  

Flip -chip  

Loaded flex attachment  

Wire bonding  
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injection test, cou
scan, DAC cha

ele vated freq
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e
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On-detector Electronics Deliverab
US Responsibilities include:

•FE chip design, testing and production (LBL): Contribute roug
common procurement of the series production. Test roughly
wafer level.

•Opto-link chip design, testing and production (OSU): Contrib
50% towards the common procurement of the series produc

•Design and provide hardware/software for lab/testbeam sing
testing, production FE wafer probing, production module tes
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LBL engineering personnel estimate:

•IC tasks include FE-I2, and FE-I3 (production chip). Continu
concentrated on front-end issues, as other parts are essent

•Board tasks include completion of TPLL/PICT/TPCC plus Si
and completion of production burn-in system in FY03.

•Assume that all chip testing and most board testing is perfor
with use of engineering manpower only has needed for tech

Person Months in FY02 Months in FY03

Laurent B 3 12

Jean-Marie B 1.5 3

Peter D 0.5 1

Emanuele M 1 3

Gerrit M 1 4

Ivan P 2 1

John R 3 6

Bryan H 1 1

John J 2 1

Chinh V 1 2

Engineer Total 16 34

George Z 0.5 2

Helen C 0.5 1

Technician Total 1 3
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 the ETC02 estimate 
m FY03.
tinued reduction of 
 support additional 
f FY03 and FY04 
.

 wafers. US share 
53K. Already 
SU.
probing, test cards, 
k is completed in 
required here for FE-
d in different WBS.
K. Einsweiler          Lawrence Berkeley National Lab
US A

Electronics Cost Estimate:
Electronics Design manpower (1.1.1.3.1):

•Engineering personnel estimate above leads to about 290K 
compared to the ETC02 estimate of 205K. With our present
estimate for FY02 rollover of 60K, we should increase the F

•For FY04, the current estimate would be 116K, compared to
of 11K. This is an increase of 105K, assuming no rollover fro

•Major cause for the overall increase relative to ETC02 is con
base program support for ATLAS pixels at LBL, forcing us to
engineering personnel on the project budget. Relative size o
increases are related to schedule shifts compared to ETC02

Electronics Prototypes (1.1.1.3.2):
•Plan for FE-I2 run is a standard minimal production run of 48

would be 21.5% of frame contract price of roughly 245K, or 
allocated 64K for this purpose in FY02, and transferred to O

•Additional costs for test equipment (1.1.1.3.2.4) cover wafer 
and miscellaneous hardware and software. Most of this wor
FY02. ETC02 had no funds for FY03, but we estimate 5K is 
I2 prototype support. Module-related test cards are containe
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uired for production, 
 close to the disk 
t in the frame 
me spares, so base 
 the US share would 

 maintenance, and 
02 to be 11K in FY03 
 time.
K. Einsweiler          Lawrence Berkeley National Lab
US A

Electronics Production (1.1.1.3.3):
•Present estimate is based on 212 wafers calculated to be req

with the US paying MOU fraction of 21.5% of the total (very
fraction of the electronics). There is a major price break poin
contract at 250 wafers (10% reduction), and we will need so
the estimate on a 250 wafer order. This is a total of 650K, so
be 140K.

•Additional costs for wafer storage, probe cards, probe station
miscellaneous hardware and software are estimated in ETC
and 6K in FY04. See no reason to adjust this at the present
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