<u>Simulations in Pixel region (done by</u> <u>me) using standalone FLUKA2001</u>

- Most information found in Radiation taskforce report: http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/RADIATION/RadiationTF_document.html
- For ID volume, obtained:

1

- 1) Integrated fluences and doses in 2cmx2cm bins
- 2) Fluences at some boundaries (for Pixels, looked at B0 and B2).
- No new simulations performed since RTF report. Do we have enough information from past studies or are new simulations required?

Particles from pp interaction dominate radiation backgrounds in Pixel regions

- Note, contours parallel with z-axis
- Is 2cmx2cm grid fine enough for Pixel regions? (Note my studies were biased towards SCT)
- These data files available if required.
- Can parameterise these data.

Parameterising colour plot fluences?

Fluences at small radii dominated by particles from interaction point.

Fluences at larger radii dominated by neutron-albedo, greatest near endcaps.

I did this for <u>SCT upgrade</u>
<u>study</u>:

$$\Phi(r) = \frac{a_1}{r^2} + \frac{a_2}{r} + a_3 + a_4 \cdot r$$

Z(cm)	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₄
0	1.4×10 ¹⁷	3.7x10 ¹⁵	1.7×10 ¹⁴	-1.0x10 ¹²
150	7.0x10 ¹⁶	9.5x10 ¹⁵	9.7x10 ¹³	-5.7×1011
300	4.9×10 ¹⁶	1.2×10 ¹⁶	3.0x10 ¹⁴	-2.0×10 ¹²

- Note: this parameterisation above not suitable for Pixels because skipped first few bins in fit.
- Use these types of plots for future investigations? (Eg moderator design, impact of extra material etc.)

- 4
- What about fluences obtained at boundaries?
- Shown in blue are positions where average fluences were obtained. Compare to today's geometry.

• Fluences are averaged over boundaries (note for barrel very little variation along Z).

- Predicted fluences and doses in Pixel regions
- 10^{34} pp cm⁻²s⁻¹ and 10^7 seconds per year..

- Recently looked at ID fluences with AthenaG4 and compared with FLUKA predictions good agreement for PixB0.
- Use maximim value? Obtain other fluences from maximum value? (Eg $a_1/r^2 + a_2/r + ...$ etc.)
- Or re-simulate?

To summarise

- FLUKA fluence and dose predictions available, but should really be updated for Pixel region. Current predictions are probably overestimates.
- If new predictions required, two options?
 - 1) Simplest! Take existing numbers use maximum values to be conservative, or parameterise if more accuracy required.
 - Simulate with "new" geometry with correct scoring surfaces etc. Clearly best solution if precision required. Would require:
 - Someone to provide me with geometry (radii, thicknesses, material density etc.)
 - A couple of days of my time. Can't do in next few weeks. One possibility is that in about a month's time I have to teach someone FLUKA - I could use Pixel example as a training project.