

Two Pixel Configurations Under Study

- First: A Monolithic Integrated Structure
 - Axial array of six per half structure
 - 21.4mm wide detectors, array of 12
 - 6 cooling passages, double pass
 - 800mm long structure
- Second: Staves with Supporting Shell
 - Circumferential array of 14 staves
 - 16.2mm wide detector, 48 modules per stave
 - Overall length 778mm

Integrated Monolithic Structure

VG 2

Preliminary Evaluation of Integrated Structure

- Salient points
 - Constraint: stay clear zone around beam pipe
 - 70mm diameter
 - Support split into two halves
 - Requires equal modules around perimeter; for grouping two cooling tubes, inlet and exit same end
 - Heat load assumption for 800mm length=120W
 - Two pass for each cooling tube: 5mm ID to limit pressure drop to <200mbar
- Issues under study: cooling and structural support for minimum radiation length

Integrated Structure (Continued)

- Split Structure
 - Sandwich structure, with cooling tubes embedded between 2-layer composite facing
 - Composite laminate produced using K13D2U fibers and Cyanate Ester resin
 - 5mils for two layers (0/90)
 - 5 mm ID Aluminum tubing, 12 mil wall (~5.6 mm OD)
- FEA Structural Model
 - Tubes and foam core treated as solid elements
 - Mass of coolant, average density 145kg/m³
 - Outer surface laminate: used laminate element, with single material
 - Inner surface (saw-tooth) contain laminate elements with material designations for:
 - Composite layers (0/90)
 - Silicon module assembly, 0.5mm silicon
 - Cable, 0.9mm uniform along length

Gravity Sag

- Model based on 1G loading vertical
 - Sag measured in local coordinates
 - T1: translation is vertical along shell split plane upput Set NX NASTRAN Case 1, Contour, T1 Translation
 Maximum sag ~ 2.8microns

Thermal: 50C Temperature Change

- Thermal strain due to cool-down
 - Local coordinates, T2 is transverse to vertical plane of symmetry
 - peak shape changer is 5:5mit ronsonour: T2 Translation

Unfortunately the outplane distortion is a combination of T1 an T2

Thermal: 50C Temperature Change

- Thermal strain due to cool-down
 - X: direction 8.2 to 6.6 microns
 - X is split plane, using symmetry boundary conditions

Pixel Thermal Solution-Integrated Structure

Description

- Isotropic carbon foam: 50W/mK
 - Specialized low density (0.14g/cc) foam: enhanced to high conductivity
- Detector 250microns
- Chips 200 microns
- Bump bonds 25microns
- Interface resistance from bonding chip to foam equal to 0.8W/mK; 4mil thickness (CGL7018)
- Pixel chip heating: $0.6W/cm^2$
- Simulated tube wall -22°C

Results

- Peak chip edge =-16.5 °C
- Detector lower than -17.5 °C

W.O. Miller

Pixel Structure (Cont.)-Composite Interface

Addition of Laminate

- Determine effect of adding composite laminate beneath electronics
- 5mil Laminate thickness, plus
 4 mil CGL 7018 adhesive
 beneath the electronic chips
 - Laminate K=1.44W/mK
- Result of Laminate Addition
 - Detector peak -16.3°C versus -17.5°C before
- Detector temperature
 - Closely matches local chip temperature by virtue of bump bonds

Stave Approach

Staves With Support Shell

- Issues
 - Confined space, need additional room for support shell
 - Provide stave with 5 point support
 - Minimize sag and out-of-plane distortion from sub-cooling
 - Minimize amount of construction material
 - Combination of high conductivity foam as before in the integrated design
 - And two layer laminate, uni-tape or single layer of woven cloth
 - What happens to interfacial stresses
 - Calculated, but best resolved through testing
- Approach thus far
 - Design layout to compress geometry: inner diameter set at 70mm, outer diameter ? (most likely ~88mm)
 - Analyze basic stave stiffness and thermal performance

Initial Layout-Stave 1

Concept

- Retained features of integrated design, same cooling tube size
- Less foam, but added cylinder
- Outer diameter ~93mm
- Inner diameter 70mm

Stave 1: Basic FEA Configuration

- Effects simulated
 - Mass of coolant, average density 145kg/m³
 - Laminate, 2 layers 2.5mil, 0/90, K13D2U
- Radiation Length estimate=0.532%
 - Foam=0.11%
 - Tube=0.3%
 - Composite=0.11%
 - Coolant=0.012%

0.5mm of silicon to simulate chips and detector Also 0.9 mm of Kapton cable for additional mass

Second Configuration-Stave 2

- Goals
 - Reduce tube size and amount of foam material
 - Analytically evaluate impact on thermal and mechanical design

Stave 2: With Offset Mounts

 Space on back-side next to mounts appears adequate to place cable, for wrap-around mounting

Stave 1: Gravity Sag

Stave 1: Thermal Distortion

W.O. Miller

Stave 1: Thermal Strain

- Stress in Foam/Tube Interface
 - Evaluated without compliance of bonding adhesive (CGL7018 type)
 - Contraction of AI tube produces local stress of 300psi at interface
 - Effect best evaluated through testing
 - Plan is to use special Reticulated Vitreous Carbon Foam with enhanced thermal and mechanical properties

Stave 2: Gravity Sag

- Upper Stave position near vertical centerline
 - Modeled ½ length, <u>from mid plane of symmetry</u> of a 778 mm long stave
 - Moclel provides effect of a 5 point support stave
 Output Set: NX NASTRAN Case 1, Deformed(4.07E-7): Total Translation, Contour: Total Translation
- Resulting gravity sag 0.41microns

4.07E-7

Stave 2: Gravity Sag-Off Set Mount

- Effect on rotation of stave
 - Maximum rotation 1.9µradians due to sag

Stave 2: Thermal Distortion

- Stave with out-of-plane bending due to cool-down 50°C
 - Modeled ½ length, <u>from mid plane of symmetry of a 778 mm</u> <u>long stave</u>
 - Model provides effect of a 5 point support stave length
- Resulting bending 51.5 microns

Stave 2: Thermal Strain

- Stress induced by contraction
 - Less than in Stave 1 geometry
 - 145psi, more localized at ends
 - Be mindful that compliance of adhesive not present

W.O. Miller

Stave 2: Thermal Solution

- Model Parameters
 - Carbon Foam, 45W/mK
 - Composite Facing, K13D2U-55% vol fraction
 - 0/90, K_t=0.55W/mk, 220W/mK planar (no axial thermal gradient so this parameter is not an issue)
 - Chip 0.2mm
 - Bump bond thickness, .05mm
 - Detector, 0.25mm
- Adhesives
 - Tube to foam, 4mils, 0.8W/mK
 - Foam to composite facing, 2mils, 0.8W/mK
 - Chip to composite facing, 1mil, 0.8W/mK
 - Cable to detector module, 2mils, 1.55 W/mK

Stave 2: Thermal Solution-No Cable

Stave 2: Thermal Solution-With Cable

Cable heat load

- Adds a heat flux of 0.1W/cm² to the 0.6W/cm² chip heat load
- Gradient before was 4.7°C, detector middle to tube inner surface
- Would expect gradient of 5.48°C now
- Gradient *now* from detector middle to tube surface is 5.3°C
- Cable surface
 - Peak -14.8°C, or a $\Delta T=7.2$ °C
 - Peak affected by K assumed for the copper/Kapton cable
 - Used 0.35W/mK, whereas Kapton alone is 0.12

Stave 2: Thermal Solution-With Cable

Thermal plot with cable removed

 Illustrates uniformity in detector temperature

Detector Temperature Summary

- Thermal Solutions for two designs, but unfortunately different detector layouts
 - Integrated, different by chip over-hang
 - Stave-like, provides complete coverage
 - Two different foam/sandwich structures, one with less material analyzed first
- With time will bring configurations into consistency
- However, the predicted detector surface temperature for each is:
 - Low-mass stave without cable heat load, -17°C
 - Low-mass stave with cable heat load, -16°C
 - Integrated Foam/Tube Support without cable load, -17.5°C
 - Caution, as analysis proceeded slightly more conservative properties were used for the composite facing and the foam:
 - Facing 0.55W/mK versus 1.44W/mK
 - Foam 45W/mK versus 50W/mK

