ATLAS Pixel Sensors

Sally Seidel University of New Mexico **U.S. ATLAS Pixel Review** LBNL, 11 March 1999 1

Features of the Experiment

Impact on the Sensor Design

Guarantee stable

operation @ high

full depletion after

inversion.

•10-year fluence @ innermost layer >10¹⁵ cm⁻² (1-MeV n)

•1.4 x 10⁸ channels (2228 sensors) plus spares; want to test these under bias before investing chips on each

Implement integrated

voltage; operate below

bias circuit.

•All of the other subsystems located outside the pixels

Minimize multiple scattering; minimize mass. Many of the sensors' detailed features follow from extensive study of radiation damage effects. Summarize those:

- 2 types of damage:
 - non-ionizing energy loss in the silicon bulk
 - ionization in the passivation layers
- Principal effects + impact on design:
 - change in dopant concentration leads to type inversion + increase in $V_{depletion}$
 - segment n-side to operate inverted sensor partially depleted
 - design for high operation voltage
 - increase in leakage current
 - cool sensor to avoid increase in noise, power consumption
 - decrease in charge collection efficiency
 - maintain good S/N; minimize capacitance

Total fluence predicted for each component's lifetime

Component	Lifetime (years)*	Maximum Fluence (x 10 ¹⁴ 1-MeV n/cm ²)		
B-layer	5	10.44		
Layer 1	10	6.64		
Layer 2	10	4.00		
Disk 1	10	3.92		
Disk 2	10	3.76		
Disk 3	10	3.76		
Disk 4	10	3.68		
Disk 5	10	3.60		

*This assumes luminosity ramp-up from 10³³cm⁻² to 10³⁴cm⁻² during Years 1-3

Parameterize the effective dopant concentration N_{eff} to predict the depletion voltage as a function of temperature and time:

 $V_{dep} \propto |N_{eff}| = |N_a + N_c + N_Y|$, where

$$\begin{split} N_{a} &= g_{a} \mid \Phi \cdot \exp(-k_{a}t), \text{ ``beneficial annealing''}, \\ N_{c} &= N_{eff,0} \cdot [1 - \exp(-c\Phi)] + g_{c}\Phi, \text{ ``stable damage''}, \\ N_{Y} &= g_{Y} \cdot \Phi \cdot [1 - (1 + k_{Y1}t)^{-1}], \text{ ``reverse annealing''}, \\ k_{a} &= k_{0a} \cdot \exp(-E_{aa}/k_{B}T), \\ k_{Y1} &= k_{0Y1} \cdot \exp(-E_{aY}/k_{B}T), \end{split}$$

 Φ is fluence, t is time, T is temperature, and g_a, k_{0a}, E_{aa}, c, g_c, g_Y, k_{0Y1}, and E_{aY} are known parameters.

Use this to predict $V_{depletion}$ versus calendar time:

and to select operating and storage temperatures:

•Assuming Standard Access Procedure: 2 days @ 20°C + 14 days @ 17°C

General Features of the Production Sensor Design

- Rectangular sensors:
 - 2 chips wide x 8 chips long -
 - Each chip: 24 columns x 160 rows
 - Each pixel cell: $50 \times 300 \ \mu m^2$
 - Active area: 16.4 x 60.4 mm^2
 - Overall dimensions depend on module design but will lie between (18.4 x 62.4 mm²) and (21.4 x 67.8 mm²).
- n⁺ implants (dose >10¹⁴/cm²) in n-bulk to allow underdepleted operation after inversion
- Thickness:
 - $-200 \,\mu\text{m}$ inner barrel
 - $-250 \,\mu\text{m}$ outer 2 barrels + disks

Route to a Detailed Design

- First Prototypes -
 - Designed in '97, fabricated by 2 vendors (CiS + Seiko), now under study
 - Each wafer contains
 - 2 designs for full-size sensors ("Tiles") that can be assembled into (16-chip) modules
 - 17 "single-chip sized" sensors that examine variations
 - Response to rad damage is studied but not used as a rejection criterion against a vendor.
- Second Prototypes -
 - Now in design; to be ordered in April '99
- Pre-production Sensors -
 - To be designed and ordered in the first half of 2000.
- Production Sensors -
 - Must be ready to begin assembly in 2000.

The First Prototypes

4-inch wafers, 280 µm thick, with:

- 2 full-size Tiles
- 17 single-chip sensors
- various process test structures

Features of the Full-size Sensors ("Tiles")

- Pitch 50 x 400 µm² to match prototype (18 column x 160 row) electronics
- 47232 cells per sensor
- cells in regions between chips are either
 - elongated to 600 µm to reach the nearest chip, or
 - ganged by single metal to a nearby pixel that has direct R/O

Elongation and Ganging of Implants in the Inter-chip Region

n-side isolation

This is the principal difference between the 2 Tiles.

- Tile 1: "atoll" p-stops (implant dose ≥ 10^{13} /cm²) for low inter-pixel capacitance.

- Dimensions:
 - $-\,n^{+}$ implant width 23 μm
 - p-stop implant width 5 μ m
 - gap between $n^{\scriptscriptstyle +}$ and $p^{\scriptscriptstyle +}$ 6 μm
 - gap between p-stops 5 μ m

– Tile 2: p-spray

A medium $[(3.0 \pm 0.5) \times 10^{12}/\text{cm}^2]$ dose implant is applied to the full n-side without masks, then overcompensated by the high dose pixel implants themselves.

Figure 5, detail B

- Dimensions of structures:
 - $-n^+$ implant width 13 μm
 - floating n^+ ring width 6 μm
- Purpose of the floating ring: to keep the distance between implants small (for low E) but maintain low capacitance between ¹³ neighboring channels.

Simulations were undertaken to minimize capacitance and lateral **E**

4 design variations:

Option Predicted Total Capacitance (fF)

a	162
b	261
c	363
d	128

Option (d) was utilized in the Tile 2 design.¹⁴

The **p-stops** are a well-established technique among sensor manufacturers.

Benefits of p-spray:

•Reduces cost by eliminating a photolithographic step.

•Eliminates possibility of overlap of high dose n and high dose p in case of photolithographic failure or mask misalignment; permits smaller gaps between structures.

•p-spray is adjusted to the oxide charge saturation value so that as ionizing irradiation occurs, increasing oxide charge compensates the p-spray acceptors, reducing lateral \mathbf{E} and so reducing microdischarge and increasing $V_{breakdown}$ throughout the sensor's lifetime.

- Guard ring / treatment of the edge
 - on the p-side: a 22-ring structure of 10 μm wide p⁺ implants. Pitch increases with radius from 20 μm to 50 μm. Metal overlaps implant by 1/2 gap width on side facing active area. Total width = 525 μm. (See Bischoff, et al., NIM A 326 (1993) 27-37.)

- on the n-side: no conventional guard ring.
 Inner guard ring of ~90 μm width surrounded by a few micron gap. Region outside gap is implanted n⁺ and grounded externally. On Tile 1, center 10 μm of gap is implanted p⁺ for isolation.
- Recall that the chip is only a bump's diameter away. This design guarantees no HV arc from n-side to chip.

- Double-metal
 - 30% of prototypes use double metal to
 - route ganged pixels in inter-chip region
 - prototype busses (on Tile 2 only) for module interconnect studies
 - Dimensions:
 - $\geq 10 \ \mu m$ wide
 - thicknesses:
 - Metal 2: 1.5-2.0 μm
 - Metal 1: 1.2-1.5 μm
 - minimum spacing 20 μm
 - contact holes: $3 \times 10 \ \mu m^2$ in masks
 - SiO₂ or polyimide insulator
- As-cut dimensions
 - To accommodate the busses, Tile 2 is wider than Tile 1:
 - Tile 1: 18.6 x 62.6 mm²
 - Tile 2: 24.4 x 62.6 mm²

• Pads

- 18 µm diameter circular bump pads with 12 µm diameter passivation openings
- Passivation
 - $-1 \,\mu m$ thick silicon nitride
- Back side
 - $p^+ \text{ implant (dose > 10^{14}/cm^2)}$
 - 30 x 100 µm² apertures in metal below each pixel for stimulation by laser
- Metallization
 - 2 6 µm narrower than implant to avoid microdischarge

- Bias grid
- For high yield on assembled modules, we want to test sensors prior to attaching chips - so we want to bias every channel on a test stand without a chip and without contacting implants directly. A bias grid is included on Tile 2:
 - Bus between every pair of columns connects to small n⁺ implant "dot" near each pixel
 - When bias is applied (through a probe needle) to the grid, every pixel is biased by punchthrough from its dot.
 - p-spray eliminates need for photolithographic registration, permits distance between nimplants to be small → low punchthrough voltage
 - Bias grid unused after chips are attached but maintains any unconnected pixels (i.e., bad bumps) near ground
 - Dot expected to sacrifice 0.8% of active area.

Bias Grid

- First Prototype electrical and mechanical requirements
 - thickness 300 μ m
 - thickness tolerance $\pm 10 \ \mu m$
 - mask alignment tolerance $\pm 2 \mu m$
 - initial depletion voltage 50-150V
 - initial breakdown voltage $\geq 200V$
 - initial leakage current < 100 nA/cm²
 - initial oxide breakdown voltage $\geq 100V$
 - implant depth after processing $\geq 1 \ \mu m$

Radiation hardness

Not required of the prototypes, but they are tested for it. Required of production sensors after 10^{15} p/cm²

- Breakdown voltage > 600V
- Depletion voltage (normalized to 300 μm thickness) < 800V
- Leakage current (@ -5 °C and 600 V, after 1 month of annealing at 20 °C) <25
 nA per cell

Variations Studied on **Single-chip Sensors**

- Bricking offset cells in neighboring rows by 1/2 length to
 - improve z-resolution on double hits
 - dilute cross talk coupling over 4 cells instead of 2
 - 3 geometries:
 - conventional bricking with single metal routing to preamps
 - conventional bricking with double metal routing to preamps
 - "partial bricking"
- Common p-stop
- p-stop + p-spray
- Geometrical variations on implants + metals 24

Organization of Pixel Sensor Design and Testing

- Design + testing of prototypes + test structures done entirely by ATLAS; GDS-2 files provided to vendors.
- 30 wafers were received in November 1997:
 - From CiS: 10 single-metal, 6 double-metal, 4
 200-μm thick low-ρ mechanical
 - From Seiko: 7 single-metal, 3 double-metal
- Testing involves
 - static studies of irradiated + unirradiated,
 bumped + unbumped devices, and
 - test beam studies of sensors with amplifiers.

Testing Methods and Results

I-V characteristics are used to identify fabrication defects.

Set-up for unassembled sensors:

•n-side guard ring is contacted via the scribe line.

•Above full depletion, pixels are pinched off from guard ring; their current reaches the guard thermionically.

•The potential of each pixel depends on its distance either from the bias grid or from the ²⁶ guard ring.

Measurements were made on devices from both vendors, for single-metal and double-metal:

•On new, unirradiated wafers

•After dicing

- •After bumping
- •After flipping
- •After irradiation

. . .

Sample Results:

•I-V curves of Tile 2 sensors, before assembly:

•Sensors with no significant current rise above full depletion

•Sensors with small but acceptable current rise above full depletion

•Sensors which break down below full depletion

•I-V curves of Tile 2-like single-chip sensors, before and after bumping and flipping

•I-V characteristics before and after irradiation

•consistent results with protons at LBNL and pions at PSI

•results obtained at different temperatures are normalized to -10°C

Sample results for Tile 2-like single-chip sensors -

Sample results for Tile 1-like single chip sensors:

Sample Results from Testbeam Studies of Unirradiated Detectors

Charge Sharing occurs within $\pm 7\mu m$ of the pixel edge:

Run 2150 - IZM4 Threshold 3000 Charge Sharing

•XLOC is position relative to the interface between 2 pixels

• η = (ToT of the rightmost pixel in a pair) / (T 32 T of the pair) for 2-pixel clusters

Spatial Resolution Using Time over Threshold Information: 12.8 µm, including extrapolation error; 11.2 µm, deconvoluted.

X Residuals - Analog

Sample Results from Testbeam Studies of Irradiated Detectors:

Efficiency vs. Time

•Tile 2 type sensor

•Efficiency = 95.8% for high bias

Efficiency versus bias voltage, for an irradiated sensor, compared to results for unirradiated sensors.

	Dose: 5 x 10 ¹⁴ neutrons/cm ²					No Dose
	3342	3341	3336	3343	3330	3286
	CIS T2	CIS T2	CIS T2	CIS T2	CIS T2	Τ2
	-65 V	-125 V	-250 V	-399 V	-445	-150 V
1 hit	43.0	62.8	88.0	88.1	89.8	86.7
2 hits	0.5	0.8	3.0	6.5	6.0	12.1
eff.	43.5	63.6	91.0	94.6	95.8	98.8
0 hits	54.7	34.6	7.2	4.7	3.4	0.6
1/BX+1	0.4	0.6	1.1	0.5	0.5	0.4
1/BX-1	0.7	0.7	0.5	0.1	0.1	0.1
1/any	0.5	0.3	0.1	0.1	0.1	0.1
2/BX+1	0.0	0.0	0.0	0.0	0.0	0.0
2/any	0.1	0.2	0.1	0.0	0.1	0.0
losses	56.4	36.4	9.0	6.5	4.2	1.2
Charge	6.55(3)	7.12(3)	8.00(3)	9.03(3)	8.70(3)	20.09(5)

Efficiency Summary (%)

Milano - June 98

Atlas Pixel Collaboration

Lost Hits and Charge Collection Efficiency *0 hits Losses*

•Some lost hits concentrated in the region of the bias grid on Tile 2 design...

...but SSG, another test structure with a simplified bias grid in the same submission, showed considerably better charge collection behavior and all other characteristics comparable :

Charge Collection vs. Position

Threshold 2K e⁻ 1 + 2 pixels clusters

The SSG

Small Gap (p-spray)

Conclusions from Prototype 1:

•Prototypes have been fabricated by 2 vendors and successfully tested.

•Within present statistics, sensor characteristics are not degraded by any part of the assembly procedure.

•p-spray selected as baseline isolation technology.

•Design SSG looks good for charge collection, efficiency, high voltage stability.

____ __ ___

•Simulations were conducted to further optimize the SSG against charge loss + capacitance. The revised design was submitted to the manufacturers as Prototype 1.5, to be ready this monthe

The "New SSG":

Other new results to input to the design:

1) From the ROSE Collaboration: Oxygenenriched silicon is significantly more radiation hard than standard silicon as tested with protons or pions.

2) Modified p-spray: attains a lower boron dose near the lateral p-n junction, thereby reducing the electric field. The surface charge at the junction is optimized at the saturation value $(1.5 \times 10^{12} \text{ cm}^{-2})$ and is slightly higher in the center $(3.0 \times 10^{12} \text{ cm}^{-2})$ for safe overcompensation. The higher dose in the center also reduces the capacitance.

Prototype 2 wafers now in design:

3 Tiles per wafer; all New SSG style:

•variations on bias grid to optimize yield

•To be ordered in April from at least 2 firms.

•Order split to examine extra rad tolerance of modified p-spray and oxygen-diffused silicon.

The Production Program

•234 thin B-layer sensors + 1994 250 μ m sensors for the remainder.

•About 1000 wafers required if yield is 75%.

•3 Tiles + test structures on each 4" wafer.

•Expect first 50 wafers require 8 weeks for a medium foundry; 1 additional week for each subsequent 25-wafer batch \rightarrow we require one foundry-year.

•Expect to distribute production to 2 vendors over 2 years.

Anticipated Production Sensor Testing Program

On all wafers:

- •visual inspection by microscope
- •probing of thickness
- •I-V of every tile

On a representative sample of control structures:

•I-V and C-V

 $\bullet V_{flatband}$, layer thickness, implant resistivity, Al sheet resistance, etching uniformity, and alignment

Testing and instrumentation capabilities at UNM:

- •For silicon sensor characterization:
 - •Alessi manual and semi-automatic probe stations with Mitutoyo Finescope microscope
 - •Panasonic CCD camera with Sony monitor
 - •Keithley 706 scanner
 - •Custom low capacitance probe tips and etching apparatus
 - •Dark box with Faraday cage
 - •Keithley 617 programmable electrometer with GPIB
 - •Keithley 237 high voltage Source/Measure Unit with GPIB
 - •HP 4284A precision LCR meter with GPIB
 - •Kulicke & Soffa 4123 wirebonder
 - •Class 10K clean room

•Chest & upright freezers and thermoelectrically cooled insulated box instrumented for cold measurements of irradiated sensors

•350 MHz Pentium computer and customized LabVIEW

•Software Tools for Silicon Device Characterization and Simulation:

- •Silvaco Atlas 2-D and 3-D device simulator
- •HSPICE with 2-D electrostatic solver
- •IES 2-D and 3-D electrostatic solvers

•Data Acquisition:

- •ATLAS PixelDAQ Test Stand with NI VME interface, crate, & computer
- •1064 nm laser and focussing optics in dark box with Faraday cage
- •SR-90 Source and custom collimators
- •Computer controlled positioning tables

•Standard internal electronics and machine shop resources

The UNM wafer probing lab

The UNM Source/Laser Test Stand

The Schedule:

Baseline Current Item

12/1/98	Market Survey for Second Proto's initiated			
12/1/98	Second Prototype Preliminary Design Review completed			
2/12/99	Market Survey for Second Proto's concluded; 4 firms qualified; Price Enquiry initiated			
3/29/99	Second Prototype Final Design Review			
4/13/99	Complete testing of First Proto's			
4/27/99	Complete Second Proto design; select Second Proto vendors			
8/30/99	Receive Second Proto's			
1/20/99	Complete testing of Second Proto's			
1/20/00	Select production sensor type			
1/20/00	Production Sensor Final Design Review			
1/20/00	Select production vendors			
2/24/00	Start pre-production procurement			
6/22/00	Complete pre-production procurement			
7/19/00	Complete pre-production design			
12/13/00 12/13/00 Complete pre-production fabrication ⁵⁰				
5/29/01	Complete pre-production testing			
	12/1/98 12/1/98 2/12/99 3/29/99 4/13/99 4/27/99 8/30/99 1/20/00 1/20/00 1/20/00 1/20/00 2/24/00 6/22/00 6/22/00 5/29/01			