HP FE-B ATLAS PIXEL DEMONSTRATOR ELECTRONICS

Laboratory and Testbeam Results

- Overview of laboratory test system
 - Wafer probing results
- Laboratory results from single-chip assemblies
 - 1998 Testbeam results

John Richardson LBNL

U.S. ATLAS Pixel Review Berkeley 11th March 1999

The Demonstrator Test System

PixelDAQ HIERARCHY

Wafer Probing

Procedure:

• Power consumption check, $I_{\rm AVDD} \approx 40 {\rm mA}, I_{\rm AVCC} \approx 17 {\rm mA}, I_{\rm DVDD} \approx 48 {\rm mA}.$

• Writing and reading of DAC, global and pixel registers.

• Serial data check.

• Check for presence of time and level hitbus' along with test-pixel preamp output.

• Test digital injection \forall channels.

• Test all channels with analogue charge injection, evaluating threshold and $\sigma_{\text{threshold}}$.

• \approx 70 seconds/chip, 85 chips/wafer.

Results:

• $6\frac{1}{2}$ wafers probed.

• Out of 552 dice probed (> 1.5×10^6 channels), 39 failed to pass all tests.

					_			
		14	24	24	44	ISA		
				1111				
		18	28 1111	38 1111	48 1111	68		
	64	7А	DA .	94	10A	11A	120	1
	18	1111	1111	1111	108	1111	126	
		пп	iiii	2222	1111	1111	1111	
	13A	14A	15A	16A	17A	15A	124	
	138	148	158	108	17B	158	198	
	1111	1111	1111	1122	1111	1111	1111	-1
204	21A 1111	22A 11111	23A 11111	24A	25A 11111	26A 1111	274	28A
208	218	228	238	248	258	208	270	258
	1111	1111	1122	1111	1111	1111	1111	
29A	304	51A	32A	334	344	25A	358	37A
298	308	31B	328	338	3/8	268	368	378
	1111	1111	1111	1111	1111	1111	1111	
11.	364	26A	404	41A	42A	404	447	177
	388	398	408	418	428	438	44B	
	1122	1111	1111	1111	1111	1111	1111	
	45A	46A	47A	484	49A	soA	51A	
		1111	1111	1111	1111	1111	1111	
	458	468	479	488	498	1111	518	
		524	\$3A	54A	SEA	56A		
			1111	1111	1111	1111		

'Single-Chip' Sensor Assemblies

 \bullet Tile-1-type (e.g. ST1): Individual p-stops providing isolation.

• Tile-2-type (e.g. ST2, SSG): N-side isolation provided by means of p-spray coverage, atoll n-ring for charge division enhancement on ST2.

Assemblies evaluated to date: (*H8 testbeam also)

• CIS ST1-01.*
• ČIŠ ŠT2-02.*
• ČĪŠ ŠŠĢ-01.*
• ČĪŠ Š7Ŏ-01 *
• ČĪŠ Š8Ŏ-01.*
• CIS SBB-01 *
• CIS ST1 irradiated to 5×10^{14} .*
• CIS ST1 irradiated to 1×10^{15} .*
• CIS ST2 irradiated to 5×10^{14} *
• CIS ST2 irradiated to 1×10^{15} *
• CIS ST2-01 SiON
• \overrightarrow{CIS} $\overrightarrow{ST2}$ -02 SiON
• \overrightarrow{CIS} $\overrightarrow{ST2}$ -03 SiON
• CIS ST1-01 SiON
• CIS ST1-02 SiON
• CIS ST1-03 SiON
• CIS 11D S80-01
• CIS 01S S70-01
• CIS 01S SSG-01
• CIS 01S SXT-02
• CIS 11D S80-01
• CIS MCMD ST1
• ČĪŠ MČMD ŠT2

Fluences are $1 MeV ncm^{-2}$ NIEL equivalent

Principal prototype design philosophies

medium-gap

p-stop

small-gap

p-spray

Single-Chip Parameterisation Procedures

For all assemblies:

- Threshold and noise evaluation \forall channels.
- Determination of optimal trim-DAC settings.
- Re-evaluation of threshold dispersion post-tune.
- Time-over-Threshold measurement calibration using charge injection ∀ channels.
- Creation of bad-channel database.
- Collection of 15,000,000 source events using Cd109 to determine bump-bonding success (fast-OR from all channels (hitbus) used as trigger).
- Evaluation of sensor bulk behaviour (leakage current through preamps/guard and approximate depletion voltage).
- Determine absolute charge calibration using \mathbf{Cd}_{109} X-ray source and $\mathbf{Am}_{241} \gamma$ source.

Also investigate:

• Crosstalk behaviour and timewalk performance.

Single-Chip Assembly on Support Card

Bare FE-B Chip: Untuned Configuration

$\sigma_{Thresholds} = 283$ e-, ENC = 67e-

plat_td4

Bare FE-B Chip: Tuned Configuration

 $\sigma_{Thresholds} = 119e$ -, ENC = 70e-

plat_tun

ST1 Assembly: Tuned Configuration

 $\sigma_{Thresholds} = 105e$ -, ENC = 116e-

-3400 -33300 / 33300 / 3200 3100 3000 Entries per 100e- bin Entrie X²/10 Const Mean 602.0 3015 6000 8000 10000 Threshold / e-⁵⁰⁰ 1000 1500 160*(Column) + Row Entries per 9e- bin 200 120 120 -9 / 9200 400 -/--36 328.9 115.9 16.23 Mear ⁵⁰⁰ 1000 1500 160*(Column) + Row Noise / e-

CIS ST1 64/5/20/96/28/80/64/107 tuned 150V 23nA

SSG Assembly: Tuned Configuration

 $\sigma_{Thresholds} = 120e$ -, ENC = 175e-

CIS SSG 64/5/20/96/100/80/64/107 tuned 150V 129nA

Irradiated ST1 Assembly: Tuned Config.

250V, $I_{leak} = 121 \mu A$, ENC \rightarrow 15000e-!

CIS Irrad2 ST1 64/1/20/96/32/80/64/120 tuned2 -7.0C 250V 121.0uA

Irradiated ST2 Assembly: Tuned Config.

600V, $I_{leak} = 63 \mu A$, ENC = 262e-

CIS ST2 Irrad 1E15 64/1/20/96/65/80/64/84 tuned -8.8C 600V 63uA

Time-Over-Threshold Calibration Example

CIS ST1 64/5/20/96/28/80/64/107 150V 23nA

Absolute Calibration Example

5% agreement here with $\rm Cd_{109}$ and $\rm Am_{241}$

Bump-Bond Evaluation: Cd109 Hitmaps

Only 1 'dead' channel on this MCMD example \rightarrow missing bump

mcmd2

Bump-Bond Evaluation: SSG Example

5 instances of merged bumps

Crosstalk examination: Methodology

• For nearest-neighbour study, define strobe-enable mask which illuminates one pixel per column pair.

• Disable the strobed pixel for readout and enable the two nearest neighbours.

• Step this mask configuration along the shift register 320 times so that all channels have been fired.

• For each mask step scan the charge input from 0 - 250,000e- and fit s-curves to each channel.

• For each channel the quotient of it's individual threshold (derived earlier) and the s-curve median indicates the percentage of charge loss.

• For ganged-pixel study, inject one pixel at a time and enable all other channels in the ganged region for readout.

Crosstalk Evaluation: ST1 Sensor Design

Crosstalk $\approx 2\%$

CIS ST1_01 %Q loss to neighbour in column

Crosstalk Evaluation: ST2 Sensor Design

Crosstalk $\approx 1\%$

CIS ST2_03 %Q loss to neighbour in column

Crosstalk Evaluation: SSG Sensor Design

Crosstalk $\approx 2.3\%$

CIS SSG_01 %Q loss to neighbour in column

Timewalk study: Methodology

- Define a 2D scan in PixelDAQ.
- Scan the entire range of strobe-delay (256 steps of 250ps) as the inner scan.

• In the outer loop scan the input charge, beginning on threshold. Take many points at low values and sparsify towards the maximum input charge (18 steps total).

- Issue several accepts in order to obtain a single s-curve (of efficiency vs. time) per channel per charge value.
- For each channel, fit the s-curves and plot their medians vs. the overdrive, i.e. the charge above threshold calculated individually.
- Fit the timewalk function \forall channels.

<u>Timewalk</u>

ST1-01 with fast shaping (i.e. FPDAC=20) mean threshold = 3762e-.

Timewalk SSG Example

 \geq = asymptotic time as $Q \rightarrow \infty$ which has been \sim subtracted here. f(Q)||Ξ

CIS SSG_01 FPDAC=20 THBDAC=100

Timewalk ST2 Example

ST2-03 SiON with fast shaping (i.e. FPDAC=20) mean overdrive for timewalk relative to 50 ke- = 25 ns is 1609e-.

CIS ST2-03 SiON FPDAC=20 THBDAC=83

Sensor I-V Characterisation Technique

Sensor I-V Characterisation

ST1-01 draws 17nA @ 150V \rightarrow 6pA per channel.

CIS ST1_01

Sensor I-V Characterisation

ST1 irradiated to $1 \times 10^{15} \text{ncm}^{-2}$ draws $450 \mu \text{A} @ 600 \text{V}$ $\rightarrow 150 \text{nA}$ per channel (-8°C). Breakdown at 630 V.

CIS ST1 Irradiated to 1.0e15 n/cm2 NIEL equivalent at -7.8C

Sensor I-V Characterisation

ST2 irradiated to 1×10^{15} ncm⁻² draws 125μ A @ 1000V $\rightarrow 45$ nA per channel (-8°C). No breakdown.

CIS ST2 Irradiated to 1.0e15 n/cm2 NIEL equivalent at -7.8C

Pixel Detector Test Beam Results Atlas Week - September 1998

Data Collected

4 Data Taking Periods • April, June, August, September

Data Collected • Different read-out architectures FE A, FE B, FE C, Marebo

• Different Sensor Designs

Tile 1 (p-stop insulation) Tile 2 (p-spray insulation) Small Gap Common p-stop Cross talk optimised Several pixel geometries options

Pixel Detector Test Beam Results Atlas Week - September 1998

Data Collected

Data Collected

Different conditions

 normal beam incidence
 various θ and φ angles
 magnetic field
 different thresholds
 different operating voltages

• Radiation hardness T2 design irradiated T1 design Irradiated SG design Irradiated Analog F.E. irradiated

Pixel Detector Test Beam Results Atlas Week - September 1998

Efficiency

Build Pixel Clusters:

- Contigous Pixel
- Digital Algorithm for Position

Sample Definition :

- Tracking quality:
 - χ^2 probability > 0.2 in x and y views
- fiducial cuts:

remove edge of the detector to avoid resolution effects

Cluster - Track Matching:

Pixel Detector Test Beam Results Atlas Week - September 1998

Efficiency vs Time

Efficiency 'in time' efficiency 98.8 1.2 Losses 0.4 1 hit 82.0 0 hits 2 hits 14.6 0.2 not match not in time >2 hits 2.2 0.6 in time • 1

Detector ST2 - no Fluence - Thr. 3 Ke

Pixel Detector Test Beam Results Atlas Week - September 1998 F. Ragusa - Milano

8

Efficiency

Comparison of the Efficiencies for different Designs

Pixel Detector Test Beam Results Atlas Week - September 1998

Charge Collection

The Landau Distribution for the Tile 2 design shows a problem

Pixel Detector Test Beam ResultsF. Ragusa - Milano12Atlas Week - September 1998

Charge Collection

Comparison of the Charge Collection Efficiency for the 3 designs

F. Ragusa - Milano 15

Atlas Week - September 1998

Irradiated Detectors

Irradiated Detectors Efficiency: • T2 design -600 V bias • Fluence 1 x 10¹⁵ n /cm² 0.3 all 1 pixel clusters missing hits 400 0.2 300 0.1 0 200 -0.1 100 -0.2 0 100 -0.3 0 50 cluster ph 0.05 0 xloc vs yloc 0.3 0.3 timing losses timing losses 0.2 0.2 •• 0.1 0.1 . 0 0 ٠ -0.1 -0.1 • -0.2 -0.2 -0.3 -0.3 50 yloc vs ph 0 100 -0.02 0.02 0 yloc vs xloc

	CIS Tile 2		Smal	l Gap	CIS Tile 1		
	ST2 2 Ke	ST2 3 Ke	SSG 2 Ke	SSG 3 Ke	ST1 2 Ke	ST1 3 Ke	ST1 3 Ke
	ndsl	nds	ndsl	nds	ndsl	nds	fp20
1 hit	74.7	82.0	65.7	71.7	67.2	72.0	75.9
2 hits	21.9	14.6	30.7	25.6	29.8	25.3	21.3
≥3 hits	2.4	2.2	2.6	2.0	2.7	2.4	2.3
Efficiency	99.0	98.8	99.0	99.3	99.7	99.7	99.5
Losses	1.0	1.2	1.0	0.7	0.3	0.3	0.5
0 Hits	0.3	0.4	0.3	0.2	0.0	0.1	0.3
Not matched	0.1	0.2	0.2	0.2	0.2	0.1	0.1
Not in time	0.6	0.6	0.5	0.3	0.1	0.1	0.1
1 hit not in time	0.5	0.5	0.3	0.2	0.0	0.1	0.1

		Dose: 1	x 10 ¹⁵ n		Dose: 0.5 x 10 ¹⁵ n			
	ST2 2.8 Ke 600 V	ST2 hylocic.15 bulocic.015	ST2 2.2 Ke 300 V	ST2 2.2 Ke 150 V	ST2 2.4 Ke 600 V			
1 hit	86.3	92.2	84.1	71.0	71.0		9	
2 hits	7.6	4.5	3.1	1.6	20.6			
≥3 hits	1.4	1.5	0.7	0.2	5.9			
Efficiency	95.3	98.2	87.9	72.8	97.5			
Losses	4.7	1.8	12.1	27.2	2.5			
0 Hits	2.2	0.5	6.1	19.8	1.3			
Not matched	0.1	0.1	0.1	0.4	0.4			2
Not in time	2.4	1.2	5.9	7.0	0.8			
1 hit not in time	2.1	1.2	5.7	6.9	0.6			

Occupancy

- Tile 2 (p-spray) design • Fluence 1 x 10¹⁵ n/cm²
 - occupancy = 0.9×10^{-7}

Atlas Week - September 1998

Tile 2 Design

Pixel Detector Test Beam Results Atlas Week - September 1998

Small Gap Design

Atlas Week - September 1998

Tile 1 Design

Pixel Detector Test Beam Results Atlas Week - September 1998

<u>Conclusions</u>

• Demonstrator test system proven in lab and testbeam environments. Now running at several institutes in Europe and North America

• Yield of H.P. process for FE-B = 93%.

• FE-B FE performance very encouraging, meeting the specs in terms of threshold dispersion (after tuning), noise, crosstalk, occupancy, efficiency and leakage-current tolerence etc.

• Time-over-Threshold information has proven extremely useful in evaluating proposed sensor designs pre and post-irradiation. FE-B has been instrumental in this process.

• Testbeam data yields efficiencies in excess of 99% for non-irradiated assemblies and resolutions as expected.

Conclusions Continued

• The ST2 design suffers serious charge-loss in the region of the intermediate n⁺ ring.

• The ST1 design has good charge-collection efficiency pre-irradiation but becomes inoperable after irradiation due to breakdown phenomena.

• The ST2 design performs very well even after the 10-year equivalent hadronic damage... no breakdown apparent in I-V characteristic and 98% efficency recorded in testbeam.

• Next prototype sensor design reflects these observations.