ATLAS and CVD Diamond Detectors

H. Kagan Ohio State University

LBL ATLAS Review Mar. 11, 1999

Outline of Talk

- Introduction
- Charge Collection
- Diamond Pixel Detectors
- Summary
- Plans

H. Kagan Ohio State University

- Why Diamond _

- Radiation hardness
- Low dielectric constant \rightarrow low capacitance
- Low leakage current \rightarrow low readout noise
- Fast signal collection time

LHC:

- → Annual replacement of B-layer perhaps?
- \rightarrow Diamond can survive in this harsh environment
- ightarrow Provide high precision tracking to tag b, t, Higgs, \ldots

But does it work as a pixel detector?

CERN Testbeam Setup

- 100 GeV/c pion beam
- External tracking with "Strassbourg Telescope"
- Tracking precision $pprox 2 \ \mu m$

- Slow Electronics (2 μ sec) ENC $\approx 100e + 14e/pF$
- Fast Electronics (25 nsec) ENC $\approx 600e + 70e/pF$

Charge Collection

- Test Procedure: dot \rightarrow strip \rightarrow pixel
- Source data, test beam data well separated from 0
- FWHM/MP pprox 1.1 (source) Si has pprox 0.5
- ENC = $120 \ e$, with 1.8 μ s signal peaking time

 $\implies S_{\mathrm{mp}}$ -to-N = 40-to-1

Recent Results with Diamond Strip Detectors

- Spatial resolution pprox digital (Center-of-Gravity Method, 'CoG')
- Under strip, little charge sharing \implies constant pulse height
- Between strips, linear charge sharing
- Optimize strip width for strip detectors, pixel detectors
- Optimize position algorithm

First Uniformity Studies

- $100 \ \mu m \times 100 \ \mu m$ bins
- Uniformity (RMS/mean) for 40 evt/bin Silicon \approx 8 %

Diamond \approx 34 %

Need finer binning, more data

Tracker with Fast Readout, SCTA128HC

- DMILL/SCTA128HC (high capacitance)
- Signal peaking time: 25 ns
- Analog pipeline, 40 MHz readout
- Preliminary results:

 $S_{
m mean}/N$ = 10-to-1, $S_{
m mp}/N$ = 7-to-1

 $\bullet\,$ seed threshold around 3000 $e\,$

Diamond Pixel Detectors

ATLAS/3 Pixels (Ti-W)

ATLAS FE/C Pixels (Ti-W)

LBL ATLAS Review Mar. 11, 1999

H. Kagan Ohio State University

ATLAS and CVD Diamond Detectors (page 8)

H. Kagan Ohio State University

50 GeV/c π beam at CERN

Status Summary .

Charge Collection

Mean signal \approx 8,500 eMP signal \approx 6,000 eCharge distribution starts at \sim 1500 eFWHM/MP \sim 1.1 2-strip-efficiency 99% if threshold below \approx 2,000 e

Radiation Hardness

40 % loss of charge occurs at $\circ 5 \times 10^{15} \text{ p/cm}^2$ $\circ 2 \times 10^{15} \pi/\text{cm}^2$

 $\circ~1 imes10^{15}~{
m n/cm^2}$

Diamond Pixel Detectors

Successfully tested ATLAS pixel patterns

- \circ Bump bonding yield was 100 %
- Excellent correlation between telescope and pixel data
- \circ Digital spatial resolution for 3500 e threshold

- Future Plans

Charge Collection Goals - RD42

Mean signal 10,000 e with MIP

MP signal 7,500 e

Thickness $400~\mu{
m m}$, area size $2 imes 4~{
m cm}^2$

It now seems reasonable to see if a diamond pixel device may be useful for ATLAS in the B-layer.

• Pixel Studies

Reduction of readout thresholds to $\sim 2000 e$ Pixel detectors on FE/C (UT-S5 at IZM) Pixel detectors on FE/B (CD-S61, CD-S62 at AIT) These studies should yield a definitive answer in the next six months and should be compared with oxygen treated silicon.