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Global Supports and Related Components

• Topics--focus on answering some questions
– What do we mean by Global Supports?
– What do we mean by Local Supports
– What are the design issues in Global Supports?

• what are the interface issues between local and global?
• What is the interface issue between Pixels and SCT, as related to

supports
– What is our approach to addressing or solving these issues?
– What is the status?

• design calculations?
• costing?
• prototypes?

– What are our near term objectives?

ATLAS Pixel Detector
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Metrology Frame for Supporting Detector Elements
(Ultra-stable System)

Global Su pports

• Definitions
– Pixel modules are mounted on local supports
– Local supports  additionally serve as thermal structures for cooling
– Overall frame structure onto which the local supports are mounted is referred

to as the Global Supports
• the mounting interface between the local and global supports, for the

purpose of this discussion are related concepts
• more general definition would be kinematic mounts used to interface the

local supports

• Involvement
– US recognized as taking a lead role in Global Supports
– Started with Pixel Detector Collaboration authorizing study to define

approach- for the TDR
• jointly supported by Germany/Italy/US
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• Scope of support study
– Outer and inner frame structures,

providing support for barrel and disk
regions

– Frame concepts

• outer--tubular, shells, and flat
panel, also combination of
tubular and flat panel

• inner--shell, full and half
shells (clamshells)

– Limited to analysis and preliminary
costing to define selection

• Results used in TDR-- important
aspect of study

Tubular and flat panel

Flat panel only

Both use end cones as
support for inner barrels

services

Frame Examples

Initial Desi gn Stud y
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Structural Issue
• Stability

– Short and long term < 10 µm’s
– Stability considerations

• thermal, ∆T of >40°C, or more
• dynamic, structural vibration- desi gn envelop not well defined

• Material limitations/Radiation length
– High stiffness to weight ratio structures-- forces stability issue

• support detector mass ~6 times structural weight
– < 0.36% normal incidence-- narrows options to low Z materials

• Interface to SCT--mounting concept influences dynamic stiffness
Cost Issue
• Structural design approach-Driven by Build to Cost

Primar y Design Issues
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Response to design issues
• Material

– Low moisture sensitivity, low expansion composite material
– Disadvantage, thin prepreg material expensive

• Construction techniques
– Dropped tubular frame because of cost issue
– Selected clamshell for barrel region

• staves installed on inner diameter, facilitated installation
– Sandwich structures for outer frame and end cones

• ultra-lightweight, high stiffness/weight ratio

• Modular design
– Center-section, fully assembled barrel region
– Disk regions mount onto center-section

• Pixel Detector mounting
– Four point connection to SCT-- factor still drivin g the desi gn

Primar y Design Issues
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Global Su pport Conce pt

Center Frame Section (1)

End Section (2 )

Internal End Cone (2)
B-Layer Services

Interior Barrel Layers (3)

Disks (10 )
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Service routing
around end sections

Exploded View of Pixel Detector

Disk and Barrel Regions 
treated as a subassemblies
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Construction Conce pt

Octagonal Frame Assembled Into
Flat Panel Array

Flat panel Sandwich

Exploded corner detail

corner block
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• Composite sandwich panel-decision points
– facing material, e.g., optimum thickness and tensile modulus
– core material, e.g., thickness, shear modulus, and strength
– simple fabrication concept for sandwich

– honeycomb versus carbon foam for core
– load transfer

• within frame sections
• between panel sections in a frame section

– provide load bearing support for local support elements
– optimum cut-out geometry for mass reduction

• Approach
– prepared design concept drawings defining structural approach
– all aspects finite element modeling fairly complete
– prototype testing next step

Structural Considerations  
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Comparable magnitudes

1.8m

~0.5m

CTE-near zero for quasi-isotropic

-0.25 <α<+0.1 ppm/°C

0 to 9 µm’s  for 0.9m length

Conditions:
40°C temperature change

CTE=coefficient of thermal expansion

XN50 or M55J Fiber With C yanate Resin

Conditions:
 assume moisture pick-up @ 55% RH (0.18%)

Frame members reject moisture to dry gas
Resulting contraction

~17 µm for 0.9m length

Strains induced are within 
the realm of construction tolerances 

CME is a function of Relative Humidity (RH)

CME=coefficient of moisture expansion

Quasi-isotopic laminate data

Result

105 ppm/%moisture exchange

Frame Materials



Global Supports 12
W.O. Miller
U.S. ATLAS Internal Review  March 1999

10 20 30 40 50 60 70 80 90

Frequency of response-Hz

0

1

2

3

4

5

6

R
M

S
 D

is
pl

ac
em

en
t-

m
ic

ro
ns

• Global Supports Approximation
– Random acceleration: PSD- estimated

from CERN report
     4.85 10-9 g2/Hz
– A fundamental mode at 75 Hz would have

a relative response of ~0.3 µm rms, 1
sigma

– Would appear vibration is not a design
issue, but:

• A Potential Problem Exists
– Discrete frequency spikes
     of ≈≈ 0.25 µm will potentially result in >10 µµm

motion
Impetus for f n ≥≥ 70Hz

Dynamic Stiffness

Estimate based 1DOF Oscillator

Individual points of resonance
(envelop of expectations)

Q=40

2.58 µm rmsCERN Data
L3

Diminishes by ~1/f 2
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Carbon foam shake tests @ HYTEC 

32 cm square sandwich tray 
for silicon tracker

Foam core 30 mm deep
overall structure Q=50

Core Material Evaluation
RTV Carbon Foam-3% Wei ght Densit y

(Shear Propert y Determination)
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Mode 1: 396 Hz
roll and transverse shear

Mode 2: 452 Hz
yaw

Mode 3: 527 Hz
longitudinal shear

Mode 4: 556 Hz
roll and vertical stretch
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frequency (Hz)

Mode 1
370 Hz

Mode 3
537 Hz

Modes 5,6,7
809-862 Hz

Mode 4
571 Hz

Mode 2
451 Hz

axial 1-2
axial 1-3
transverse 1-2
transverse 1-3

Mode # experimental
freq. (Hz)

FEM
freq. (Hz)

Model error
(%)

1 370 396 +7.0
2 451 452 +0.2
3 537 527 -1.9
4 571 556 -2.6
5 ~809 751 -7.2
6 ~835 863 +3.4
7 ~862 876 +1.6

Amplitude ratio

Measured
Shear Modulus

G=15.11MPa (2100psi)
Loss Factor 1%

Q≅80 to 100

,
2

1

hM

GA
fshear π

=

Issues in Core Materials
Shear Modulus Half of Published Values
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Corresponding points
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Honeycomb Sandwich Beam

Uniform Loading
Simple Edge support

C/t=33.33

To limit shear deflection 
in short beams use high G  

Material Shear Modulus E/G Density Material
RL

Core RL

L-dir W-dir L-dir W-dir
N/mm2 N/mm2 kg/mm3 mm %/mm

Honeycomb
Aluminum 469 207 231 523 7.1E-08 88.9 0.030
Graphite fiber/epoxy 669 214 162 506 6.4E-08 250 0.015
Aramid fiber/phenolic 54 32 2013 3340 6.4E-08 300 est. 0.016
Nomex coml. grade 32 24 3413 4485 4.8E-08 200 est. 0.018
Foam
Carbon foam (3%) 15 15 7078 7078 4.5E-08 285 0.011
Carbon foam (6%) est. 60 60 1770 1770 9.0E-08 285 0.021
Rohacell foam1 29 29 3733 3733 7.5E-08 5227 0.018

50 50 2165 2165 1.1E-07 3836 0.026

E=10.83E+04 N/mm2-Used as composite facing reference

In large span structures 
core shear deflection is negligible

•sector ring
•frame section

•frame panel

Sandwich Core Material
At 6% Solid Fraction RTV Carbon Becomes an Option

however
Graphite Fiber Honeycomb Is Superior  
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• Clamshell concept-outer two
layers

– single laminate layer, reinforced
with internal rings

– internal rings used for:
• alignment of two shell

halves-alignment pins
• mechanical attachment
• pockets for stave mounting

interface

Stave mounting 
interface

Alignment
pins

Barrel Global Su pports

connection
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• B-Layer Clamshell Concept
– sandwich  structure, with

longitudinal ribs
• initial concept  did not

permit joining two half
shells together

– insertion of B-layer assembly
after pixel detector in place

• Design options under study
– Beam pipe support only at one

end
• greatly simplifying

installation of B-layer
– Permits clamshell assembly

similar to outer layers

End piece

Shown with Inner laminate 
layer removed

B-Layer Global Su pports
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• End Cones- Barrel support
– Sandwich structure
– Core thickness 4 mm
– Thin prepreg laminate facings
– Inner array of fingers provide

attachment points for middle
barrel shell and B-Layer shell

• Service routing
– Cooling tubes penetrate the

supports for the shells
– Cabling routed around the inner

fingers
– Axial offset of 40 mm provides

some flexibility to route around
shell support points.

B-layer
connections

Middle shell 
connections

Barrel Global Su pports
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B-Layer

Combined Solution
Includin g effects of End Cones

Outer Clamshell

Individual FEA solutions  

6 µm’s

6.01 µm’s

6.6 µm’s

Mass of Stave/modules-8.7 kg’s
Structure 1.98 kg’s

Sandwich end cones

0 µm’s

3.3 µm’s

6.6 µm’s

0 µm’s

3 µm’s

6 µm’s

0 µm’s

3 µm’s

6 µm’s

Barrel Re gion FEA Results
Examination of Basic Concepts
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Item Frame
mass-kg

Added
Structural
mass-kg

Non-
structural

kg

Total
mass-kg

Outer Frame
Center Section 1.219 1.219
End Section 1.986 1.986

Disks/cabling/cooling 23.24 23.24
End Reinforcement 0.085 0.085
Corner Tubes 0.20 0.20
Barrel Region
End Cones 0.30 0.30
Inner Shell(s) Support 0.12 0.12
Outer barrel shell 0.46 4.43 4.89

Mid-shell 0.52 3.15 3.67
B-Layer Shell 0.47 1.35 1.82

Total  4.37 0.99  32.17 37.53

FEA Mass Breakdown

Total structural mass ~5.36 kg
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• Design status
– Met static and dynamic stiffness

design goals
– Solutions based on expensive high

modulus fiber systems
• cost impact being evaluated

– Reinforcement at detector ends
required

• now question is how best to
achieve desired stiffness with
minimum material

• FE model limited to just outer
barrel, since European
collaborators are now designing
inner shells

fundamental mode, 77.5 Hz

gravity sag, ~10.43 µm

Frame FEA Results
Examination of Basic Concepts
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Concepts Under Study

• Tubular end truss
– Demountable
– Does not block passage of

services to any great extent
– Tubes are 10mm OD with a

0.6mm wall, composite
construction similar to
longitudinal members

• Objective is to minimize frame
compliance in the lateral
direction

– end reinforcement significant
contributor to reducing
compliance

Frame Reinforcement

End reinforcement example
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Frame Reinforcement

New Study Option- provides protection for last disk

Connection to frame corner
(as before)

Reinforcement
replaces material
at end of frame

Goal is to remove material
from end of frame
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FEA Work Remaining

• Issue remaining: too much material
– Radiation length of frame sections within budget <0.36%, except end

sections, with material intercepted at shallow angle.

•  Material can be reduced by :
– End frame reinforcements

• however, as yet, they increased material mass to undesirable level
– Using higher modulus graphite fibers

• High modulus fiber boosts stiffness 60%, no R L penalty
– Core material shear modulus above 55MPa

• satisfied by high modulus honeycomb ( albeit expensive)

• New concepts to be studied using FEA
• Relocate frame reinforcement entirely to end-keeping material at more

normal incidence
                                               Side Issue

– Investigate low cost method of obtaining high modulus fiber systems
– Evaluate prospect of achieving very low density, low cost carbon foams,

thereby eliminating need for expensive honeycomb
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• Pixel/SCT mount design concept
will be an important influence on
the Global Supports design,
suppose:

– kinematic to extent practical
– Four point support

• 1 point XYZ
• 1 point XY
• 2 points Y

– All support points are adjustable
vertically

– Pixel frame reinforced locally to
resist lateral loads

40mmX10mmX3mm
SCT mounting channel

Mountin g Conce pts

Possible concept- where detector
is retained in the mounts
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• Mount concept provides:
– Vertical adjustment for leveling

detector at each corner

– Conical seat and V-groove track
at opposite end position detector
laterally

– decentration of detector from
40°C change is nominally 0.01
mm

• propose offset built-in to negate
this effect

Vertical 
adjustment

lock

Section views

cone

flat

Mountin g Conce pts

cone

V-groove

flat

flat

Spherical 
contacts
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spring keeper

V-groove

spherical ball

sandwich ring
• Assembly sequence

– Disk assembly inserted into frame
– Spherical balls on mounting ring are

placed onto three V-grooves
– Spring keeper inserted from outside

to restrain spherical ball in V-groove
– Spring keeper is guided by the

machined bushing bonded in the
frame structure and fixed in place on
the outside of the frame

• Considerations
– Required spring force to resist

movement of disk from extraneous
forces caused by services

– Material selection

Disk Mountin g Conce pts
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• Adjustment features
– R-φ disk position is obtained by

precise location of three point ball
support in three V-grooves

– Final positioning of disk provided by
adjustment screw (fine thread)

– Adjustment screw provides pure
axial motion, as well as tip/tilt

• Considerations
– Material selection of individual

components needed
• use composite materials to

extent practical
• to what extent metallic (Be)

elements are useful is unclear
at this time

–   Prototyping
• Demonstrate zero backlash at

component level

adjustment screw

Disk Mountin g Conce pts
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Disk Mounting Concepts

Sector mounting ring prototype for Disk Assembly

Box-like construction

C-C inserts for 
sector attachment

Mounting insert 

500 µm carbon-carbon facings

T300 close-out
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Stability Measuring Capability

Sub-micron Resolution Using TV Holography

steel block Invar posts

C-C Arc mount

ring to support 
services

Test Facility for Full DiskLaser/CCD Camera/Fiber Optics 
Assembly 

Single sector
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Front edge

Back edge

Rotated

Support points

∆T=-1.12°C @ T=21.67 °C 

~4-5 µm’s peak distortion

Sector with modules

Examples of TVH Sensitivity

Distortion after a 2.3 °C
 temperature change

Sector without modules

Depression, print thru
of coolant tubes

2.6 µm distortion

Unwrapped phase maps

Phase maps
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• Progress thus far:
– Established and analyzed frame concept
– Have defined an approach for entire Global Support System

• including rough cost of frame

– Identified technical issues that need to be addressed
• final choice in facing and core material
• construction details in plane of SCT/Pixel mounting

– Reviewed preliminary cost proposals from three vendors
– Soliciting bid for prototype from low bidder on initial cost proposal

• Near term objectives
– Continue FEA Studies

• joint design
• material selection
• end reinforcement

– Construct prototypes
• sandwich specimens
• full frame section

Near Term Objectives
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• Request Quote for Baseline Design Concept (11/15/98) √
• Review Vendor Cost Proposals and Vendor Survey (2/9/99) √
• Decision on Prototype Fab. Plan/Review with PDSG-(3/8/99) √
• Contract for End Section Prototype Phases (I,II, and III)------3/30/99
• Order Honeycomb Core Material (3/2/99) √
• Order Sandwich Facing Material--------------------------------------3/15/99
• FEA of End Reinforcement (1st mode problem)-----------------3/30/99
• FEA of Corner Blocks-----------------------------------------------------4/15/99
• 1st Sandwich Panel--------------------------------------------------------5/30/99
• Evaluation of 1st panel Without/With Cutouts-------------------6/15/99
• TVH With Large Viewing Check-out complete-------------------7/01/99
• Full Scale Prototype Complete----------------------------------------9/15/99
• Preliminary Stiffness Tests Complete-----------------------------10/15/99

Prototype Milestones
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Schedule

Global Su pports

Current activities


