

ATLAS PIXEL DETECTOR

Design Concepts and Support Structure

W.O. Miller HYTEC

Global Supports 1 W.O. Miller U.S. ATLAS Internal Review March 1999

Global Supports and Related Components

- Topics--focus on answering some questions
 - What do we mean by Global Supports?
 - What do we mean by Local Supports
 - What are the design issues in Global Supports?
 - what are the interface issues between local and global?
 - What is the interface issue between Pixels and SCT, as related to supports
 - What is our approach to addressing or solving these issues?
 - What is the status?
 - design calculations?
 - costing?
 - prototypes?
 - What are our near term objectives?

Global Supports 2 W.O. Miller U.S. ATLAS Internal Review March 1999

Metrology Frame for Supporting Detector Elements (Ultra-stable System)

- Definitions
 - Pixel modules are mounted on *local supports*
 - Local supports additionally serve as thermal structures for cooling
 - Overall frame structure onto which the local supports are mounted is referred to as the *Global Supports*
 - the mounting interface between the local and global supports, for the purpose of this discussion are *related concepts*
 - more general definition would be kinematic mounts used to interface the local supports
- Involvement
 - US recognized as taking a lead role in Global Supports
 - Started with Pixel Detector Collaboration authorizing study to define approach-for the TDR
 - jointly supported by Germany/Italy/US

Global Supports 3 W.O. Miller U.S. ATLAS Internal Review March 1999

Initial Design Study

Scope of support study

U.S. ATLAS

- Outer and inner frame structures, providing support for barrel and disk regions
- Frame concepts
 - outer--tubular, shells, and flat panel, also combination of tubular and flat panel
 - inner--shell, full and half shells (clamshells)
- Limited to analysis and preliminary costing to define selection
- Results used in TDR--*important* aspect of study

Frame Examples

Both use end cones as support for inner barrels

Global Supports 4 W.O. Miller U.S. ATLAS Internal Review March 1999

Primary Design Issues

Structural Issue

- Stability
 - Short and long term < 10 μ m's
 - Stability considerations
 - thermal, ∆T of >40°C, or more
 - dynamic, structural vibration- design envelop not well defined
- Material limitations/Radiation length
 - High stiffness to weight ratio structures-- forces stability issue
 - support detector mass ~6 times structural weight
 - < 0.36% normal incidence-- narrows options to low Z materials</p>
- Interface to SCT--mounting concept influences dynamic stiffness
 <u>Cost Issue</u>
- Structural design approach-Driven by Build to Cost

Global Supports 5 W.O. Miller U.S. ATLAS Internal Review March 1999

Primary Design Issues

Response to design issues

- Material
 - Low moisture sensitivity, low expansion composite material
 - Disadvantage, thin prepreg material expensive
- Construction techniques
 - Dropped tubular frame because of cost issue
 - Selected clamshell for barrel region
 - staves installed on inner diameter, facilitated installation
 - Sandwich structures for outer frame and end cones
 - ultra-lightweight, high stiffness/weight ratio
- Modular design
 - Center-section, fully assembled barrel region
 - Disk regions mount onto center-section
- Pixel Detector mounting
 - Four point connection to SCT--factor still driving the design

Global Supports 6 W.O. Miller U.S. ATLAS Internal Review March 1999

Global Support Concept

Global Supports 7 W.O. Miller U.S. ATLAS Internal Review March 1999

Exploded View of Pixel Detector

around end sections

Global Supports 8 W.O. Miller U.S. ATLAS Internal Review March 1999

Octagonal Frame Assembled Into Flat Panel Array

Flat panel Sandwich

Exploded corner detail

Global Supports 9 W.O. Miller U.S. ATLAS Internal Review March 1999

- Composite sandwich panel-decision points
 - facing material, e.g., optimum thickness and tensile modulus
 - core material, e.g., thickness, shear modulus, and strength
 - simple fabrication concept for sandwich
 - honeycomb versus carbon foam for core
 - load transfer
 - within frame sections
 - between panel sections in a frame section
 - provide load bearing support for local support elements
 - optimum cut-out geometry for mass reduction
- Approach
 - prepared design concept drawings defining structural approach
 - all aspects finite element modeling fairly complete
 - prototype testing next step

Global Supports 10 W.O. Miller U.S. ATLAS Internal Review March 1999

Frame Materials

XN50 or M55J Fiber With Cyanate Resin

CTE=coefficient of thermal expansion

CTE-near zero for quasi-isotropic

<u>Result</u> → 0 to 9 μm's for 0.9m length CME=coefficient of moisture expansion

CME is a function of Relative Humidity (RH)

Quasi-isotopic laminate data

105 ppm/%moisture exchange

Conditions:

assume moisture pick-up @ 55% RH (0.18%) Frame members reject moisture to dry gas <u>Resulting contraction</u>

→ ~17 µm for 0.9m length

Comparable magnitudes

Strains induced are within the realm of construction tolerances

Global Supports 11 W.O. Miller U.S. ATLAS Internal Review March 1999

Dynamic Stiffness

U.S. ATLAS Internal Review March 1999

Core Material Evaluation

RTV Carbon Foam-3% Weight Density (Shear Property Determination)

32 cm square sandwich tray for silicon tracker

Carbon foam shake tests @ HYTEC

Foam core 30 mm deep overall structure Q=50

Global Supports 13 W.O. Miller U.S. ATLAS Internal Review March 1999

Issues in Core Materials

Shear Modulus Half of Published Values

Global Supports 14 W.O. Miller U.S. ATLAS Internal Review March 1999

.

Sandwich Core Material

At 6% Solid Fraction RTV Carbon Becomes an Option however Graphite Fiber Honeycomb Is Superior

Honeycomb Sandwich Beam

	1.4				Material	Shear I	Modulus	E/G		Density	Material	Core R _L
N/mm	1.2		Simple Edge sup	port		L-dir W-dir N/mm ² N/mm ²		L-dir	W-dir	kg/mm ³	R _L mm	%/mm
03	1		C/4-22		Honeycomb							
ïX	_ [$\langle \rangle$		33	Aluminum	469	207	231	523	7.1E-08	88.9	0.030
esse	0.8				Graphite fiber/epoxy	669	214	162	506	6.4E-08	250	0.015
ţ	Ē		Graphite fiber		Aramid fiber/phenolic	54	32	2013	3340	6.4E-08	300 est.	0.016
stif	0.6		×		Nomex coml. grade	32	24	3413	4485	4.8E-08	200 est.	0.018
Ë		· · ·		1 1	Foam							
iivaleı	0.4				Carbon foam (3%)	15	15	7078	7078	4.5E-08	285	0.011
	ŀ				Carbon foam (6%) est.	60	60	1770	1770	9.0E-08	285	0.021
nb	0.2	Nomex			Rohacell foam1	29	29	3733	3733	7.5E-08	5227	0.018
ш	-				•	50	50	2165	2165	1.1E-07	3836	0.026
	0 [[] 15	5 20 25 Beam	30 35 40 n span to core thickness	▲ 45 5	50 <u>E=10.83E+04 N/mm²-</u>	Used as	composite	e facing	reference			
		•frame	ring '	To li	mit s	hea	r def	lectio	n			
		Corres	· sponding poin	└ •frame s ts	section in	n sho	ort be	eam	s use	e high	G	

In large span structures core shear deflection is negligible

Global Supports 15 W.O. Miller U.S. ATLAS Internal Review March 1999

Barrel Global Supports

Alignment

pins

- Clamshell concept-outer two layers
 - single laminate layer, reinforced with internal rings
 - internal rings used for:
 - alignment of two shell halves-alignment pins
 - mechanical attachment
 - pockets for stave mounting interface

Stave mounting interface

connection

Global Supports 16 W.O. Miller U.S. ATLAS Internal Review March 1999

B-Layer Global Supports

- B-Layer Clamshell Concept
 - sandwich structure, with longitudinal ribs
 - initial concept did not permit joining two half shells together
 - insertion of B-layer assembly after pixel detector in place
- Design options under study
 - Beam pipe support only at one end
 - greatly simplifying installation of B-layer
 - Permits clamshell assembly similar to outer layers

Shown with Inner laminate layer removed

Global Supports 17 W.O. Miller U.S. ATLAS Internal Review March 1999

Barrel Global Supports

- End Cones-Barrel support
 - Sandwich structure
 - Core thickness 4 mm
 - Thin prepreg laminate facings
 - Inner array of fingers provide attachment points for middle barrel shell and B-Layer shell
- Service routing
 - Cooling tubes penetrate the supports for the shells
 - Cabling routed around the inner fingers
 - Axial offset of 40 mm provides some flexibility to route around shell support points.

Global Supports 18 W.O. Miller U.S. ATLAS Internal Review March 1999

Barrel Region FEA Results

Examination of Basic Concepts

FEA Mass Breakdown

Item	Frame	Added	Non-	Total		
	mass-kg	Structural	structural	mass-kg		
		mass-kg	kg			
Outer Frame						
Center Section	1.219			1.219		
End Section	1.986			1.986		
Disks/cabling/cooling			23.24	23.24		
End Reinforcement	0.085			0.085		
Corner Tubes	0.20			0.20		
Barrel Region						
End Cones	0.30			0.30		
Inner Shell(s) Support	0.12			0.12		
Outer barrel shell	0.46		4.43	4.89		
Mid-shell		0.52	3.15	3.67		
B-Layer Shell		0.47	1.35	1.82		
Total	4.37	0.99	32.17	37.53		

Total structural mass ~5.36 kg

Global Supports 20 W.O. Miller U.S. ATLAS Internal Review March 1999

Frame FEA Results

Examination of Basic Concepts

- Design status
 - Met static and dynamic stiffness design goals
 - Solutions based on expensive high modulus fiber systems
 - cost impact being evaluated
 - Reinforcement at detector ends required
 - now question is how best to achieve desired stiffness with minimum material
- FE model limited to just outer barrel, since European collaborators are now designing inner shells

Global Supports 21 W.O. Miller U.S. ATLAS Internal Review March 1999

Concepts Under Study

- Tubular end truss
 - Demountable
 - Does not block passage of services to any great extent
 - Tubes are 10mm OD with a 0.6mm wall, composite construction similar to longitudinal members
- Objective is to minimize frame compliance in the lateral direction
 - end reinforcement significant contributor to reducing compliance

Global Supports 22 W.O. Miller U.S. ATLAS Internal Review March 1999

New Study Option-provides protection for last disk

Reinforcement replaces material at end of frame

Connection to frame corner (as before)

Goal is to remove material from end of frame

Global Supports 23 W.O. Miller U.S. ATLAS Internal Review March 1999

Reduction In Dynamic Stiffness

MYTEG

Global Supports 24 W.O. Miller U.S. ATLAS Internal Review March 1999

- Issue remaining: too much material
 - Radiation length of frame sections within budget <0.36%, except end sections, with material intercepted at shallow angle.
- Material can be reduced by:
 - End frame reinforcements
 - however, as yet, they increased material mass to undesirable level
 - Using higher modulus graphite fibers
 - High modulus fiber boosts stiffness 60%, no R_L penalty
 - Core material shear modulus above 55MPa
 - satisfied by high modulus honeycomb (*albeit expensive*)
- New concepts to be studied using FEA
 - Relocate frame reinforcement entirely to end-keeping material at more normal incidence

Side Issue

- Investigate low cost method of obtaining high modulus fiber systems
- Evaluate prospect of achieving very low density, low cost carbon foams, thereby eliminating need for expensive honeycomb

Global Supports 25 W.O. Miller U.S. ATLAS Internal Review March 1999

Mounting Concepts

- Pixel/SCT mount design concept will be an important influence on the Global Supports design, *suppose:*
 - kinematic to extent practical
 - Four point support
 - 1 point XYZ
 - 1 point XY
 - 2 points Y
 - All support points are adjustable vertically
 - Pixel frame reinforced locally to resist lateral loads

40mmX10mmX3mm SCT mounting channel

Possible concept-where detector is retained in the mounts

Global Supports 26 W.O. Miller U.S. ATLAS Internal Review March 1999

Mounting Concepts

• Mount concept provides:

U.S. ATLAS

 Vertical adjustment for leveling detector at each corner

- Conical seat and V-groove track at opposite end position detector laterally
- decentration of detector from 40°C change is nominally 0.01 mm
 - propose offset built-in to negate this effect

Disk Mounting Concepts

Assembly sequence

- Disk assembly inserted into frame
- Spherical balls on mounting ring are placed onto three V-grooves
- Spring *keeper* inserted from outside to restrain spherical ball in V-groove
- Spring keeper is guided by the machined bushing bonded in the frame structure and fixed in place on the outside of the frame
- Considerations
 - Required spring force to resist movement of disk from extraneous forces caused by services
 - Material selection

Global Supports 28 W.O. Miller U.S. ATLAS Internal Review March 1999

Disk Mounting Concepts

- Adjustment features
 - R disk position is obtained by precise location of three point ball support in three V-grooves
 - Final positioning of disk provided by adjustment screw (fine thread)
 - Adjustment screw provides pure axial motion, as well as tip/tilt
- Considerations
 - Material selection of individual components needed
 - use composite materials to extent practical
 - to what extent metallic (Be) elements are useful is unclear at this time
 - Prototyping
 - Demonstrate zero backlash at component level

Global Supports 29 W.O. Miller U.S. ATLAS Internal Review March 1999

Disk Mounting Concepts

Sector mounting ring prototype for Disk Assembly

Box-like construction Mounting insert T300 close-out

500 μm carbon-carbon facings

Global Supports 30 W.O. Miller U.S. ATLAS Internal Review March 1999

Stability Measuring Capability

Sub-micron Resolution Using TV Holography

Laser/CCD Camera/Fiber Optics Assembly

Test Facility for Full Disk

ring to support

services

Invar posts

Examples of TVH Sensitivity

Global Supports 32 W.O. Miller U.S. ATLAS Internal Review March 1999

- **Progress thus far:**
 - Established and analyzed frame concept
 - Have defined an approach for entire Global Support System
 - including rough cost of frame
 - Identified technical issues that need to be addressed
 - final choice in facing and core material
 - construction details in plane of SCT/Pixel mounting
 - Reviewed preliminary cost proposals from three vendors
 - Soliciting bid for prototype from low bidder on initial cost proposal
- Near term objectives
 - Continue FEA Studies
 - joint design
 - material selection
 - end reinforcement
 - Construct prototypes
 - sandwich specimens
 - full frame section

•	Request Quote for Baseline Design Concept (11/15/98)	\checkmark
•	Review Vendor Cost Proposals and Vendor Survey (2/9/99)	\checkmark
•	Decision on Prototype Fab. Plan/Review with PDSG-(3/8/99)	\checkmark
•	Contract for End Section Prototype Phases (I,II, and III)3/	/30/99
•	Order Honeycomb Core Material (3/2/99)	\checkmark
•	Order Sandwich Facing Material3/	15/99
•	FEA of End Reinforcement (1st mode problem)3/	30/99
•	FEA of Corner Blocks4/	15/99
•	1st Sandwich Panel5/	30/99
•	Evaluation of 1st panel Without/With Cutouts6/	15/99
•	TVH With Large Viewing Check-out complete7/0	01/99
•	Full Scale Prototype Complete9/	15/99
•	Preliminary Stiffness Tests Complete10/	15/99

Global Supports 34 W.O. Miller U.S. ATLAS Internal Review March 1999

Global Supports

Schedule

			1994	1995	1996	1997	19	998	1999	2000	2001	2002	2003	2004	2005	200
	Task Name	\vdash														
	Global Supports Design Review						٠	1/21								
4	Structures TDR Design Input						٠	2/2								
5	Support Structures Status Report						٠	2/26								
6	Support Structures Status Report							♦ 6/3								
7	Global Supports TDR Review							• 7/								
8	Global Support Structures Development							-			•				_	
9	Detailed Conceptual Design									1			urre	nt a	ctivi	ties
10	Structural Prototyping/Tests															
11	Complete All Structure Prototype Tests						•••••				♦ 2/2					
12	Global Supports CDR									5/3						
13	Global Supports Preliminary Design										7					
14	Global Supports PDR										2/2					
15	Global Supports Construction										-					
16	Final Design										–					
17	Global Supports PRR											• 1/16				
18	Support Structure Fabrication															
19	Availability of Structures (Desired)											♦ 6/	1			

Global Supports 35 W.O. Miller U.S. ATLAS Internal Review March 1999