Global Supports CDR

W.O. Miller, R. Smith, W.K. Miller, G. Hayman HYTEC G. Gilchriese, E. Anderssen, N. Hartman, F. Goozen

LBNL

Outer Frame and End Cone

Global Support Concept

Frame Connections

US ATLAS Pixel Detector

- Exploded View of Outer Frame Connections
 - Alignment tube between sections
 - Fasteners retain End Cone to Barrel Section
 - Fasteners reside in recessed slots, which fix center section to Disk Frame sections

Design Constraints

- Low mass
 - Composites, high stiffness to weight ratio
- Highly stable
 - Low CTE composites, insensitive to moisture
- Low percentage radiation length
 - Ultra-thin, predominately carbon material
- Materials compatible with high radiation environment
 - Low activation materials, radiation insensitive composites
- Composed of subsections to facilitate assembly
 - End sections for planar pixel disk assemblies
 - Barrel section for multi-layer of circumferential array of staves
- Insertable and removable in the ATLAS Detector
 - Registration and alignment to SCT requires indexing feature
- Mounting
 - To SCT barrel supports, possibly without regard for kinematic features

- Development Steps
 - Assessed construction options at the onset
 - Chose flat panel concept over tubular frame primarily based on cost, but also construction simplicity, which equated to improved dimensional accuracy
 - Simple, low cost tooling for assembly
 - Frame sizing exercise-via detailed FEA
 - Selected sandwich construction parameters
 - Selected sandwich facing and core materials
 - Constructed full size prototype of outer frame section
 - Conducted extensive testing using precision measuring tool to confirm design and to validate Global Support Frame FE model
 - Constructing full size prototype of end cone---1st unit complete
 - Prototype testing of bi-panel is complete
- Design Status
 - Resized frame to 432mm outer envelope dimension (compatible with insertion requirement)
 - Design confirmation planned through FEA studies—*largely complete*
 - Mounting aspects still under study

Design Steps

- Analysis
 - FEA design studies
 - Key sandwich dimensions
 - Facing 0.43µm
 - Core -10mm
 - Materials
 - UHM composites
- Prototyping Objectives
 - Manufacturability
 - Cost
 - Technical
 - Validate FEA
 - Static stiffness
 - Dynamic stiffness

500mm diameter-5 disk design

End section

End cone and tooling

Modulus-CTE Correlation for High-Modulus Graphite Fibers

Modulus-Strength Correlation for High-Modulus Graphite Fibers

- Structure Thermal Stability
 - High modulus fibers result in negative CTE laminates
 - In a sandwich configuration this is mitigated to some extent, and the CTE tends toward zero for a low expansion GF/CE honeycomb
 - Frame attachment pieces are YSH50 fabric, very similar in CTE as XN50
 - CTE is near zero for 58% fiber fraction, typical of the prototypes
 - <u>We estimate that the support</u> <u>structure and mounting interfaces</u> <u>will be near zero CTE</u>
 - <u>Thermal stability should not</u> <u>be an issue</u>

Quasi-isotropic Laminates

Materials: low CTE and low CME

XN80 Graphite fibers/cyanate ester resin-8 layers quasi-isotropic~0.42 mm

XN80 facing 1.7g/cc
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Core 0.048 g/cc

XN50 graphite fiber/CE Core 10 mm thick

ltem	Wtg	%
facings	93.9	61.8
core	30.1	19.8
Al blocks	14.4	9.5
total	151.9	

Adhesive average between two facings 106 g/m²—**8.9%** HYSOL- EA 9396, room temperature cure

Calculation for quasi-isotropic

Layup, 0/60/-60/s, 60% FV

E	162.6/(23.58)	GPa/(Msi)
s _u	463.3/(67.2)	MPa/(Ksi)
e	0.285	%
r	1.774	g/cc
a	-0.9	ppm/°K
b	0.001488	(D L/L) per %weight gain

Tensile Modulus Msi	Tensile Strength Ksi	Strain to Failure %	
	0° Direction		
21.8	55.1	0.25	
22.8	88.8		
23.3	71.6	0.31	
23.9	72.8	0.31	
23.4	79.8	0.33	
Avg=23.5	Avg=74.7	0.32	
90° direction			
21.0	61.3		
21.4	60.9		
20.7	60.3		
21.4	62.9		
21.6	61.1		
Avg=21.2	Avg=61.4		

Moisture Sensitivity

- Composite Matrix Selection
 - Selected cyanate ester resin because of low moisture absorption and low volumetric swelling
 - <u>EX1515 resin</u> by Byrte Technology, 0.4% *neat* resin moisture absorption, low temperature curing, very stable, resistant to microcracking
 - <u>RS-3 resin</u> supplied by YLA, similar characteristics
 - XN80 prepreg material
 - Estimated CME, 0.0015 per % weight gain
 - .005 (0.5% max gain, or release)
 - 7.5x10⁻⁶ ∆L/L change or roughly <u>10.4 microns</u> for the <u>1.4m frame length</u>
- <u>Moisture effects-minor initial</u> <u>inconvenience</u>

Frame Prototyping

355 mm long Frame Section---Disk Section

• Fixture function

US ATLAS

Pixel Detector

- Holds panel parts in place during bonding, utilizing self-jigging features of the corner parts
- Index pins machined into top and bottom fixture plates hold circumferential alignment
- One fixture for all three sections
- Assembly steps
 - Assemble sandwich panels with corner blocks
 - Place inner corner splice in fixture recess
 - Place two adjacent panels onto inner corner splice
 - Insert corner tube and vertex alignment joint
 - Install outer splice
 - Repeat process 4 times

Panel weight 84.3 g after removal of material (39.7% reduction)

Verification of Bonding/Assembly Methods

Tube fit-up in recessed cavity

Global Supports CDR 15 W.O. Miller July 2001

- Testing evaluated:
 - Stiffness at low strain levels, at level simulating the application
 - Composite properties measured at higher strains, yet properties were used to design at low strains
 - Effect of bonded joints
 - FEA modeling approach for Global Supports
- Testing issues
 - Load Application
 - Difficult to apply load without influencing measurement
 - Boundary conditions
 - To test, frame is mounted to a base support structure
 - Objective is to limit compliance at base

One of Many Tests Transverse Loading-*In Line With Corners*

- Frame test-setup
 - Octagonal frame is attached by #8-32 screws to 1.9cm (0.75in.) Al plate
 - Attachment plate is mounted to optics table
 - Cross bar attached to top of frame using #8-32 screws, at the corner joint
- TV holographic imaging of distortion
 - Load applied at center of bar axis
 - Axis alignment is achieved by adjustment of line of action
 - Symmetry noted in fringe pattern, suggesting good alignment

Load Case A

Transverse Loading-Typical Load Case

- Summary
 - Frame construction principles demonstrated
 - Dimensional accuracy quite good, but improvement is expected by using low thermal expansion tooling option
 - Material options are well understood
 - Stiffness
 - Strength
 - Radiation resistance
 - Current design process
 - Down sizing outer dimensions to achieve insertable feature

- Prototype Construction for 500mm diameter frame
 - Objective-test out construction approach
 - Validate FEA approach
 - Evaluate use of P30 CC facings for the sandwich facings
- Salient points
 - P30Carbon-carbon facings
 - XN50 honeycomb, 4mm thick
 - YSH50 quasi-isotropic laminate for outer supports and inner tabs for mounting barrel shells

Graphite tooling with two test panels

End Cone Development

Panel bonding fixture

End cone components

Emphasis on tab bending stiffness

Global Supports CDR 21 W.O. Miller July 2001

Bi-Panel Static Test

• Static Test

- Load application on inner mounting tabs
- Stiffness recorded for mounting tab of 17.6µm/N
- Slight error noted in fringe counting over large deflection range
- Approximately 78µm's for 1lbf(4.448N) load

We note that the fringes are smooth and continuous over the Bi-panel joint

End Cone Assembly

- Near Term Test Objectives
 - Static stiffness
 - Basic cone
 - Inner mounting tabs for barrel supports
 - Dynamic stiffness
 - Modes and frequencies

Assembly completed 6/29/01

Nomenclature

Global Supports CDR 24 W.O. Miller July 2001

Final Frame Design

- Design configuration
 - Frame reduced from 500mm to 432mm diameter envelope
 - Length tentatively remains the same at 1400mm
 - Mass estimate for dynamic and static FEA
 - 2.85kg new frame structure, 21.04kg non-structure, total of 24.64kg
 - 3.79kg old structure, 33.74kg nonstructure, total of 37.53kg
 - Mass of inner barrel structures
 - Layer 1 + Layer 2=1.55kg, counted as non-structural mass with respect to outer frame
 - Early FEA pointed to the coupling between the shells and the end cones being *soft*, thus the inner shells and outer frame do not act in conjunction as a family of concentric shells
 - Structural mass of reduced frame concept does not include an end stiffener as used in the final design of the 500mm dia. frame.

Design Studies

Frame Dimensions

Global Supports CDR 26 W.O. Miller July 2001

End Cone Dimensions

Global Supports CDR 2 W.O. Miller July 2001

End Cone Dimensions

HYTEC

Global Supports CDR 28 W.O. Miller July 2001

Frame Dynamic and Static Stiffness

- Dynamic
 - Evaluate structural response to random and harmonic vibration inputs
 - Random vibration level—used a conservative level, several orders of magnitude above various large scale experimental facility data
 - Harmonic-<u>similar approach</u>, estimated a fixed harmonic excitation level
 - Objective was to clarify the design strategy for the end reinforcement and the constraint conditions at the frame four support points.
- Static
 - Two fold
 - Evaluate gravitational sag of frame from non-structural mass
 - Assess static stiffness at points where extraneous forces may appear

Global Support Structure

Item	Frame Structural Mass-kg	Non-Frame Structural Mass-kg	Added-non Structural Mass-kg	Total Mass-kg
Outer frame-3sections	2.55	5	5	2.55
End cones-2	0.3			0.3
Disk Support Rings-6		0.47		0.47
Support Ring Mounts-18		0.28		0.28
Sectors-48			2.16	2.16
Disk Services-(30%)			0.78	0.78
Barrel Layer 2 Shell			0.9	0.9
Barrel Layer 1 Shell			0.65	0.65
Staves Layer 1 & 2-(90)			9.90	9.90
Stave Services L1/L2 (30%)			2.85	2.85
B-Layer Shell			0.65	0.65
B-layer Staves-(22)			2.42	2.42
B-Layer Services-(30%)			0.73	0.73
Totals	2.85	0.75	21.04	24.64

- Static load analysis
 - Gravity sag
 - Torsional stiffness
- Results (24.64kg system)
 - Gravity sag, 12µm peak, with most of the strain occurring between the supports and the barrel region
 - Torsion-
 - One corner unsupported, peak sag is 61.62 μm
 - Sensitivity, angular twist is 5.55µrad/N for corner load
- End reinforcement plate will not correct for either effect

Unsupported corner

Prose

Vibration Analysis

Selection of a Random Vibration Spec (PSD)

Global Supports CDR 32 W.O. Miller July 2001

Random vibration input-100microG²/Hz

Global Supports CDR 33 W.O. Miller July 2001

Vibration Data

Estimation from L3

- Random and Harmonic Vibration Data
 - Discrete vibration spikes at:
 - 15, 22, 25, 50, 100+ Hz
 - Resulting random vibration measured on detector component
 - 2.58 mm's
 - Difficult to say what the ambient excitation PSD spectrum was---

Global Supports CDR 34 W.O. Miller July 2001

Harmonic Inputs

- Excitation Level
 - Constant acceleration input as high as 0.01G's (by the SCT to the Pixel supports)
 - Then input displacement level to the Pixels supports at low frequency, e.g., 35Hz could be easily as high as 2 microns
 - The input displacement does decay as function of 1/f², resulting in an input of 0.81microns at the Pixel 1st mode
 - Assuming modal damping of 4%, then the Pixel relative response would be 11.8 microns undesirably high
 - The graph shows Pixels are only vulnerable to the low frequency excitation

Displacement-meters

Acceleration-G's

 Since we expect harmonic inputs at discrete frequencies like 30, 60, and 120Hz, it seems prudent that the Pixel frame 1st mode be raised

Response Characteristics

- Modal characteristics of the frame are such that:
 - 1st mode defines the response- lateral X direction
 - Modal participation factors coupled with lower inputs at higher frequencies for higher modes do not produce significant response
 - Y, Z and shell modes
- SCT/Pixel model-J. Cugnoni
 - Assumed Pixel Detector mass of 75kg
 - 2nd and 5th modes would possibly couple with 1st mode of Pixel Frame
 - Revisions to Pixel Frame should concentrate on raising 1st mode above 75Hz

Pixel Frame Modes

Mode	Hz	Mode	Hz
1	55.5	11	101.7
2	86.4	12	104.2
3	89.2	13	104.5
4	94.3	14	104.8
5	94.9	15	106.4
6	97.4	16	106.7
7	99.9	17	106.7
8	101.2	18	108.1
9	101.2	19	158.2
10	101.4	20	197.5

Mode	Hz
1	21.5
2	54.4
3	59.1
4	60.1
5	61.9

SCT+Pixels

Effect of Frame Mass

- Impact of increase in nonstructural mass
 - 1st order approximation is given by adding mass to end cones
 - Decrease in frequency of 1st mode follows 1/M², characteristic of a single degree of freedom spring-mass model
 - FEA model non-structural mass may be low; Pixel Detector fundamental mode maybe as low as 46Hz
- Recommendation
 - <u>Use reinforcement end plate to</u> raise natural frequency
 - Over constraining 4 support points is another, but less desirable option

Frame End Plate

US ATLAS Pixel Detector

 Options for Achieving Increased Structural Stiffness

- Over constraint at 4 corner support points
 - Possibly difficult to achieve now that Pixel Detector is insertable
- Add end reinforcement plate at each end
 - Static solution
 - Gravity sag decreases to 11.3µm
 - Torsion, one unsupported corner still droops 53.5µm, a 8.1µm decrease
 - However, the 1st mode is now 89.07Hz, an increase of 33.6Hz

Barrel Layers L1 and L2

US ATLAS Pixel Detector

- Global Supports/Barrel Interfaces
 - Status
 - Interface control drawing exists
 - Defines interface between the End Cone mounting tabs
 - Side A
 - Side C
 - Layer L2 connects via 8-tabs to outer frame
 - Layer L1 connects via 4-tabs to outer frame
 - Issues/Remaining Work
 - Fold structural details of layers L1 and L2 Support Shells into Global Supports FEA
 - Update non-structural mass contributions in Global Supports FEA from layers L1 and L2
 - Finalize Global supports FEA

B-Layer Support

- Global Supports/B-Layer Interfaces
 - Concept definition is emerging
 - Major points
 - B-Layer support Tube connects to End Cones via radial tabs, 4 places
 - Radial tabs are split to facilitate assembly of Barrel Layers L1 and L2
 - Issues/Remaining Work
 - Details of B-Layer Support Tube construction need to be advanced further
 - Design aspects need to be folded into Global Supports FEA

- Milestones Completed
 - Design envelopes for frame, end cones, disk support rings (including mounts), and barrel elements, L1, L2, B-Layer are complete
 - Finite element analyses of the conceptual design that confirm the fundamental design approach are complete
 - Assuming we employ two end reinforcement plates
 - Prototype testing of all Global Support structural components, exclusive of the end cone are complete
- Work planned
 - Complete the end cone evaluation (using the 500mm dia frame configuration)
 - Complete FEA of end cone(500mm dia frame)
 - Test for stiffness, compare with FEA
 - Prepare detail construction drawings for all components
 - Prepare fabrication plans
 - Obtain cost estimates
 - Finalize Global Supports FEA by incorporating final information on:
 - Outer support shell/Global Supports connection
 - B-Layer Support Tube/non-structural mass components
 - Prepare for PDR

