# PIXEL SUPPORT TUBE STATUS

#### FEBRUARY 2002, CERN

#### **MECHANICS SESSION**

E. ANDERSSEN, S. DARDIN, N. HARTMAN, T. STILLWATER, D. UKEN, LBNL

PIXEL DETECTOR INTEGRATION

# STATUS

#### • OVERVIEW

- REMINDER OF STRUCTURES

#### • PST MOUNTS/SCT INTEGRATION

#### • PST PROTOTYPES

- MATERIAL SELECTIONS
- HEATERS
- FRICTION
- PIXEL MOUNTS
- BEAMPIPE SUPPORT



# **PST OVERALL LAYOUT**





# PIXEL PACKAGE ASSEMBLY

MOCKUP PIXEL FRAME SHOWN

FEBRUARY 2002 MECHANICS

SERVICE AND BEAMPIPE SUPPOF



Proposal for SCT - Pixel Interface

- 4 Blocks fastened to the SCT horizontal interlinks
- Adjustement, if needed, by shimming or machining spl. blocks



#### SLIDE FROM E. PERRIN

\* The dimension 254 agreed sofar is penetrating the R255 envelope.

FEBRUARY 2002 MECHANICS



ENVELODE

SCT Inner thermal enclosure

- Propose to fix the TE inner cylinder directly to Barrel 3

- To save space.

- To try to simplify penetrations and sealing.



E. ANDERSSEN LBNL



**MECHANICS** 

## **PIXEL DETECTOR**

COMPARISON OF SCT MODEL [EPFL] WITH SCT MODEL [LBNL] FOR GRAVITY SAG UNDER PIXEL LOAD.



Displacements with Pixel Detector,  $max = 70 \ \mu M$ 

**EPFL ASSUMPTIONS:** 

PIXEL MASS = 75 kg (over 4 points)

SCT *NOT* FIXED ACROSS DIAMETER (SIMPLE SUPPORTS)??

**B6 INTERLINK REINFORCEMENT** 



Displacements with Pixel Detector,  $max = 90 \ \mu M$ 

LBNL ASSUMPTIONS:

PIXEL MASS = 75 kg (over 4 points)

SCT FIXED ACROSS DIAMETER

ALL SCT PROPERTIES FROM EPFL MODEL

**B6** INTERLINK REINFORCEMENT



#### COMPARISON OF SCT MODEL [EPFL] WITH SCT MODEL [LBNL] FOR

#### MESH DENSITY AT B6 REINFORCEMENT.



EPFL MODEL



LBNL MODEL

PIXEL DETECTOR INTEGRATION



# MATERIAL SELECTION FOR PST

- ALL LAMINATES FOR SKINS OF PST WILL HAVE HEATERS
  LAMINATED TO THEM
- FORWARD PST SECTIONS WILL HAVE FIBERGLASS SKINS TO REDUCE STIFFNESS
  - CTE not an issue, taken up by flexures at end of PST
  - STRENGTH OF QUARTZ FIBER HIGHEST-SIMPLE CHOICE OF FIBER
- BARREL WILL BE HIGH MODULUS GRAPHITE TO BEST MATCH THE CTE OF THE SCT
  - CTE OF FIBERS SELECTED MUST BE VERY NEGATIVE TO BEAT CTE OF ALUMINUM IN HEATERS
  - COST, MODULUS, THICKNESS ALL FACTORS IN SELECTION
- BRYTE EX1515 SELECTED AS MATRIX FOR ALL
  - 137C cure temp vs 180C for RS3
  - PROVEN RADIATION TOLERANCE
  - QUICK VENDOR TURN AROUND





# FIBER SELECTION CANDIDATES

- CTE OF BARREL PRIMARY
  DRIVER IN MATERIAL SELECTION
- CTE OF LAMINATES INCLUDE HEATER LAYER LAMINATED TOGETHER IN SKIN
- 100MICRON AL IS THICKER EMI SHIELD MATERIAL
- 50MICRONS GLUE IS FOR LAMINATION OF HEATERS (GOES TO ZERO WITH CO-CURED HEATERS)
- COST PER CANDIDATE ALSO
  CONSIDERED



CTE OF SCT BARREL IS ~ 1.2 TO 1.5 PPM/C SO OUR TARGET IS ON THE ORDER OF 1 PPM. WILL CONSIDER CTE MISMATCH OF LESS THAN 0.5PPM 'ZERO' (RELATIVE MISMATCH FOR TEMPERATURE CHANGE ON ORDER OF 20MICRON)



# COST SENSITIVITY

#### PRODUCTION PLANS AND DESIGN CAN AFFECT COST

- FULL FLANGE IS FLANGE CUT FROM SOLID BLANK PLATE
- ANNULAR FLANGE IS A PLATE LAID UP
  WITH OUT FIBER IN THE MIDDLE
- NOT MUCH DIFFERENCE BETWEEN PLANS 2-4 IN COST
- CN60 IS AN EXCELLENT CANDIDATE, BUT NEED TO VERIFY THAT IT'S MODULUS AND CTE ARE AS ADVERTISED
- CN60 THICKNESS A QUESTION...
- NO BIG COST HIT TO MAKE SHELL FROM YSH80 IF NECESSARY

| Production Plan 1: YSH80 w/ full flanges |                        |                        |             |           |            |             |
|------------------------------------------|------------------------|------------------------|-------------|-----------|------------|-------------|
| Material                                 | Part Mass or Area      | w/ Extra (waste, etc.) | Minimum     | Cost/Unit | Order Amt. | Order Cost  |
| AQ II                                    | 9.31                   | 13.96652513            | 1.8         | 770       | 13.97      | \$10,754.22 |
| CN60 UDT                                 | N/A                    | N/A                    | 2.27        | 704       | N/A        | N/A         |
| YSH80 UDT                                | 3.19                   | 4.7848398              | 1.8         | 1485      | 4.78       | \$7,105.49  |
| CN60 Cloth                               | 9.57088                | 14.35632               | 10          | 550       | 14.36      | \$7,895.98  |
| Glass Mat                                | 7.05925615             | 10.58888423            | 9.3         | 140       | 10.59      | \$1,482.44  |
|                                          |                        |                        |             |           | Total \$ = | \$27,238.13 |
|                                          |                        |                        |             |           |            |             |
| Production I                             | Plan 2: CN60 w/ full f | langes                 |             |           |            |             |
| Material                                 | Part Mass or Area      | w/ Extra (waste, etc.) | Minimum     | Cost/Unit | Order Amt. | Order Cost  |
| AQ II                                    | 9.31                   | 13.96652513            | 1.8         | 770       | 13.97      | \$10,754.22 |
| CN60 UDT                                 | 3.19                   | 4.7848398              | 2.27        | 704       | 4.78       | \$3,368.53  |
| YSH80 UDT                                | N/A                    | N/A                    | 1.8         | 1485      | N/A        | N/A         |
| CN60 Cloth                               | 9.57088                | 0                      | 10          | 550       | 10.00      | \$5,500.00  |
| Glass Mat                                | 7.05925615             | 10.58888423            | 9.3         | 140       | 10.59      | \$1,482.44  |
|                                          |                        |                        |             |           | Total \$ = | \$21,105.20 |
|                                          |                        |                        |             |           |            |             |
| Production I                             | Plan 3: YSH80 w/ anr   | nulus flanges          |             |           |            |             |
| Material                                 | Part Mass or Area      | w/ Extra (waste, etc.) | Minimum     | Cost/Unit | Order Amt. | Order Cost  |
| AQ II                                    | 9.31                   | 13.96652513            | 1.8         | 770       | 13.97      | \$10,754.22 |
| CN60 UDT                                 | N/A                    | N/A                    | 2.27        | 704       | N/A        | N/A         |
| YSH80 UDT                                | 1.38                   | 2.0719872              | 1.8         | 1485      | 2.07       | \$3,076.90  |
| CN60 Cloth                               | 1.39372                | 0                      | 10          | 550       | 10.00      | \$5,500.00  |
| Glass Mat                                | 7.05925615             | 10.58888423            | 9.3         | 140       | 10.59      | \$1,482.44  |
|                                          |                        |                        |             |           | Total \$ = | \$20,813.57 |
| Production                               | Plan 4: CN60 w/ anni   | ulus flangos           |             |           |            |             |
| Material                                 | Bart Mass or Area      | w/ Extra (wasta ata)   | Minimum     | Coct/Unit | Ordor Amt  | Order Cost  |
|                                          | C 21                   | 13 06652513            | 1.9         | 770       | 13 07      | \$10 754 22 |
|                                          | 9.31                   | 2 0740970              | ۱.0<br>דר ר | 770       | 10.97      | ¢10,704.22  |
|                                          | I.38                   | 2.07 19872<br>N/A      | 4.27        | 1/04      | Z.Z/       | φ1,096.00   |
|                                          | IN/A                   | IN/A                   | 1.0         | 1480      | IN/A       |             |
|                                          | 7.05025045             | 10 59909400            | 10          | 000       | 10.00      | \$0,000.00  |
| Giass Mat                                | 7.05925615             | 10.58888423            | 9.3         | 140       | 10.59      | \$1,482.44  |
|                                          |                        |                        |             |           | Total \$ = | \$19,334.75 |





# MATERIAL TESTS

- CURED PLY THICKNESS TEST—RESULTS TODAY
  - DETERMINES BOTH CPT AND NET RESIN CONTENT (NO BLEED)
- BLEED STUDIES
  - NEED TO ASCERTAIN OPTIMAL BLEED TECHNIQUE TO ACHIEVE PROPER RESIN CONTENT
  - CO-CURING OF HEATERS MEANS NO BLEEDING OF PRE-PREG
  - THICK FLANGE LAMINATE WILL BE BLED ACCORDING TO THESE RESULTS
- FULL PANELS, NOMINAL LAMINATE (8-PLY QUASHSO) ALL MATERIALS, WITH AND WITHOUT HEATERS
  - DETERMINE MODULUS AND RESIN CONTENT BY EXTERNAL VENDOR
  - DETERMINE CTE OF MACRO PANEL WITH AND WITHOUT HEATERS USING IN-PLANE CAPABILITY OF TVH SYSTEM
- WILL USE RESULTS OF THESE TESTS TO SELECT FINAL MATERIALS FOR PST, AND USE PROPERTY DATA AS INPUT FOR SCT/PST MODELING EFFORT
- FOOT-LONG MANDREL PROTOTYPE FABRICATION FOLLOWS



## **PIXEL DETECTOR**

# ALUMINUM ON KAPTON HEATERS



- HEATERS WITH SOLDERABLE CONNECTION PADS HAVE BEEN DEVELOPED AT LBNL
  - 50micron Kapton Substrate
  - 12MICRON HEATER AL
  - 50micron EMI Foil AL
  - 10MICRON ADHESIVE LAYERS
    - EPOXY–VERIFIED RADIATION TOLERANT TO 50+MRAD
  - 25 MICRON COVERLAY
- HEATERS GENERATE
  ~0.05W/CM2 @ 1A CURRENT
- CONNECTIONS CAN BE GANGED
  AS DESIRED
- PERFORATED FOR OFF-GASSING OF PRE-PREG DURING CO-CURE



#### **PIXEL DETECTOR**

# FRICTION TEST APPARATUS (TRIBOMETER)



- GRAVITY PROVIDES CONSTANT TORQUE
- LOAD ADJUSTMENTS CAN BE MADE BY SLIDING THE TOP MASS ALONG THE ARM

*PIXEL DETECTOR INTEGRATION* E. Anderssen LBNL

# EXPERIMENTAL SYSTEM

#### INSTRUMENT

- The rotary Friction Test Stand was used to determine static C.O.F.

#### ACCURACY

- THE INSTRUMENT HAS AN EXPERIMENTAL ACCURACY OF ABOUT 4%
- AL ON STEEL WAS USED AS A CONTROL
- NEMA WAS USED AS THE SLIDING SURFACE MATERIAL IN EVERY OTHER TEST

#### • METHOD

 TESTS WERE REPEATED OVER THE SAME NEMA TRACK MULTIPLE TIMES TO DETERMINE WEAR BEHAVIOR **Test Materials:** 

Vespel SP-1 Vespel SP-21

vesper Sr-21

Vespel SP-3

PEEK

PEEK Glass Filled

PEEK Carbon Filled

Ryton





# RESULTS OF STATIC TEST – C.O.F.





# RESULTS OF STATIC TEST – C.O.F. DATA TABLE

| Material1           | Material2 | Average<br>coefficient of<br>friction | Average<br>coefficient of<br>friction<br>@Load 2 | Statistical<br>Uncertainty +/- | Notes             | Force (kg)<br>+/- 1 kg |
|---------------------|-----------|---------------------------------------|--------------------------------------------------|--------------------------------|-------------------|------------------------|
| Vespel, SP-1-V147   | NEMA      | 0.144                                 | 0.154                                            | 0.002                          |                   | 5.2                    |
| Vespel, SP-3        |           |                                       |                                                  |                                |                   |                        |
| Molybdenum          | NEMA      | 0.150                                 | 0.183                                            | 0.002                          |                   | 4.3                    |
| Vespel, SP-21       |           |                                       |                                                  |                                |                   |                        |
| Carbon              | NEMA      | 0.134                                 |                                                  | 0.002                          |                   | 5.9                    |
| PEEK, Virgin        | NEMA      | 0.160                                 | 0.167                                            | 0.003                          |                   | 5.0                    |
| PEEK, Glass Filled  | NEMA      | 0.184                                 |                                                  | 0.016                          | rapid wear        | 4.5                    |
| PEEK, Carbon Filled | NEMA      | 0.166                                 | 0.223                                            | 0.012                          | rapid wear        | 5.2                    |
| RYTON PPS           | NEMA      | 0.158                                 |                                                  | 0.055                          | rapid wear        | 6.5                    |
| Aluminum            | Steel     | 0.560                                 |                                                  | 0.047                          | Reference of 0.61 | 4.2                    |





# **RESULTS OF STATIC TEST- WEAR**



PIXEL DETECTOR INTEGRATION

E. ANDERSSEN LBNL

# DISCUSSION OF WEAR BEHAVIOR

- MODULUS OF SAMPLES
  RELATED TO WEAR OF SLIDING
  MATERIAL (NEMA) DUE TO
  SIMILAR MODULI
- VISIBLE SCRATCHING OF SURFACE OF NEMA FOR HARDER SAMPLES
- VIRGIN PEEK HAS BORDERLINE HARDNESS, BUT THE COF CHANGES VARY LITTLE AT HIGHER LOADS-THIS MAY IMPLY BETTER WEAR BEHAVIOUR

|                      |         | Relative Wear |
|----------------------|---------|---------------|
| Material             | E (GPA) | Order         |
| Vespel SP-21(Carbon) | 2.3     | 1             |
| Velpel SP-1 (Virgin) | 2.4     | 1             |
| Vespel SP-3 (Moly-D) | 2.4     | 1             |
| PEEK, Virgin         | 3.4     | 2             |
| PEEK-Glass           | 5.5     | 3             |
| Ryton                | 5.5     | 5             |
| PEEK-Carbon          | 11.0    | 4             |
| NEMA                 | 12.0    |               |





# RECOMMENDATIONS

- THE VESPEL SP-1 AND SP-21 AND UNFILLED PEEK ARE PROMISING CANDIDATES AND SHOULD BE FURTHER TESTED.
  - PEEK →0.160
  - VESPEL →0.145
- VESPEL SP-21 IS QUESTIONABLE BECAUSE OF THE CARBON CONTENT.
  - VESPEL SP21 →0.135
- GLASS, CARBON FILLED PEEK, AND RYTON SHOULD BE <u>REJECTED</u> DUE TO UNFAVORABLE WEAR BEHAVIOR
- FILLED PEEKS <u>*REJECTED*</u> DUE TO HIGH C.O.F.
- VESPEL SP-3 SHOULD BE <u>REJECTED</u> DUE TO THE INCREASING C.O.F AT 8 KG LOADS

| <b>Best Materials:</b> |                  |  |  |
|------------------------|------------------|--|--|
| Vespel SP-1            | Good             |  |  |
| Vespel SP-21           | Maybe            |  |  |
| Vespel SP-3            | - <del>Bad</del> |  |  |
| РЕЕК                   |                  |  |  |
| PEEK Glass Filled      |                  |  |  |
| PEEK Carbon Filled     |                  |  |  |
| -Ryton-                |                  |  |  |



## **PIXEL DETECTOR**

# PIXEL FRAME MOUNTS

- PROTOTYPE OF PIXEL MOUNTS
  DEVELOPED
- AXLE AND BEARING DESIGN REFINED
  - 15 ANGULAR CONTACT BEARINGS
  - CURRENTLY ALL IN TOOL STEEL
  - CERAMIC RACE OPTIONS EXIST
  - CERAMIC BALLS IN HAND
  - TITANIUM SHAFT NEXT STEP
- CONTACT ANALYSIS SHOWS ONE
  BALL CAN TAKE FULL DETECTOR
  LOAD
- STATISTICAL ANALYSIS SHOWS 5 OR MORE BALLS IN CONTACT











# INTERFACE TO ENDPLATE DEFINED

- THREE MOUNTS FIXED, ONE ADJUSTABLE VERTICALLY
- Two dowel pins, Three mounting screws
- HOLES MACHINED IN EARS OF ENDPLATE
- ENDPLATE REGISTERED TO END FRAME BY TIGHT SHOULDER SCREWS IN SAME EAR



E. ANDERSSEN LBNL



## **PIXEL DETECTOR**

# RAIL DESIGN IN SUPPORT TUBE





'SERVICE RAILS' REMOVED

WILL USE V AND FLAT RAILS TO SUPPORT SERVICE/BEAMPIPE SUPPORT STRUCTURES



DETAIL 2



E. Anderssen LBNL

## BEAM PIPE ADJUSTED FULL RANGE



FEBRUARY 2002 MECHANICS

- BEAMPIPE SHOWN WITH ENDS AT:
  - C: +10, +10
  - A: -10, +10
- DESIGN ADJUSTMENT NOT LIMITED BY SUPPORT
  - B-Layer envelope allows
    Only 9mm radial
    Adjustment maximum

#### **SURVEY ACCESS**

- LIMITED BY B-LAYER-CANNOT SEE CLEAR THROUGH
- LIMITED BY FLANGES AND END-PLUG (PP1)



# FORWARD END MOVED AND PULLEYS RE-DESIGNED





# BARREL END GEOMETRY







# FORWARD END GEOMETRY







### **PIXEL DETECTOR**

# USE "TUNING ENGINE" DESIGN















# **TUNING ENGINE ALIGNMENT**







# TENSION/COMPRESSION TRANSMISSION THROUGH STRUCTURES NOT SERVICES



CLIPS REGISTER TO BUTTONS ON FRAME AND SERVICE/BEAMPIPE SUPPORT STRUCTURE GAPS ALLOW 'PHI' OFFSETS OF UP TO +/- 1 MM WHILE ONLY 0.25MM LONGITUDINALLY

