ATLAS Pixel Sensors

Sally Seidel University of New Mexico U.S. ATLAS Pixel Review LBNL, 2 November 2000 Features of the Experiment

Impact on the Sensor Design

10-year fluence @ nnermost layer >10¹⁵ cm⁻² \langle 1-MeV n \rangle Guarantee stable operation @ high voltage; operate below full depletion after inversion.

~10⁸ channels (1192 sensors) plus spares; want to test these under bias before investing chips on each

Implement integrated bias circuit.

All of the other subsystems located outside the pixels Minimize multiple scattering; minimize mass. Many of the sensors' detailed features follow from extensive study of radiation damage effects. Summarize those:

- 2 types of damage:
 - non-ionizing energy loss in the silicon bulk
 - ionization in the passivation layers
- Principal effects + impact on design:
 - change in dopant concentration leads to type inversion + increase in $V_{depletion}$
 - segment n-side to operate inverted sensor partially depleted
 - design for high operation voltage
 - increase in leakage current
 - cool sensor to avoid increase in noise, powe consumption
 - decrease in charge collection efficiency
 - maintain good S/N; minimize capacitance

Parameterize the effective dopant concentration N_{eff} to predict the depletion voltage as a function of temperature and time:

 $V_{dep} \propto |N_{eff}| = |N_a + N_C + N_Y|$, where

$$\begin{split} N_{a} &= g_{a} \cdot \Phi \cdot \exp(-t/\tau_{a}), \text{ ``beneficial annealing''}, \\ N_{C} &= N_{C0} \cdot [1 - \exp(-c\Phi)] + g_{c}\Phi, \text{ ``stable damage''}, \\ N_{Y} &= g_{Y} \cdot \Phi \cdot [1 - (1 + t/\tau_{Y})^{-1}], \text{ ``reverse annealing''}, \\ \tau_{Y} &= 9140s \cdot \exp(-0.152T), \end{split}$$

 Φ is fluence, t is time, T is temperature, and g_a , τ_a , N_{C0} , c, g_c , and g_Y are known parameters.

Total fluence has been predicted for each component's lifetime assuming luminosity ramp-up from 10³³cm⁻² to 10³⁴cm⁻² during Years 1-3:

ATLAS Scenario

- •100 days beam @ 0°C, 30 days @ 20°C, 235 days @ -10°C
- 250µm thick sensor
- B-Layer: Fluence 2.8E15, 85% charged, radius 4.3cm (old position
 Layer 1: Fluence 6.6E14, 70% charged, radius 10.1cm (old position

xample prediction of depletion voltage ersus radius, for 10-year fluence:

Simulations were made to select operating temperature and access time:

Depletion Voltage $V_{dep}(T_{op})$ - B-Layer - 5 years

Radiation level for B-layer: $\Phi_{eq}(5 \text{ years}) = 1.2 \times 10^{15} \text{ cm}^{-2} \text{ resp. } 1.8 \times 10^{15} \text{ cm}^{-2} (+50\%)$ Scenario: 100 days beam at *T*, 30 days at 20°C, 235 days at -10°C per year Sensor thickness 200µm, oxygenated silicon, $V_{bias}=V_{depl}+50$ V, max. 600 V

Depletion Voltage $V_{dep}(T_{warm-up})$ - B-Layer - 5 years

- •Radiation level for B-layer: Φ_{eq} (5 years) = 1.2×10¹⁵ cm⁻²
- Scenario: 100 days beam at 0°C, n days warm-up at T per year, rest at -10°C
- •Sensor thickness 200µm, oxygenated silicon, V_{bias}=V_{depl}+50 V, max. 600 V

onclusion:

- 00 days' operation @ 0 °C
- 30 days' warm-up @ 20 °C
- 235 days' storage @ -10 °C

General Features of the Production Sensor Design

- Rectangular sensors:
 2 chips wide x 8 chips long -
 - Each chip: 18 columns x 160 rows
 - Each pixel cell: $50 \times 400 \ \mu m^2$
 - Active area: $16.4 \times 60.8 \text{ mm}^2$
- n⁺ implants (dose >10¹⁴/cm²) in n-bulk to allow underdepleted operation after inversion
- Thickness: 250 μm

Route to the Design

- First Prototypes -
 - Designed in '97, fabricated by CiS + Seiko, studied in '98-'99
- Second Prototypes -
 - Designed in '98, fabricated by CiS, IRST, and TESLA, studied in '99-2000
- Pre-production Sensors -
 - Designed in '99-2000, ordered in Aug. 2000 from CiS + TESLA for delivery in Feb. 2001
- Production Sensors -
 - To be ordered following acceptance of pre-production; approx. Sept. 2001.

4-inch diameter, 250 µm thick, with:

- 3 full-size Tiles
- 6 single-chip sensors
- various process test structures to monitor oxide breakdown voltage, flat-band voltage, oxidesilicon interface current, p-spray dose

Features of the Full-size Sensors ("Tiles")

- Pitch 50 x 400 µm²
- 47232 cells per sensor
- Area 18.6 x 63.0 mm²
- Active area 16.4 x 60.8 mm^2
- cells in regions between chips are either
 - elongated to 600 μ m to reach the nearest chip, or
 - ganged by single metal to a nearby pixel that has direct R/O

Elongation and Ganging of Implants in the Inter-chip Region

medium [(3.0 ± 0.5) x 10^{12} /cm²] dose nplant applied to the full n-side without asks, then overcompensated by the high ose pixel implants themselves.

he p-spray is *moderated*: it attains a lower bron dose near the lateral p-n junction, hereby reducing the electric field. The inface charge at the junction is optimized at he saturation value $(1.5 \times 10^{12}/\text{cm}^2)$ and is ightly higher in the center $(3.0 \times 10^{12}/\text{cm}^2)$ or safe overcompensation. The higher dose in the center also reduces the capacitance.

Bor-implantation

he same sensors irradiated to 9×10^{14} 1MeV n/cm² reakdown voltage

Irradiated ATLAS Prototype 2 Oxygenated Devices, Temp Corrected to +20C

(Prototype 1): 180 V

Measurement Date December 4, 1998 Current (#A) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0,1 Û 25 250 0 50 75 125 175 200 225 100 150 Bias (V)

1.5 Prototype Wafer C1b-O6s, Tile 1

reakdown voltage for tile with moderated p-spray Prototype 2): 410 V

Substrate: oxygenated

rom the ROSE Collaboration: Oxygennriched (24 hours in 1150°C environment) licon is significantly more radiation hard an standard silicon as tested with protons of lons. V_{dep} is 2x lower after 10¹⁵/cm².

- on the p-side: a 17-ring structure of p⁺ implants. Pitch increases with radius. Meta overlaps implant by 1/2 gap width on side facing active area. (See Bischoff, et al., NIM A 326 (1993) 27-37.)
- on the n-side: no conventional guard ring.
 Inner guard ring of ~90 µm width surrounded by a few micron gap. Region outside gap is implanted n⁺ and grounded externally. Recal that the chip is only a bump's diameter away This design guarantees no HV arc from n-sid to chip.

- For high yield on assembled modules, we want to test sensors prior to attaching chips - so we want to bias every channel on a test stand without a chip and without contacting implants directly. A bias grid is implemented:
 - Bus between every pair of columns connects to small n⁺ implant "dot" near each pixel
 - When bias is applied (through a probe needle to the grid, every pixel is biased by punchthrough from its dot.
 - p-spray eliminates need for photolithographic registration, permits distance between n-implants to be small → low punchthrough voltage
 - Bias grid unused after chips are attached but maintains any unconnected pixels (i.e., bad bumps) near ground

Bias Grid

requirements

- thickness 250 μ m
- thickness non-uniformity, wafer to wafe $+10 \ \mu m$, $-30 \ \mu m$
- thickness non-uniformity across each wafer < 10 μ m
- **bow** $\le 40 \ \mu m$
- crystal orientation <111>
- resistivity 2-5 k Ω -cm
- resistivity uniformity, wafer to wafer ±30 %
- substrate free of deep levels (C-V independent of frequency f for 20 Hz < f < 10 MHz)
- substrate oxygenated @ 1150 °C, 24 hrs

(measured at 20 °C)

- initial operating voltage 150V or V_{dep} + 50V, whichever is higher
- initial leakage current @ V_{op} $< 2 \,\mu A$ per tile
- current slope at V_{op} $I(V_{op})/I(V_{op} 50V) < 2$
- initial oxide breakdown voltage $\geq 50V$
- $-\Delta I \le 30\%$ after 30 hours operation in dry air at V_{op}

- ∂
 - implant spacing $\geq 5 \ \mu m$
 - implant width $\geq 5 \ \mu m$
 - contact hole diameter in oxide or nitride ≥ 5 μm
 - contact hole spacing in oxide or nitride ≥ 20 µm
 - metal width $\geq 8 \,\mu m$
 - metal spacing $\geq 5 \ \mu m$
 - contact hole diameter in passivation ≥ 12 µm
 - contact hole spacing in passivation $\geq 38 \ \mu m$
 - mask alignment tolerance within same side $\pm 2\mu m$
 - mask alignment tolerance between front and back sides $\pm 5 \ \mu m$

- Processing parameters:
 - n^+ implantation dose > 10^{14} /cm²
 - p-spray effective dose in Si $(3.0 \pm 0.5) \times 10^{12}/\text{cm}^2$
 - p-side contact dose > 10¹⁴/cm²
- Radiation hardness
- To be tested on 2-4 test structures of 3 types, per batch, after 10^{15} p/cm² (CERN PS) and 50 kRad low energy electrons (Dortmund):
 - $-V_{op} \ge 600 \text{ V}$
 - $-I(600 V) < 100 \mu A$ @ -10 °C
 - $-\Delta I < 30\%$ after 15 hours @ -10 °C

Pixel Sensor Testing

- static studies of irradiated + unirradiated devices
- test beam studies of sensors with amplifiers.

Examples...

uality assurance procedures applied to

- Prototype 2 assigned a flag $Q_{\text{flag}} \in (-1, 0, 0)$
- +1) to each tile on the basis of its
- breakdown voltage.
- $f_{flag} = -1 \text{ for } 50 \text{V} < \text{V}_{breakdown}$
- $f_{flag} = 0 \text{ for } 50 \text{V} < \text{V}_{\text{breakdown}} < 150 \text{V}$
- $f_{\text{flag}} = +1 \text{ for } V_{\text{breakdown}} > 150 \text{ V}$
- ypical results for CiS (predict production yield):

26

eam test study of charge collectio

For an oxygenated Prototype 2 wafer @ $V_{bias} = 400 \text{ V}, \Phi = 5.6 \times 10^{14} \text{ n}_{eq}/\text{cm}^2$:

track position extrapolated to the pixel detector using strip detector telescope average cluster charge computed for each position bin

~18000e⁻ signal:

Beam test study of depletion depth

Computed depth of the charge

fter $10^{15} n_{eq}/cm^2$, $V_{dep} = 190 \ \mu m @ -600 \ V$ for non-oxygenated substrate

Preliminary:) 250 µm thick oxygenated sensor fully depleted @ -400 V after 5.60

Beam test efficiency study

8.4% efficiency after $\Phi = 10^{15} \text{ n}_{eq}/\text{cm}^2$, for 000e⁻ threshold:

Resolution

Resolution at 0° for 3000 e⁻ threshold:

- depends on ratio (2 hits):(single hits)
- sharing within $\pm 3 \ \mu m$
- ~ 15 % double hits

Larger charge sharing region for larger angles

Depleted region reduction due to rad damage affects the multiple hits rate

Magnetic field modifies charge sharing through Lorentz angle

Beam test study of resolution a a function of azimuthal angle

Charge interpolation on the external pixels in the cluster improves spatial precision

Analog (Time over Threshold) measurement of the charge improves resolution.

Testing Program On all wafers:

visual inspection by microscope, before and fter all other measurements

-V of every tile, every single chip, and diod ith guard ring (for V_{break})

C-V on diode with guard ring (for V_{dep}) Once per batch:

OW

versus time

hickness

On a representative sample of control structures, a few per batch:

V_{flat-band}, oxide charge, p-spray dose, electron obility, V_{break} of oxide and nitride layers, iter-pixel resistance, inter-pixel capacitance, inplant and metalization resistivities

On irradiated test structures:

 V_{op} , I_{op} , ΔI vs. time, V_{break} , oxide properties, at-band voltage, oxide charge, p-spray dose ectron mobility

Sensor Costs

U.S. ATLAS E.T.C. WBS Profile Estimates

ng Source: All tions: All		Funding Type: Project						10/24/00 2:12:1					
er	Description	FY 96 (k\$)	FY 97 (k\$)	FY 98 (k\$)	FY 99 (k\$)	FY 00 (k\$)	FY 01 (k\$)	FY 02 (k\$)	FY 03 (k\$)	FY 04 (k\$)	FY 05 (k\$)	Tota (k\$)	
Sensors		0	0	0	0	0	97	167	39	0	0	30	
2.1	Design/Engineering	0	0	0	0	0	35	35	0	0	0	7	
1.2.1.1	Test design	0	0	0	0	0	35	35	0	0	0	7	
1.1.2.1.1.1 Design - New Mexico		0	0	0	0	0	35	35	0	0	0	7	
2.3	Production	0	0	0	0	0	62	132	39	0	0	23	
1.2.3.1	Barrels, Disks and B-layer(s	0	0	0	0	0	62	132	39	0	0	23	
1.1.2.3	3.1.1 Preproduction	0	0	0	0	0	16	0	0	0	0		
1.1.2.3.1.2 Production		0	0	0	0	0	0	93	0	0	0	9	
1.1.2.3	3.1.3 Testing	0	0	0	0	0	46	39	39	0	0	12	

Page 1 of 1

Sensor schedule:

		200	1	200	2	2003		200	14	4	2005
ò	Task Name	trtr	tr tr	tr tr	trtr	tr tr t	r tr	tr t	r tr	tr t	r tr
.1.2	Sensors										
.2.1	Design										
	Test Design			↓	1						
	Compl. Spec for production order release	M	3/1:	2							
	Production release order effort	┨└╻									
	ATLASPM approval of production procurement		\	7/23							
.2.3	Production										
	Start preproduction fab	10	12								
	Preproduction Fab/Test										
	First preproduction wafers delivered		• <mark>2/1</mark> 8	\$							
	Outer Sensors Production		Ļ	÷							
	First Outer production wafers delivered		L	•	1/18						
	Outer Sensors Testing				¥	ļ.					
	Outer Sensors Testing Complete					↓ 11	22				
	Outer Sensors Need to Begin Module Production					•	4/1				
	B-Layer Production										
	First B-layer wafers delivered					L,	411	1			
	B-layer sensor testing						¥				
	B-layer sensors needed to begin modules							•	\$ 3	/15	
		li									