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WBS 1.1.1.3 Pixel Electronics

K. Einsweiler, LBNL

•Overview of Electronics System Design

•Initial Rad-soft Prototypes

•Rad-hard Conversion Program

•Deep Sub-Micron Conversion

•Testing (see also talk of J. Richardson)

•US Roles, Basis of Estimate, Cost and Schedule

•Summary
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Overview of On-Detector Electron
Basic building block is Pixel Module:

•Active area is 10cm2, 46K channels, 16 FE on sensor substr
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Electronics components of pixel module:
•Front-end chip: Sixteen 7.4x11.0mm die per module, each

pixels of size 50µ x 400µ, plus control of internal biassing a

•Module Controller chip: assembles data from 16 FE chips
provides module level control functions and interface to op

•Opto-electronics: Driver for VCSELs used to transmit data
(VDC-p) and decoder for clock and command stream from 

•Power Distribution: Six supplies and one control voltage p
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Connections inside of Bare Module (MCC+FE

•Interface to outside uses serial in, serial out, and 40 MHz cl

•Only slow control uses CMOS signals. All critical connectio

•No analog signals are required between chips. FE chips ha
and 8-bit DACs to adjust front-end bias currents and calibr
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Overview of Off-Detector Electronics (W
Basic Concepts:

•RODs are detector-specific 9U VME64x modules in USA15
data on 1.6Gb/s S-links to the ATLAS DAQ (ROB = ReadO

•Common design effort for SCT/Pixels, including LBL, Iowa, 
plus Cambridge, Oxford, and UCL in UK. Design is based 
test systems, and closely integrated with on-detector electr

Components (ROD crate = 16 ROD/BOC plus
•ROD (ReadOut Driver): Receives data from up to 32 pixel 

output S-link bandwidth), and builds this into ATLAS event 
clock and control support for pixel modules, with extensive
capability. Supports local calibration (including fitting) and d
possible synchronization or re-initialization on the fly) using

•TIM (Timing and Interface Module): Accepts timing and co
ATLAS TTC system and distributes it over ROD Crate Bac
BUSY status from RODs and generates crate-level BUSY.

•BOC (Back of Crate Card): Includes opto-electronics for in
modules, including all timing adjustments, and S-link for tra

•RCC (ROD Crate Controller): Crate processor for all DAQ
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On-Detector Electronics Ingredie
•Pixel Array (Bonn/CPPM/LBL): FE chip of 7.4 x 11.0mm d

8.0mm active area. The chip includes a serial command de
and Sync timing inputs, and serial 40 Mbit/s data output. Th
associated with a particular crossing is “requested” by send
correct latency. FE chip then transmits corresponding digita

•Module Controller (Genova): Collects data from 16 FE ch
silicon event builder. Performs basic integrity checks and fo
implements robust module level command/control. FE chip
to MCC in star topology to eliminate bottlenecks and increa
Output is configurable from one 40 Mb/s up to two 80 Mb/s

•Opto-link (OSU/Siegen/Wuppertal): Multiplexed clock/con
s link to module, data is returned on one or two 80 Mbit/s da
are VCSELs, receivers are epitaxial Si PIN diodes. Basic li
package, connected to VDC-p and DORIC-p optolink chips
interfaces. The fibers are rad-hard silica core multi-mode fi

•Power Distribution: Significant ceramic decoupling on mod
to reach patchpanels on end of detector (PP0). Then Cu Fle
twisted round Al (LV power) to endcap wall (2.5m, PP1) an
PP2). Followed by conventional cables to muons (PP3) an
Additional filtering/protection components are placed on so
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Status of Opto-electronics and Opto
•OSU converted SCT design from AMS bipolar to DMILL CM

schematic level. Siegen did layout, further simulations. Chi
submission, and extensively tested. Several errors found in
and DLL which prevent useful operation. All known problem

Irradiation issues for opto-links:
•Collaborative effort of SCT and pixels (Wuppertal from pixe

systematic irradiation studies of optical fibers and opto-elem
VCSELs) up to pixel fluences. Results show no significant 
operated with adequate bias voltage (up to about 7V), and 
operated with sufficient bias current (up to about 20mA).

•Only major issue is single event upsets caused by interactio
epitaxial layer of the PIN diode. Irradiations at PSI this Spri
magnitude of this effect, and it is quite serious. Spec for lin

10-12, and during full-fluence BER of as high as 10-8 for B-
errors modeled, and cause single command bit errors and 

•Have significantly upgraded the MCC command set to be h
Commands are successfully decoded under any single bit 
command is lost with double error, mis-interpreted with trip

•FE-D1 version of VDC-p irradiated up to 50 MRad and work
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Power Distribution:
•ATLAS ID has chosen to operate detectors by placing all po

USA15 (or US15) to allow use of standard commercial com

•Major disadvantage is very long (up to 140m) cable runs re
attention to engineering/prototyping of the power distributio

Concepts include:
•Single point grounding inside tracking volume with floating p

•Treatment of supply/return for supplies as low-impedance tr
(broad-side coupled pairs on Flex cables, twisted pair in co

•Filtering (common-mode chokes and large capacitors) at PP
from pickup going from USA15 to detector. Transient protec
at PP1 to isolate modules from voltage surges that could k

•Global (entrance level) decoupling with 1206 high density c
(chip level) decoupling with 0402 high density ceramics on 
and analog supplies are filtered. Material and envelope req

•Flex components selected. First radiation tests done this Sp
results. Not yet clear whether design is adequate (noise/gr

•Major issue is full system-level prototyping to validate conce
This requires working modules, cable prototypes, and nois
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Electronics Challenges in FE Chips and R
•Operate properly after total dose of 50 MRad (nominal ATLA

cope with expected leakage currents from sensors of up to

•Operate with low noise occupancy (below 10-6 hits/pixel/cro
3Ke with low timewalk to have “in-time” threshold (hit appe
about 4Ke . Requires low threshold dispersion (< 200e) an

•Associate hits with 25ns beam crossing, including effects of 
digital timing on FE chip, clock distribution on module, and 

•Meet these specifications with a nominal analog power bud
channel and a nominal total power for the complete FE chi

Features of final design:
•Preamplifier provides excellent leakage current tolerance a

time-over-threshold (TOT) behavior via feedback bias adju

•Discriminator is AC-coupled, and includes 3-bit trim DAC fo

•Readout architecture uses distributed 7-bit timestamp bus, a
trailing-edge latches in each pixel to define times of LE and

•Asynchronous data push architecture used to get data into 
of the chip, where they are stored for the L1 latency, after w
for readout or deleted. Chip transmits Trigger/Row/Column
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Rad-soft Demonstrator Program
•In 1997, we agreed on overall design specifications for the 

necessary to implement this module design in a prototype 
pursue two prototypes for the FE chip. This was based par
partly on the goal of submitting designs to two different rad

•One was called FE-A, and was designed for submission to 
This process was viewed as a prototype vehicle for DMILL
submitted in Oct. 97, and testing began in Jan. 98. A secon
version, FE-C, was submitted in May 98. This chip has 880

•The second was referred to as FE-B, and was designed for
0.8µ CMOS. This process was viewed as a prototype vehic
chip was submitted in Feb. 98, and testing began in Apr. 98
850K transistors. Almost all results to date are based on 20
which had an average yield of about 92% after thorough di

•A DMILL prototype matrix (no EOC, simple readout) called 
submitted in Jul 97 and tested in Jan 98, to verify the FE d

•The MCC was submitted in May 98, along with FE-C, return

•All of these chips contain minor errors, but in all cases their f
close to the submission goals. Extensive lab testing and te
been carried out on all chips. Excellent performance has be
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Lab Measurements
Examples of threshold and noise behavior in

•Using individual Trim DACs, manage to achieve excellent d

•Measured noise is quite good, even for small-gap design pr
remains acceptable after irradiation (reduced shaping time
from leakage current itself both increase noise).
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Examples of timing and charge measuremen
�8����
����
��

��
	����

��
	����������
���	���	

•Timing performance at large 
charge is excellent, and timewalk is 
acceptable.

•Charge measurement is high quality, 
but requires individual calibrations. 
Uniformity of internal calibration is 
good.
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Module Prototyping:
•Built many “single chip” devices using smaller sensors for s

Some studies were done with irradiated sensors and rad-s

•Built about 20 modules, roughly half with IZM solder bumps
with AMS Indium bumps. Several assembled as “bare” mo
interconnections on PC board, most as “Flex” modules, an
modules. Some, but not all, of these modules work very we
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Examples of Module Results:
Bare Module (FE chips wire-bonded to PC bo
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Plots of noise in each chip versus pixel numb

•Column 0 has longer pixels, plus most bumping defects (ha

•This particular prototype comes close to meeting real ATLA
module, although it is a rad-soft version.
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Performance of best Flex module is not as go

•Many impressive results from first prototype modules, but m
needed to check whether high quality modules can be built 
manner. Lab and testbeam characterization ability is now w
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Initial Radiation Hard Strategy for FE
Pursue essentially identical designs with two

•ATMEL/DMILL: Began first work on FE-D in Summer of 98
to ATMEL on Aug 10 99. Design contains some “simplificati
from FE-B design to fit into DMILL constraints, as well as s
Performance targeted at outer layers, with 400µ pixel and 2

column pair. Readout performance should be adequate for

•Comments: CMOS density relatively low, especially for NM
metal process. This forced design to make compromises. H
but significant use of bipolars in FE-D. Barely succeeded in
circuitry into available footprints. Concerns about radiation 

•Honeywell/SOI: Began serious work on FE-H in Fall 99. At
and CERN had TAA agreements in place to do design. In a
was in process of revising Layout Rules, which caused sig
number of minor improvements relative to FE-D, taking adv
device density and third metal layer. Design should be mor
performance is targeted at B-layer as well (32 EOC buffers

•Comments: Density and routing both good, and can elimina
compromises. Radiation hardness of individual devices see
higher, so yield must also be higher to be affordable.
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Summary of FE-D Program
FE-D1 reticle included many die (10 in total):

•Two pixel FE chips (FE-D). For the FE-D1 run, they were ide
D1b run, they were very slightly different (changes in M1 an

•Prototype MCC chip. A prototype of several key elements of

20mm2 core size. Includes FIFO block for final chip, plus lar
command decoder block. Presently have tested 14 die, of w
to be no problems with this design, including operation at X

•Prototype CMOS opto-link chips (one DORIC-p and three VD
to work well up to about 150MHz. DORIC-p has several prob
understood, and largely related to validation of design witho

•Additional test chips: LVDS buffer for rad-hard test board, PM
and special pixel transistors, Analog Test chip with all critica
elements. All work well, and transistor parameter measurem
slightly faster than typical. Many detailed characterizations o

•Have irradiated several Analog Test chips, and several PM b
Single devices are OK to 50MRad, but Test chips no longer
several VDC chips to relevant doses in May in PS, and they
Currently irradiating MCC-D0 in PS, and results look good u
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Irradiation Results on DMILL
Device level results marginally OK (but NMOS
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K. Einsweiler          Lawrence Berkeley National Lab

Summary of FE-D1 Results:
Front-end chips:

•Several design errors found, including capacitor short misse
several missing or under-sized buffers in control and readou

•Very poor yield observed (no acceptable quality chips on the
arises mainly from two circuit blocks, and seems to be a tec

•The first circuit is the 2880-bit shift register used to control th
each pixel (calibration and readout masks, plus TDAC value
FE-D1 run for this circuit alone was about 25% (circuit is a f
but improved to 80-90% in FE-D1B backup run (nominally id

•The second circuit is part of the readout logic inside of each 
malfunctioning pixels, which disturb the readout of a column
The behavior is consistent with one NMOS used to reset a d
a low off-resistance. Subsequent studies confirmed this theo

Module Controller chips:
•Performance was as expected, and chips tested successfull

Yield, based on a small number of packaged parts, was abo

Opto-electronics chips:
•VDC-p worked well. DORIC-p doesn’t operate properly due 

parasitic loading of several critical nodes. Behavior reprodu



U S  A T L A S  P i x e l  B a s e l i n e  R e v i e w ,  N o v  2 - 3  2 0 0 0

Pixel Electronics,  Nov 2 2000    21 of 41

 expected 

he dispersion is 
bout 135e. 

 bit higher than 
d this is worse still 
ched to detectors 
-500e noise instead 

200e). This is not 
derstood.

issing groups of 
nnel map.
K. Einsweiler          Lawrence Berkeley National Lab

Measurement Highlights:
•Typical threshold scan of good FE-D chip. After tuning, see

improvement in threshold dispersion (this is a bare chip):

FED-1 VCCD=3600(2.2V) VTHR=3324(2.0V) IF=20 ID=IP=IL=IPS=40

Distribution of Thresholds

Distribution of Noise

Threshold vs. Channel

Noise vs. Channel
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•Have performed timing studies by injecting a large charge (
the delay to find when the hit moves from one crossing to t

FE-D 2 Timing Distribution, IF=12, VCCD=1.6V, Q=60,000e-

Distribution of Time

Timing Map

Timing vs. Channel

Timing Map
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K. Einsweiler          Lawrence Berkeley National Lab

Example of Defect Analysis in Yield S
•Two chips which had been characterized in the lab had serie

pads deposited by FIB surgery to allow probing of suspect 

•Measurements were made of DC performance of the suspe
complex to interpret since they are done in situ), as well as
performance (using an FET Picoprobe) of waveforms durin

•Two 
plac
was 
seco
the s
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K. Einsweiler          Lawrence Berkeley National Lab

DC curves for pixels previously classified go

•Bad pixels consistently show apparent drain-source resista
few 100’s of KOhms. Good pixels show resistance of many
larger, with actual value most likely limited by Tungsten res
deposition.
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Dynamic measurements of a good and a bad
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Summary of Steps Taken
•Discussion with ATMEL in Jan. 00 meeting in Nantes on ho

problems. ATMEL performed analysis of defective pixels on
found no traces of contamination or etch problems that cou
observed leakage behavior of bad NMOS. Have also analy
looking for defects, and nothing was found (but hard to see

•ATMEL completed processing on backup wafers from origin
providing us with six additional wafers (FE-D1b). These wa
up to the poly etch at the same time as the original FE-D1 w
for many critical steps done later. Compared to FE-D1, the
not great) yield on pixel shift register, and similar yield on th

•Extensive studies of our measurements as well as our layo
CEA (R. Truche, one of process developers), with some re

•Assistance also from E. Delagne (Saclay, ATLAS LArg). Sim
observed in a recent SCA submission. A possible model wa
problems with poor etching of dense polysilicon traces or co
of trenches. Recall trenches are a unique feature of DMILL
completely planar, causing potential problems in processin

•Such structures are present whenever we have low yield in
not present when we have acceptable yield, but detailed pr
agree perfectly with measurements.
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K. Einsweiler          Lawrence Berkeley National Lab

Second DMILL submission (FE-D
Design modifications made:

•Prepare a version of FE-D in which all known design errors
basic design is the same, known as FE-D2D (dynamic).

•Prepare a second version of FE-D in which, in addition, a s
pixel register and the readout logic is used. This required a
so the three TDAC bits were dropped from each pixel. This

•Prepare modified VDC-p and DORIC-p chips. All known pro
during the testing of the first chips were fixed, and validated

•Prepare the full second-generation MCC chip.

ATMEL proposal for FE-D2 (expected wafers-
•Process a standard 8-wafer engineering run with these des

additional inspection steps for the critical processing of tren

•Process an additional full lot (an internal ATMEL run) with s
variations in three areas: Leff (critical mask dimension for g
poly etching, and poly contact formation, producing 9 split 

•The additional wafers would be made available for us to tes
as a function of the process changes. In addition, we have
process monitor structures to look for poly processing prob
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 do not require full-
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ctober this year. All of 
 of Honeywell by GE 
K. Einsweiler          Lawrence Berkeley National Lab

Honeywell HSOI4 submission (FE
•Began work on submission to Honeywell SOI in Fall 99, but

resources were still dedicated to issues related to DMILL.

•This process has significantly higher density than DMILL du
devices and 3-metal support, allowing us to make a more r
the radiation hardness as characterized for single devices 

•This design work was nearing completion in Aug, when we 
price increase (factor 2.5: 20K$/wafer in large quantities). A
we have developed a good technology file and a complete

•We improved the DMILL design in a number of ways, makin
critical dynamic elements were all eliminated, which forced
400µ pixel size to provide space.

•We reformulated the design for the digital logic blocks which
custom layout, defining them using synthesizable Verilog. T
improves the rigor of the design, and will ease conversion 

•We would have been ready to submit an engineering run co
the VDC and DORIC, and associated test chips, by early O
this work is now shelved indefinitely (and recent acquisition
makes the future even more uncertain).
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ave 5nm oxides).

t if one controls 
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 addressed (no latch-
all VT and gm shifts), 
s in this path. 
ptibility of thin oxides 

r cables.
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at least one iteration.
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K. Einsweiler          Lawrence Berkeley National Lab

Deep Sub-Micron Approach:
•One of dominant effects of irradiation of CMOS devices is c

charge in the critical gate oxide layers. Below about 10nm 
charge trapping largely vanishes due to quantum tunneling 
processes are the first to operate fully in this regime (they h

•The RD-49 collaboration has studied details, confirming tha
leakage paths using layout, then a commercial 0.25µ proce
hard (circuits tested to 30MRad). Many technical concerns
up observed due to epi substrate, high SEU thresholds, sm
but little experience with full-scale devices, so still unknown
Concerns remain about lifetime under irradiation, and susce
to rupture or failure due to voltage transients on long powe

•Growing experience with analog designs, and quality of SP
but achieving optimal performance would probably require 

•CERN has negotiated a frame contract for LHC with IBM fo
process. The price is significantly lower than the traditional

•This places us into a commercial mainstream, where we ca
prices and availability in the future, and could hope for yield

•In wake of continuing problems with achieving acceptable y
acceptable cost with FE-H, have begun conversion of desig
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struct ATLAS.
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K. Einsweiler          Lawrence Berkeley National Lab

Proceeding towards 0.25µ versions of P
Background:

•We now have at most one traditional vendor for our rad-har

•We have found that our designs must be more aggressive t
restrictions imposed by DMILL (use of dynamic logic and s
tolerance, operation over very large parameter variations, v
etc.). This requires extra engineering and testing, and there

•This makes it imperative to develop 0.25µ versions of our p
VDC, DORIC), or we risk having nothing with which to con

Vendor issues (Note 0.25µ processes use 200
•Default path is to rely on the CERN-negotiated frame contra

0.25µ process. This provides advantage of fixed prices and
through 2004. There is only limited MPW access and limite

•A second path is to use MOSIS to access the TSMC 0.25µ 
processes are very similar (minor differences in via sizing a
only 5-metal instead of 6-metal). Costs are slightly (10%) hi

has already performed irradiations, and finds excellent resu

•We have begun development of common design environme
library, in collaboration with Fermilab and RAL, and this loo
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K. Einsweiler          Lawrence Berkeley National Lab

Major Issues for FE-I Conversion:
•Basic idea is to develop conservative chip, like FE-H, based 

32 EOC buffers, and overall with the same basic design. Go
identical current budget to that of FE-D/FE-H (services are c

•Need significant changes in present front-end design for fee
control, which rely on small W/L NMOS devices which cann
with annular layouts. This most likely leads to active leakage
two-stage preamp design. A differential preamp to reduce c
under consideration. A major goal is further improvement in

•Have significant concerns about SEU tolerance of designs, a
are planned for this.  Will use error correcting registers for G
and SEU-tolerant registers for local configuration, combined
state machine designs to minimize non-transient effects of S

•For digital readout, propose to move towards a fully static re
minimize impact of SEU and leakage. Will use differential da
to EOC to improve speed and reduce pickup. Plan to use m
for critical logic blocks, largely synthesized from state diagra
synchronous and robust behavior.

•Also a new idea to include digital timewalk correction in CEU
values. This could give us more flexibility in achieving timew
have proved marginal and difficult to improve in our present
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ic, pixel memories, 
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K. Einsweiler          Lawrence Berkeley National Lab

Planning and Status for FE-I
Bonn (Fischer, Comes, Ivan):

•Responsibility to update cell layout for library to include TSM
separate substrate connection, additional pixel-specific cel

•Conversion of analog blocks from FE-D, including DACs, ch
control. Design of Hamming-code correcting registers.

•Responsibility to integrate and submit Analog Test Chip like
submissions. This would be a MPW run with TSMC, target

CPPM (Blanquart), in process of transfering t
•Responsibility to develop and lay out new analog front end 

fast track for TSMC submission, and is presently the critica

•Responsibility for design of biassing and threshold control, 
analog buffer, and LVDS I/O (if we choose to update the ex

LBL (Mandelli, Marchesini, Meddeler, KFE):
•Overall responsibility for design environment and common 

•Responsibility for updated column pair readout (pixel hit log
CEU, and sense amps) plus pixel control block, updated EO
integration into complete column pair.
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K. Einsweiler          Lawrence Berkeley National Lab

•Responsibility for all digital logic at bottom of chip, which will
synthesized and mainly placed and routed with automatic to

•Responsibility for overall integration of all blocks into final su

Current Activity on FE-I:
•Proceeding on FE-I as rapidly as possible, with significant pr

Full team listed above is working with high priority.

• Have a first version of common design environment (tech fil
starting to adapt the CERN/RAL standard cell library. Studyi
IBM corners seem to cover all post-rad effects as well, and c
by about a factor of 2 faster/slower at 2.0V (TSMC corners 

•Have first versions of designs for new pixel hit storage circuit
logic (CEU+sense amps), and EOC buffer logic. Many Veril
running already. Working to convert FE-H synthesizable Ver
Synopsis for all digital blocks in the bottom of the chip.

•Major issue is how best to create new front-end design. Can
rapid MPW prototype, followed by engineering run (early de
with measurements before full run) or via careful, well-simul
prototype measurements. This requires further evaluation.

•Constraints placed by need to fully characterize and qualify 
new vendor during 2001 suggest an engineering run is requ
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ality DMILL versions 
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K. Einsweiler          Lawrence Berkeley National Lab

Current plans for other conversions:
•Discussed conversion issues for MCC-D2. Since the design

level (Verilog) description, with limited use of full-custom blo
should be relatively easy. Have done first synthesis of one b
evaluation of MCC-D0 and MCC-D2 on rapid schedule, expe
in Jan 2001, with goal of submitting a complete prototype w

•Discussed conversion issues for VDC and DORIC. Present 
conversion, and would expect to produce new designs eithe
early 2001, or for the FE-I engineering run.

•There is potentially a large conflict between resources neede
above, and resources needed to develop pre-production qu
of the chips in the FE-D2 run (FE-D3). We will re-discuss al
Dec pixel week, based on first results from characterizing ch

Yield assumptions:
•For identical die size in HP 0.8µ process (FE-B), achieved 9

•One large scale chip already in existence in IBM 0.25µ is CM

area is 60mm2, and a yield of 84% was observed for about 

•To be conservative, have assumed a yield of 50% for FE-I in

•Will try to follow IBM “R” rules for better yield. High yield and
be a major factor in accelerating the module assembly sche
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Other implications of 0.25µ choice:
•Bump-bonding with 200mm wafers has been discussed with

has capability now (major upgrade of all machines in bumpi
year), but no experience. AMS plans to develop capability s
Indium evaporator system). Initiating a “dummy module” pro
wafers to qualify vendors.

•Material budget will likely grow, since can only thin 200mm w
instead of the 150µ value achieved for 150mm wafers.

•Testing of 200mm wafers requires new probe stations. Prese
are planning to acquire new semi-automatic probe stations f
machine is in project budget).

•Testing of chips at voltages in the range of 1.6V - 2.5V is bei
production test systems, and is not difficult. Production prob
based on pin drivers which are programmable, plus some 7

•Power distribution is more challenging. Will attempt to keep 
budgets in order to prevent low voltage power services from
Power cable concept is based on goal of 2V voltage drop, bu
about voltage transients induced by changes in current cons
protection below 5V is difficult (varistors, zeners, and avalan
develop soft clamping curves in this region). Exploring new 
based devices from Semtech), but not known yet whether th
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Testing:
est structures: This 
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th LETI.
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small simple chip.

 built “rad-hard test 
tric” tester to 
 chips to build a 
canning phasing/

w much margin a 
s electronics is being 
f J. Richardson).

 “known good die” 
 confidence level) 
d” by characterizing 
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ell as good 

s is a more difficult 
ffects are much 
K. Einsweiler          Lawrence Berkeley National Lab

Radiation Hardness Qualification and 
•Characterization of processes using single devices and t

work has been carried out already for both DMILL and HSO
was done when the process was still under development wi

•Irradiate complete circuit blocks from present designs: 
analog test chip created for the FE-D run. It allows full studi
including adding capacitive loads and leakage current, in a 

•Irradiate FE chips while they are operating: Have already
board” for this purpose. Constructing an optimized “parame
characterize chips in detail (essentially use commercial ATE
custom IC tester). This allows changing clock frequencies, s
timing, and scanning I/O thresholds/voltages to evaluate ho
given die has for achieving its operational specifications. Thi
developed at LBL, to be ready by early next year (see talk o

•General Testing: plan to use parametric testing for selecting
during production. These die should remain good (with high
after irradiation. The production cuts would have to be “tune
many chips both before and after irradiation. Wafer probe cr
optimized to provide acceptable yield before irradiation, as w
confidence level of continued operation after irradiation. Thi
problem for DMILL than for a 0.25µ design where post-rad e
smaller.
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K. Einsweiler          Lawrence Berkeley National Lab

US Roles:
•Overall Electronics coordination: since 1998.

•FE-D design effort: Our contributions were the digital reado
design team was two full-time designers. We also play a ma
testing, including frequent trips to our FIB vendor.

•FE-H design effort: We developed a front-end design (proto
and characterized the process pre-rad and post-rad. Our de
of three designers. Our roles were digital readout and overa

•FE-I design effort: The present team is three designers, on
by the end of the year. We have recently hired the lead ana
CPPM (who was otherwise about to leave HEP). The Bonn 
and layout of some analog and digital blocks, and LBL will d

•DORIC-p/VDC-p design effort: OSU has one engineer and
time, plus part of a senior physicist. They are working on de

•Testing systems: LBL (initially in collaboration with Wiscon
generation test system (VME-based PLL module, PCC boa
support boards). LBL designing second generation test syst
are provided by LBL, and will also develop “burn-in” board t
operation of many modules with periodic sampling of their p

•Production Testing: LBL will probe 50% of FE wafers, OSU
opto wafers. Additional roles in bare module and assembled
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Basis of Cost Estimate and Sched
Baseline Scope:

•Two hit system built entirely using 0.25µ technology chips, w
exception of opto-link chips (higher voltage requirements fo

Goals:
•Three hit system, with third layer (barrel plus two disks) prov

technology. Given the nominal ATLAS schedule, this is the o
the module construction schedule sufficiently to complete a

Major Steps:
•Third generation of DMILL chips (FE-D3): Assuming that FE

yield, noise performance, and radiation hardness, this would
version. We assume that it does not require significant engi

•First generation of 0.25µ chips (FE-I1): First prototype 6-waf
including all chips (FE, MCC, VDC, DORIC). Evaluation wou

•Second generation of 0.25µ chips (FE-I2): This is assumed t
(smallest production run available under IBM frame contrac
pre-production run for outer layers, and would be evaluated

•First generation of 0.25µ chips optimized for B-layer (FE-IB):
be on FE-I2 run, and aggressively optimized for high occupa
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•Assume priority 
given to IBM in 
near-term.

•Assume 
modifications to 
FE-D2 are minimal, 
and it works as 
expected.

•Assume IBM work 
for outer layers is 
larger complete 
before B-layer work 
is started.

•Assume B-layer 
prototype is on 
same run as 
second 0.25µ outer 
layer prototype.
K. Einsweiler          Lawrence Berkeley National Lab

Schedule
Major milestones in Electronics Schedule:
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2 FY 03 FY 04 Total 

) (k$) (k$) (k$)

79 470 26 1830

00 161 0 942

69 11 0 469

29 0 0 169

01 151 0 304

37 0 0 512

0 0 0 160

0 0 0 10

54 0 0 84

83 0 0 257

42 308 26 376

19 229 26 274

23 79 0 102
K. Einsweiler          Lawrence Berkeley National Lab

Funding Profile
U.S. ATLAS E.T.C.

WBS Profile Estimates

Funding Source: All Funding Type: Project10/24/00 2:14:12 PM

Institutions:All

WBS FY 96 FY 97 FY 98 FY 99 FY 00 FY 01 FY 0

Number Description (k$) (k$) (k$) (k$) (k$) (k$) (k$

1.1.1.3 Electronics 0 0 0 0 0 756 5

1.1.1.3.1 Design/Engineering 0 0 0 0 0 381 4

1.1.1.3.1.1 IC design 0 0 0 0 0 189 2

1.1.1.3.1.2 Test design 0 0 0 0 0 140

1.1.1.3.1.3 Systems Engineering 0 0 0 0 0 52 1

1.1.1.3.2 Development and Prototypes 0 0 0 0 0 374 1

1.1.1.3.2.1 Atmel/DMILL prototypes 0 0 0 0 0 160

1.1.1.3.2.2 Honeywell 0 0 0 0 0 10

1.1.1.3.2.3 0.25 Micron 0 0 0 0 0 31

1.1.1.3.2.4 Test 0 0 0 0 0 173

1.1.1.3.3 Production 0 0 0 0 0 0

1.1.1.3.3.1 Front-end ICs 0 0 0 0 0 0

1.1.1.3.3.2 Optoelectronics 0 0 0 0 0 0
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K. Einsweiler          Lawrence Berkeley National Lab

Summary and Conclusions
•System design largely exists for both on-detector and off-de

•Prototypes of major chips (FE, MCC) built using rad-soft ele
extensively tested in lab and testbeam. Present designs ba
ATLAS requirements.

•Design of first rad-hard prototypes in DMILL appears sound
unacceptably low. Working with vendor to understand prob
generation of design, including vendor corner runs, is now i
of FE-D2 wafers expected in mid-Nov.

•Expect that go/no-go decision on whether to continue with D
made by Feb. 2001. If all goes well, anticipate pre-producti

•Work on Honeywell version has been cancelled shortly befo
unacceptable cost increases, losing more than 6 months o

•Work on 0.25µ versions of all chips has priority, and is proc
Complete set of prototypes (FE, MCC, VDC, DORIC) expe
Although some questions remain, this approach appears re
quality pixel tracker for ATLAS.

•With the new fully-insertable mechanics design, believe tha
schedule to deliver the baseline scope (2 hit system) for no

•It is now appropriate to convert this effort into an official US
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