LBNL FY00 Computing Budget Request

Introduction

This notes provides the preliminary FY00 budget request for U.S. ATLAS computing and related supporting material. The anticipated LBNL computing-related activities in FY00 include

WBS 1.1 Physics

WBS 1.2.1 Core Software

WBS 1.2.1.1 Control/Framework Software

WBS 1.2.1.2 Database Management Systems

WBS 1.2.2 Detector Specific Simulation and Reconstruction(not discussed in this note)

WBS 1.3.2 Remote(Tier 2,3) Analysis Centers(not discussed in this note) - see

http://phyweb.lbl.gov/~ianh/atlas/tier2.html
The major activities in FY00 will involve physics simulation and related computing requirements and the development of the Control/Framework Software. Work on Database Management Systems is proposed at a low level, except for those aspects that interface directly with the Control/Framework software(and which are budgeted under this category). Participation in the general computing architecture studies for ATLAS may continue into FY00.

Physics

Complementing his role in U.S. ATLAS computing as Physics Coordinator, Ian Hinchliffe has agreed to head the new ATLAS group that will have responsibility for the various Monte-Carlo event generators. Its task is to ensure the smooth integration of the event generators into ATLAS; to manage the software interfaces, to provide feedback to the authors of the generators; to implement and validate critical physics processes; and to integrate the various special purpose generators. The group will also be involved in the series of workshops to be held at CERN starting in January 2000 on QCD, backgrounds and Monte-Carlo issues. The group will hold its first meeting on Sept 13 at CERN (during the next ATLAS week). Some support(J. Milford) at LBNL will be needed in FY00 to ensure that the tools and generators are available for testing and evaluation on various platforms, including those in the U.S. Beyond about 0.25 FTE of support for J. Milford, no other funding in FY00 is presently foreseen to be needed.

Core Software - Introduction

ATLAS is committed to the development of object-oriented (OO) software grounded in accepted international standards and practices. The long lifetime of the experiment, the complexity of the required software and the distributed developer environment (we expect ~85% of the software effort to be outside of CERN) all argue for a highly modular system with well defined interfaces.

ATLAS has addressed the issue of software design in its Computing Technical Proposal and had codified its methodology in a well defined ATLAS Software Process (ASP). This process includes formal design reviews and required stages of documentation. Details of the ASP are currently under review, with the aim of streamlining the process; we expect, however, a continued emphasis on modularity, maintainability and documentation.

In ATLAS, as in most HEP experiments, software is divided into core software and non-core (detector specific or physics analysis) software. Core software is typically written by computing professionals rather than physicists and does not pertain specifically to a particular detector or to a physics program. It provides the operating environment for the software modules written by physicists, and supplies mechanisms for control of those modules, for data input/output to them, and for communication and coordination between modules written by different people and groups. Core software also provides other functionality that facilitates reconstruction and physics analysis tasks and that insulates the user (i.e. the physicist) from the underlying details of the operating system, data format, communication protocols, etc.

Software development in the core areas is both crucial to the work of ATLAS physicists and presently drastically under-staffed. Because it provides the environment into which a physicist must integrate her own code, it must be developed and made operational early in the software process. The design and development effort for core software must, therefore, be heavily front-loaded. It is not unreasonable to expect that the next several years will require more work on core software than on detector-specific and physics software.

Because core software is both a particular strength and a vital interest to US-ATLAS physicists and software professionals at LBNL, we propose to take the lead responsibility for the control/framework software domain as described below and to provide expertise in the planning in FY00 for database software in the expectation of proposing a role in this area in FY01 and later.

Architecture and Database Planning

For the duration of the ATLAS architecture committee, D. Quarrie will be devoting the whole of his ATLAS time to its activities. Following that, he will act as a consultant in the planning process leading to the establishment of data base activity in the US. He will also function as a consultant on the data interface of the control activity. This will enable ATLAS to benefit from the experience of BaBar and RD45 of which Quarrie is also a member.

Control/Frameworks and Components

As stated above, the complexity and sheer volume of code that is necessary to support and accomplish the event reconstruction, data mining, and data analysis for an experiment like ATLAS presents a tremendous challenge for developers of the software infrastructure in general, and of the control software domain in particular. Other experiments are and have faced this type of challenge (albeit at a smaller scale) before and have addressed it in different ways.

One approach which has been successfully tried in several High Energy and Nuclear Physics (HENP) experiments, but has been perfected in none, is the use of an analysis framework. An analysis framework is a software environment into which software contributions written by many authors can be integrated in a way which allows and eases integration and inter-operation of those software contributions. The framework concept is well known in the Information Technologies (IT) community and has been described many ways. Gamma, et al., in the Design Patterns
 book distinguish between a toolkit (such as a class library) and a framework as follows:

Gamma, et al., Design Patterns: "When you use a toolkit, you write the main body of the application and call the code you want to reuse. When you use a framework, you reuse the main body and write the code it calls... Not only can you build applications faster as a result, but the applications have similar structures. They are easier to maintain, and they seem more consistent to their users. On the other hand, you lose some creative freedom, since many design decisions have been made for you."

Data analysis framework-"like" programs exist and have been used in HENP experiments. However, often no distinction is made between software packages which address very different analysis-related tasks (e.g. execution control, data I/O, graphics presentation, data analysis, etc.). This tendency arises from the necessity that these tasks be seamlessly integrated in the final system. However, the resultant lack of compartmentalization complicates software maintenance and upgrades
 and imposes a barrier to understanding the overall architecture for new software developers and users.

A recognized approach to this kind of problem is the adoption of software components as the fundamental building block of the overall software system. Again, component technology is a well known and increasingly popular approach in the IT community (CORBA, DCOM, and Java Beans are examples of component technologies that are gaining acceptance across a wide range of software industries.).

Although no formal definition of a component is accepted by the Computing Sciences (CS), there is usually large overlap between different experts' individual descriptions.

Lakos, Large-Scale C++ Software Design: "A component is not a class and vice versa. Conceptually, a component embodies a subset of the logical design that makes sense to exist as an independent, cohesive unit. A component bundles a manageable amount of cohesive functionality that often spans several logical entities... and can be lifted as a single unit from one system and reused effectively in another system without having to rewrite any code."

Lakos also points out that a component-based architecture can (if properly designed) help control the physical design (as opposed to the logical design) of a large system, reducing many of the compile-time and link-time problems which can arise in any large software system.

An Extensible, Component-Based Physics Analysis Framework

We propose to design, develop, and deploy an extensible, component-based physics analysis framework for use within the ATLAS experiment (Though we believe that the resultant system will be easily usable by other experiments, and potentially even other disciplines.).

Thanks to a truly unique pool of physicists and computer scientists at LBNL who have played major roles in the design and implementation of analysis frameworks currently in use by BaBar, CDF, CLEO-III, PHENIX and STAR experiments, we are in a position to solve the computing challenges created by the software complexity of the next generation of HENP experiments.

The earliest control framework for ATLAS (ARVE - ATLAS Reconstruction and Visualization Environment)
 was written by a U.S. collaborator, Toby Burnett of University of Washington. ARVE is essentially an event pump and a way of chaining analysis modules for serial event processing. It provides a graphical user interface and elementary visualization capability as well as some basic geometry classes. To address some of the shortcomings of the original ARVE implementation, a component object network model has been proposed. This model has been described in detail in Lassi Tuura's master's thesis
 The first functional implementation of this model using genuine physics code has only just recently been attempted by members of the US ATLAS computing project who have volunteered to evaluate the current ATLAS control domain software by attempting to use it with LAr reconstruction code. This evaluation is on going. At present, no active software development effort on component networks or ARVE is being conducted.

We believe that an evaluation of the current ATLAS control and framework structure, along with a "market survey" of comparable systems from other experiments is a necessary first step in the development of a long-term strategy for the ATLAS control framework.

Over the course of the last several months at LBNL we have had presentations from experts on Object Network Component Model (ATLAS), StAF (STAR, PHENIX, E896), CLEO III Framework (CLEO), AC++ (BaBar, CDF), and Gaudi (LHCb), and have begun their evaluation. We have also built the single most complex object network configuration to date using the Object Network Component Model in an effort to investigate feasibility of using this approach to software execution and data flow control in an HENP experiment. We are in the process of producing a requirements document, which we expect to complete by the end of August 1999.

Control Framework Functionality

Because two of the primary tasks of this project are to assess the requirements for the control framework and to design an architecture which satisfies those requirments, we cannot yet with certainty describe the final form and functionality of the control framework. However, from prior experience with similar systems in other HENP experiments, we can discuss in some detail many of the necessary control framework functional requirements and potential design and implementation candidates.

Some of the primary tasks of the proposed analysis and control framework are to control the flow of the event reconstruction jobs, and the I/O of event, calibration and control data, efficiently using the scarce CPU and I/O resources available for the production batch jobs. To process each event, analysis and service modules (including I/O modules) will be connected in multiple execution paths, corresponding to different event classifications from the experiment trigger. Each path will have independent filters and I/O modules. The framework will make sure that modules common to more than one path will be executed only once. The framework will control the transitions of the modules through a finite, configurable set of states (start-up, run begin, event begin, etc.).

To manage batch jobs running for weeks on hundreds of CPUs we will provide active error handling/recovery, execution checkpoint/restart, and, if the event store is based on an ooDBMS, we intend to support ooDBMS transactions with rollback for module communications and I/O. Another very important feature for the production and on-line processing management is a journaling system capable of storing in a flat file or database the configuration of the production job: the active paths, the input databases, the version of each module in use, the parameters defining its behavior and any other information necessary to reproduce and understand the result of a production job.

Initially, the framework will be used by the core software team of each experiment (50-100 software engineers and physicists) as a development tool. As the experiments get closer to data-taking the number of "end-users", many of whom will actually contribute substantial amounts of code to the plug-in modules, will ramp-up to several hundred. The physicist who is developing a new track fitting algorithm on his/her personal computer, will typical pick a few selected events from the main event store, will reconstruct them using the new and old algorithms and will analyze the resulting tracks using an event display program and her/his preferred physics analysis package.

This has important implications for the design of the framework. It must be possible to run with only a lightweight "kernel" and a subset of plug-in modules relevant to the developer. The I/O management must be flexible enough to fetch the necessary data and calibration from the remote event store or read a subset of them from local disk and provide the plug-in modules with the same interface to the data no matter what the format or physical location. The framework must provide the user with an interactive shell offering the full functionality of the production jobs (namely the ability of defines execution paths and to configure modules), dynamic loading of modules, the ability to stop event analysis in the middle of an execution path on the basis of the information provided by an event selection or filter module. It must offer a consistent interface to pass module output data to the event display and to any of the supported physics analysis packages.

Other expected use patterns of the framework include the detector calibration and on-line monitoring, where high-speed interactive access and processing of moderate sized data samples must be granted, and Montecarlo simulation with limited I/O and interactivity but high use of CPU resources. In these use domains, the module call overhead must be small allowing the system to run under many different situations.

To accommodate legacy and special-purpose code (libraries, graphics, etc.) as well as language evolution the framework will need to be able to bind multi-language plug-in modules. It is likely and desirable that the framework itself will be written in a single language but we can not exclude a priori the concept of a mixed-language framework.

We believe that it is essential to provide the physicist with the ability to analyze and visualize the data in the most productive manner possible for that individual. We envision the use of a format independent data conduit that will permit the use of many different analysis/visualization packages, and that can be expanded in scope as new products become available. It will offer the ability to deal with complex objects as well as simple literals, and interface directly with the user's analysis code. It is not intended to be a replacement for the likes of PAW and ROOT, but rather an interface layer between analysis code and a visualization package, permitting the user to chose whichever final format is desired. By calling on routines provided by this package, the user will be able to histogram simple variables, object members, and even entire objects, in multiple dimensions. Upon completion, the histogrammed data will be saved in whichever format was selected by the user, allowing continued analysis or visualization at their discretion.

The additional burden that will be placed on the user for the incorporation of this conduit will be minimal. It will automatically handle standard data types, and require but brief descriptions of complex, user defined objects. In the event that the user wishes to create a custom output format, skeleton programs will be automatically generated for the user to flesh out.

The use of such a data conduit will free physicists to pursue analyses in less rigid fashions than are currently in vogue. By facilitating such freedom, we can start to make industry standard tools more accessible to the average physicist, as well as allowing specialized tools to be developed for particular applications. It has often been the case that large applications which are designed to handle all possible scenarios, such as PAW and ROOT (both popular analysis packages currently in use in HENP), are by nature subject to severe limitations. By breaking this chain, and allowing freedom of choice, we hope to add flexibility that has, until now, been sorely lacking from the HENP domain.

Approach and Methodology

The duration of an experiment like ATLAS is one order of magnitude longer than the current pace of change in computing. It is not even clear whether many of the OO technologies currently adopted by LHC experiments for their computing models and prototypes will still be relevant when they start running in 2005.

We don't think it is prudent to assume that the protocols or the actual code used in the early versions of the framework will be in use at experiment start, not to mention through its expected 15-20 years life-time. Many of the existing frameworks provide satisfactory "horizontal modularity", meaning the ability to replace existing plug-in modules. On the other hand, most of them lack any kind of "vertical modularity", the ability to replace the implementation of the module interface (the "software bus").

Many HENP collaborations have already found themselves locked into using obsolete programming languages or operating systems because of some early implementation choice. In such cases pressures to replace obsolete technologies increases over years which the management resists because they (rightly) consider them to represent dramatic changes, leading to a crisis at the worst possible moment and typically to a complete rewrite of the infrastructure, followed by a painful adaptation of the physics code to it. We believe vertical modularity is the right approach to promote evolution of the software infrastructure to incorporate new technologies as they become useful.

To promote vertical modularity we intend to base module interactions on interfaces described in an external dictionary. An example of such a dictionary is the one on which OMG CORBA is based. CORBA (Common Object Request Broker Architecture) is an industry supported architecture standard that manages communication among distributed components. Distributed objects in CORBA interact using a language neutral interface specified by the programmer using the Interface Definition Language (IDL). CORBA implementations provide an IDL compiler which reads in the dictionary and produces the "glue" code necessary to broker the component interactions.

In a similar fashion our framework will ask all developers of service and physics analysis modules to provide a dictionary file describing their interface to the external world (or to comply with one of the standard interfaces available in the repository). We will use the description to automatically generate code connecting the modules to the software bus in use and we will provide tools to assist developers in implementing the interfaces they describe in their target language. If, for example, they will be coding in C++ we will generate a complete header file and, optionally, the skeleton of its implementation to be completed by the developer.

This model will allow us for example to replace a software bus implemented in C++ with one written in Java, or vice versa, without the need to touch any of the existing modules. Central to our software engineering approach will be the use of open industry standards, of component software connected using a software bus, designed in a manner which will allow us to track the evolution of said standards.

The use of an interface dictionary enables us to distribute modules in different threads and processes using standard tools such as CORBA itself. We don't anticipate at this time the need to have distributed physics analysis modules (although this may be the case if we want to support the use a module being developed by a user on a remote client). On the other hand, we do see the advantage of distributing some service modules, such as a remote object server for calibration tables, a remote event display client receiving reconstructed event data from the framework, or a production master process managing a number of reconstruction workers, monitoring their status, load balancing them, etc. (CORBA is already being used in a similar manner in many HENP DAQ and online systems.). The most important service module that we will implement as a separate process is the user interface. The ability to control and configure the framework remotely rather than from inside the application itself will improve the UI (or GUI or Web-based User Interface) interactive response and it will make the framework more robust.

A common objection to the approach of using an interface dictionary is the additional burden it imposes on the developer who has to learn yet another language and use yet more tools. We believe that if the language is an industry standard like IDL, this burden is minimal and in any case more than balanced by the advantages mentioned before. If, as it seems likely, Java will become a popular language among the HENP developers in the next few years, these objection may vanish altogether as Java offers with its core libraries very good support for an interface dictionary, for distributed components and even for a multi-language environment.

Management, Organization and Work Schedule

We propose that Craig Tull be the project manager responsible for organization of the software effort and that Ian Hinchliffe be responsible for coordination with and interfacing to the HEP software efforts of the LBNL Physics Division and, in particular, the ATLAS collaboration. We present later a resource loaded work plan for fiscal year 2000 as well as a list of project milestones through fiscal year 2005.

The selection of the control framework as LBNL-ATLAS computing's primary core domain of responsibility are being made in close consultation with the overall ATLAS Computing Coordinator. This consultation is ongoing and should result in an explicit agreement on LBNL's role, responsibilities, and deliverables. The ongoing "architecture committee"
 is expected to set the plan and deliverables for this activity. There are two LBNL members (M. Shapiro and D. Quarrie) on this committee and we have offered to provide resources to the committee to help it with evaluation. The committee is expected to issue a final report by October 1999. It's minutes are available and we expect to use these as input to the requirements document. Our planning assumes that the LBNL group is entirely responsible for the control/framework. This assumption is not inconsistent with the absence of other ATLAS activity in this area. We expect to adjust our schedule and work-plan to accommodate the requests from the ATLAS computing coordinator.

We will engage physicists in ATLAS and at LBNL in other experiments in specification of requirements and in design discussions. In particular, we will continue discussions with BaBar, CDF, CLEO, D0, and STAR researchers at LBNL with whom we have already had extensive discussion of these issues. We will interact with the architecture committee as their requirements develop.

As well, we expect to draw upon US and non-US ATLAS collaborators in each of our test and documentation phases. Real-world tests of the framework will provide the greatest volume of user feedback on the design and implementation of the system as well as the most accurate and realistic QA and performance measures for the framework.

This project truly has a unique opportunity to develop a new set of software tools for use in a wide range of HENP experiments and other scientific data analysis projects. The timing and human resources available are auspiciously ideal to positively influence the way researchers do their data analysis in the coming millennium.

Control/Framework Milestones

[image: image1.wmf]ATLAS

LBNL

Budget

WBS

Personnel

FTE

Salary($K)

M&S($K)

Cost($K)

Funded

Funded

Request($K)

1.2.1.1

Craig Tull

1.0

218.7

10

228.7

100%

0%

228.7

1.2.1.2

David Quarrie

0.2

236.5

4

51.3

100%

0%

51.3

1.2.1.1

John Milford

1.0

154

2

156

100%

0%

156

1.2.1.1

Paolo Calafiura

0.55

109.5

3

63.2

0%

100%

0

1.2.1.1

Charles Leggett

0.56

104.7

3

61.6

0%

100%

0

1.2.1.1

TBN

0.85

180

4

157

100%

0%

157

1.2.1.1

Laurent Vacavant

0.49

80.7

6

45.5

100%

0%

45.5

Ian Hinchliffe

0.5

n/a

n/a

n/a

0%

100%

0

Marjorie Shapiro

0.2

n/a

n/a

n/a

0%

100%

0

Totals

5.4

32.0

763.4

638.5

The major milestones for development of the Control/Framework Software up to the initial operations phase in 2006 are given below.

· Test Release #1 (Alpha): Sept 2000

· Release will demonstrate the basic functionality of the package. We expect it to be adequate for use by application code developers but not for casual users. A preliminary version of the application interfaces will exist, but these interfaces will not yet be frozen. The functionality in this release will include: dynamic loading of I/O and analysis modules, run time specification (via a configuration script) of the order of module execution, and the ability to process events through multiple analysis paths and to discontinue event processing based on the filter decisions signaled by the modules. The release will include an interface to at least one Analysis Tools Package that allows for the creation of histogram/ntuple files but it may not support interactive use of that Analysis Tool from within the Framework. Framework and module configuration information will NOT be permanently recorded to a file or database in this release.

· Test Release #2 (Beta): October 2001

· Release should be adequate for early testing by physicists who are not core members of the application development team. We expect all I/O interfaces to be finalized by this time. The additional functionality relative to the Alpha release includes support for recording Framework and Module configuration information to a flat file or database and the ability to reconfigure from that file, an interactive interface to at least one Physics Analysis Tool, support for an abstract interface to additional graphical applications (such as event displays) and support for a set of module and Framework monitoring tools that allow developers to gather statistics on CPU usage, memory usage, etc. This release need not support multithreading nor support tools for distributed configuration across multiple clients. A Graphical User Interface (GUI) is not a milestone for the Beta release.

· First Production Release: October 2002

· This release is expected to be fully functional and adequate for production operations. It will support multithreading and will include a Production Manager that can be used to control distributed applications. GUI support will be included.

· Final Production release May 2004

After this time, no major modifications are envisioned and a maintenance phase is entered.

Control/Framework Plan in FY00

A preliminary resource loaded schedule for development of the Control/Framework software by LBNL personnel in FY00 only is given below.

[image: image2.wmf]ATLAS

LBNL

Budget

WBS

Personnel

FTE

Salary($K)

M&S($K)

Cost($K)

Funded

Funded

Request($K)

1.2.1.1

Craig Tull

1.0

218.7

10

228.7

100%

0%

228.7

1.2.1.2

David Quarrie

0.2

236.5

4

51.3

100%

0%

51.3

1.2.1.1

John Milford

1.0

154

2

156

100%

0%

156

1.2.1.1

Paolo Calafiura

0.55

109.5

3

63.2

0%

100%

0

1.2.1.1

Charles Leggett

0.56

104.7

3

61.6

0%

100%

0

1.2.1.1

TBN

0.85

180

4

157

100%

0%

157

1.2.1.1

Laurent Vacavant

0.49

80.7

6

45.5

100%

0%

45.5

Ian Hinchliffe

0.5

n/a

n/a

n/a

0%

100%

0

Marjorie Shapiro

0.2

n/a

n/a

n/a

0%

100%

0

Totals

5.4

32.0

763.4

638.5

A more detailed description of the tasks and milestones is given below.

· Project Management

Project management will consist of coordinating effort within the control framework project and between the control framework project and other software projects within ATLAS.

· Developer Support

Software developers in the control framework project will require support for development tool installation and maintenance, maintenance and integration with the ATLAS software development environment, etc. We have also included here the 0.25FTE of support needed for Physics simulation and related items.

· Define requirements

We will define a set of requirements for the control framework which do not pre-suppose a particular architecture or solution. These requirements will be defined in cooperation with the ATLAS Architecture Workgroup and with input from ATLAS physicists. A requirements section of the design document for the ATLAS control domain already exists and can form a starting point for this document. These requirements will be the measure of the suitability of the control framework design for ATLAS.

· Survey existing frameworks and architectures

There are several examples of existing frameworks for large applications both HENP specific (e.g. AC++, Gaudi, OpenScientist, PAW/Root, Staf) and non HENP specific (especially those based on the various component architectures) that try to address similar issues than the ones concerning us. We will survey them to extract every possible relevant requirements, design patterns and implementation choices.

· Survey existing & upcoming technologies

We will survey the three major component architectures (CORBA, DCOM and JavaBeans) and their evolution to determine which of them we should adopt as our (model for a) software bus technology

· Evaluate dictionary language candidates

We will evaluate the most convenient meta-data languages to describe the framework interfaces to the external world and to the software bus (e.g. IDL, ODL, SWIG, XMI, proprietary)

· Evaluate core language candidates

Although there seems to be no doubt that on a time scale of three-four years most of the algorithmic code of ATLAS will be written in C++, this does not determined a priori which programming language we should adopt for the framework core. We will evaluate possible alternatives (Java) to determine whether they offer enough extra features to make up for the extra complication due to multiple languages issues. Also we will evaluate the impact of a possible future change in the core language of choice and try to deign the framework to minimize it.

· Domain Decomposition

We will identify sub-domains of the framework that can be designed and implemented in parallel by separate individuals and/or teams.

· Development Tools

We will determine which tools to use for the design, the development, the code maintenance and the documentation.

· Code Generation Tools

We will evaluate which area of the framework implementation can be automated by generating code from the framework interface description. We will use existing tools (e.g. SWIG) and/or custom developed ones.

· Execution Flow Control

We will develop tools to control the execution flow both via scripting languages (and possibly configuration files) and an interactive user interface

· Analysis Tools Interface

We will provide a platform independent interface to multiple histogramming tools (e.g. PAW, ROOT, JAS) allowing the physicist to analyze the data accessible from the framework with her preferred physics analysis tool

Document Alpha Release

The Alpha release will include sufficient documentation for testing evaluation of the design and for testing of the system by non-developers.

Test Alpha Release

The Alpha release will be tested for functionality and for bugs by both software developers and by physicists.

Database interface design & prototype

We will define an interface to the ATLAS Data Model that will allow transparent access to the data whatever their location and storage technology in use will happen to be.

Budget Request Summary

 The FY00 budget request is summarized below. This includes personnel costs for development of the Control/Framework software, for participation in the Database software development, for continued participation in the ATLAS Architecture studies, and for support of these activities and for the definition of Physics simulation/analysis and the related computing requirements. Materials and supplies(M&S) includes partial travel support and miscellaneous costs. LBNL will contribute financial support as shown in the table. A total of $638.5K(FY00) is requested.

[image: image3.wmf]Task Name

Draft reqs. complete

Compl. initial framework survey

Req. document complete

Requirements review

Freeze CORE language

Alpha release design review

Alpha release

Freeze CORE architecture

Freeze database interface

Freeze platforms for MDC

Beta release design review

Beta release

Freeze distributed architecture

Vers. 1.0 design review

Vers. 1.0 release

MDC start

Freeze platforms for production

MDC complete

Production release review

Production release

Data taking starts

8/27

2/1

2/1

3/1

3/29

6/29

9/28

3/29

3/29

6/4

7/2

10/1

4/1

7/1

9/30

6/2

7/4

1/2

4/5

7/2

7/1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

9

2000

2001

2002

2003

2004

2005

20

Tull, Quarrie, Milford, Calafiura, Leggett and the To Be Named(TBN) are not members of the (High Energy)Physics Division. Milford is proposed to devote one-half of his time to code development for the Control software and one-half of his time to support for Physics simulation software and the other code developers. Vacavant is a postdoc within the Physics Division, but one-half of his time is proposed to be spent on core software development and hence funding is requested for this portion.

� EMBED Excel.Sheet.8 ���

� Design Patterns : Elements of Reusable Object-Oriented Software (Addison-Wesley Professional Computing) by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Grady Booch (Designer) 1 edition (October 1995) Addison-Wesley Pub Co; ISBN: 0201633612

� "the size of the component to be changed has a much larger impact on effort than the size of the change itself."- Nisink, Predicting Maintenance Effort with Function Points, IEEE International Conference on Software Maintenance, Bari, Italy, October 1-3, 1997.

� http://hepunx.rl.ac.uk/atlas/control

� http://home.cern.ch/ lat/exports/thesis

�http://www.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/

[image: image4.wmf]Task Name

Project Management

Developer Support

Define requirements

Survey existing frameworks/arch

Survey technologies

Draft reqs. complete

Evaluate dictionary language

Evaluate core language

Domain decomposition

Development tools

Compl. initial framework survey

Req. document complete

Requirements review

Freeze CORE language

Code generation tools

Flow control

Analysis tools interface

Document Alpha release

Alpha release design review

Test Alpha release

Alpha release

Database interface design/proto

Freeze CORE architecture

Freeze database interface

Tull[10%]

Milford[50%]

Tull[15%],Hinchliffe[10%],Shapiro[10%],Vacavant[10%]

Calafiura[15%],Leggett[15%],Vacavant[15%]

Tull[10%],Calafiura[10%],Milford[10%]

8/27

Tull[15%],Calafiura[15%]

Calafiura[15%],Leggett[15%]

Tull[50%]

Calafiura[33%],Vacavant[33%],Leggett[33%]

2/1

2/1

3/1

3/29

Calafiura[20%],Milford[40%],TBN[20%]

Tull[50%],TBN[50%]

Leggett[33%],Vacavant[33%]

All

6/29

All

9/28

TBN[75%]

3/29

3/29

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2000

2001

2002

2003

200

_992958413.xls
Sheet1

														ATLAS		LBNL		Budget

		WBS		Personnel		FTE		Salary($K)		M&S($K)		Cost($K)		Funded		Funded		Request($K)

		1.2.1.1		Craig Tull		1.0		218.7		10		228.7		100%		0%		228.7

		1.2.1.2		David Quarrie		0.2		236.5		4		51.3		100%		0%		51.3

		1.2.1.1		John Milford		1.0		154		2		156		100%		0%		156

		1.2.1.1		Paolo Calafiura		0.55		109.5		3		63.2		0%		100%		0

		1.2.1.1		Charles Leggett		0.56		104.7		3		61.6		0%		100%		0

		1.2.1.1		TBN		0.85		180		4		157		100%		0%		157

		1.2.1.1		Laurent Vacavant		0.49		80.7		6		45.5		100%		0%		45.5

				Ian Hinchliffe		0.5		n/a		n/a		n/a		0%		100%		0

				Marjorie Shapiro		0.2		n/a		n/a		n/a		0%		100%		0

				Totals		5.4				32.0		763.4						638.5

Sheet2

				CT		CL		LV		PC		JM		TBN

		Management		0.1

		Developer support										0.49

		Survery frameworks				0.08		0.08		0.08

		Survey technologies		0.1						0.1		0.1

		Req doc		0.14				0.04

		Eval dict		0.1						0.1

		Eval cor lang				0.11				0.11

		Domain decomp		0.25

		Develop tools				0.14		0.14				0.14

		Code gener								0.1		0.21		0.1

		Flow control		0.25										0.25

		Anal too inter				0.17		0.17

		Doc alpha		0.02		0.02		0.02		0.02		0.02

		Test alpha		0.04		0.04		0.04		0.04		0.04

		Database interface												0.5

		Total		1		0.56		0.49		0.55		1		0.85

Sheet3

		

_992958773.xls
Sheet1

														ATLAS		LBNL		Budget

		WBS		Personnel		FTE		Salary($K)		M&S($K)		Cost($K)		Funded		Funded		Request($K)

		1.2.1.1		Craig Tull		1.0		218.7		10		228.7		100%		0%		228.7

		1.2.1.2		David Quarrie		0.2		236.5		4		51.3		100%		0%		51.3

		1.2.1.1		John Milford		1.0		154		2		156		100%		0%		156

		1.2.1.1		Paolo Calafiura		0.55		109.5		3		63.2		0%		100%		0

		1.2.1.1		Charles Leggett		0.56		104.7		3		61.6		0%		100%		0

		1.2.1.1		TBN		0.85		180		4		157		100%		0%		157

		1.2.1.1		Laurent Vacavant		0.49		80.7		6		45.5		100%		0%		45.5

				Ian Hinchliffe		0.5		n/a		n/a		n/a		0%		100%		0

				Marjorie Shapiro		0.2		n/a		n/a		n/a		0%		100%		0

				Totals		5.4				32.0		763.4						638.5

Sheet2

				CT		CL		LV		PC		JM		TBN

		Management		0.1

		Developer support										0.49

		Survery frameworks				0.08		0.08		0.08

		Survey technologies		0.1						0.1		0.1

		Req doc		0.14				0.04

		Eval dict		0.1						0.1

		Eval cor lang				0.11				0.11

		Domain decomp		0.25

		Develop tools				0.14		0.14				0.14

		Code gener								0.1		0.21		0.1

		Flow control		0.25										0.25

		Anal too inter				0.17		0.17

		Doc alpha		0.02		0.02		0.02		0.02		0.02

		Test alpha		0.04		0.04		0.04		0.04		0.04

		Database interface												0.5

		Total		1		0.56		0.49		0.55		1		0.85

Sheet3

		

_992958359.xls
Sheet1

														ATLAS		LBNL		Budget

		WBS		Personnel		FTE		Salary($K)		M&S($K)		Cost($K)		Funded		Funded		Request($K)

		1.2.1.1		Craig Tull		1.0		218.7		10		228.7		100%		0%		228.7

		1.2.1.2		David Quarrie		0.2		236.5		4		51.3		100%		0%		51.3

		1.2.1.1		John Milford		1.0		154		2		156		100%		0%		156

		1.2.1.1		Paolo Calafiura		0.55		109.5		3		63.2		0%		100%		0

		1.2.1.1		Charles Leggett		0.56		104.7		3		61.6		0%		100%		0

		1.2.1.1		TBN		0.85		180		4		157		100%		0%		157

		1.2.1.1		Laurent Vacavant		0.49		80.7		6		45.5		100%		0%		45.5

				Ian Hinchliffe		0.5		n/a		n/a		n/a		0%		100%		0

				Marjorie Shapiro		0.2		n/a		n/a		n/a		0%		100%		0

				Totals		5.4				32.0		763.4						638.5

Sheet2

				CT		CL		LV		PC		JM		TBN

		Management		0.1

		Developer support										0.49

		Survery frameworks				0.08		0.08		0.08

		Survey technologies		0.1						0.1		0.1

		Req doc		0.14				0.04

		Eval dict		0.1						0.1

		Eval cor lang				0.11				0.11

		Domain decomp		0.25

		Develop tools				0.14		0.14				0.14

		Code gener								0.1		0.21		0.1

		Flow control		0.25										0.25

		Anal too inter				0.17		0.17

		Doc alpha		0.02		0.02		0.02		0.02		0.02

		Test alpha		0.04		0.04		0.04		0.04		0.04

		Database interface												0.5

		Total		1		0.56		0.49		0.55		1		0.85

Sheet3

		

