
LBNL and Electroweak symmetry breaking

Ian Hinchliffe LBNL

May 22, 2003



Outline

• Current status and problems

• LHC’s role

• Linear collider’s role

• LBL’s role

Ian Hinchliffe LBL/DOE-May 2003 1



The Status

Standard Model provides an excellent description of expermental phenomena.

Precision of better than 1% is achieved (LEP/SLC asymmetries, W/Z masses etc)
Need at least one extra particle to give mass to W/Z and all quarks/leptons — Higgs

Plot shows ∆χ2 as function of Higgs mass
All data has prob. of 2% at min
Excluding Hadronic asymmetry and neutrino
scattering (Blue line) has prob. of 71% at min
Fit is now inconsistent with direct limit MH < 114
GeV

Message – Things cannot be improved by ignoring
measurements
Either unlucky or new physics
Chanowitz: LBNL-52452
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Important not to overstate the inconsistency

Inference of Top mass from precision
measurements agrees with direct observation
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If the SM is right, then MH < 200GeV

If SM is not complete, Higgs structure could be more complicated with many new
particles
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The Challenges to Experiment and Theory

Theory
Why is Higgs light?

Generally test of SM get worse if new particles of masses below few TeV are added.

But radiative corrections to Higgs mass from top and W loops suggest a Higgs mass
larger than the constraints allow.

Calculate with a cut off Λ = 10TeV

top loop δm2
h = 3

8π2λ
2
tΛ

2 ∼ (2TeV )2

W/Z loops δm2
h ∼ αwΛ2 ∼ −(750GeV )2

Theorists like to solve this by adding other new particles to cancel these effects – simplest
example is SUSY where stop cancels top etc
This predicts other new particles

Open question is “What breaks ElectroWeak symmetry?”

There must be at least one particle yet to be discovered.
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LHC’s Task

Find the particle(s) responsible for mass generation.

Could be Higgs, many Higgs’s, SUSY, Extra dimensions

Power of LHC is its enormous mass reach relative to current facilties.

Even low luminosity will open a new window.

10pb−1 (1 day at 1/100 of design luminosity) gives 8000 tt and 100 QCD jets beyond
the kinematic limit of the Tevatron

If SUSY is correct, it could be found with 100pb−1

Let’s start with quick reminder of a few Higgs signalks
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Higgs is not a “typical” LHC discovery as it
demanding of luminosity
Plot shows luminosity need to discover Higgs
Easiest channel depends on mass
The envelope of these curves shows how long you
have to wait!
In worst case (just above the LEP limit) 10fb−1 is
needed per experiment
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New particle exammple – SUSY

Produces events with jets and missing transverse energy

Select events with at least 4 jets and Missing ET

A simple variable
Meff = Pt,1 + Pt,2 + Pt,3 + Pt,4 + /ET

At high Meff non-SM signal rises above background
Note scale – huge event rate
Peak in Meff distribution correlates well with SUSY
mass scale
MSUSY = min(Mũ,Mg̃)
This example has susy masses around 700 GeV
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This signal is characteristic of any new physics at a large mass
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How fast can SUSY be found?

Plot shows reach in SUSY model space
Solid region is not allowed
Hatched region is already ruled out by LEP
Contours label squark and gluino masses and
luminosity
Example – 0.1fb−1 discovers gluino of mass 1.4
Tev
This is 1 year at 1/1000 of design luminosity!
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Need to be ready to do physics at day one
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An example of a recent full simulation study

Decay q̃L → qχ̃0
2 → q ˜̀̀ → q``χ̃0

1

Produces a pair of e+e− or µ+µ− with a restricted invarient mass.

100K events simulated and reconstructed with new software (LBL lead role)

Corresponds to 5fb−1

Needed 50K CPU hrs, approx half of this was done on PDSF

First “physics test” of new reconstruction, results shown to ATLAS last week
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Plot shows invarient mass distribution of µ+µ−

(blue) and e+e− (red)
Note this example is 5fb−1

Standard model background not shown, its mainly
from tt and is very small
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Leads to measurements of some masses to 1 GeV precision

More complicated topologies can be reconstructed starting here and adding jets.
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Linear Collider’s Task

LHC can measure the mass of Higgs precisely
Plot shows mass error for various masses
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LHC’s measurements of Higgs decay properties depend on mass.
In low mass (favored) region precision is limited by
Theoretical uncertainties in cross-sections
Absolute luminosity measurement
Statistics and Backgrounds
Not all channels will be visible.
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Precision studies will need another facility

Precision measurements of decay modes will require facility that can produce the Higgs
in a controlled enviromment. Such a faciltity will be to the Higgs what LEP was for Z

PLot shows the Higgs branching ratios as a function
of mass errors from an LC simulation (Battaglia)
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LBNL participation in important EW milestones

• 1984 Hinchliffe et al “SuperCollider Physics”

• 1986 (check) SSC Central design group

• 1989-1993 SDC

• 1990 Precise W mass from Tevatron (CDF)

• 1998 Precise Tevatron top mass (D0 and CDF)

• 1988 Measurement of Z mass (mark II at SLC and CDF)

• 1994 Join ATLAS

• 1996 Peskin and Murayama Linear collider “Ann.Rev.Nucl.Part.Sci”

• 2001 “A CONSTRAINED STANDARD MODEL FROM A COMPACT EXTRA DIMENSION” Hall,

Nomura

• 2000 Implications of precision EW data (Chanowitz)

• 200x Susy discovered by atlas

• 201x Linear collider measures all Higgs branching ratios
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