Inner Detector Cooling Review

Pixels Evaporative Cooling Analysis May 1999

W.O. Miller HYTEC

C4F10-- #1 W.O. Miller CERN Review Meeting May 1999

Analysis of Vapor Return

• Basic Approach

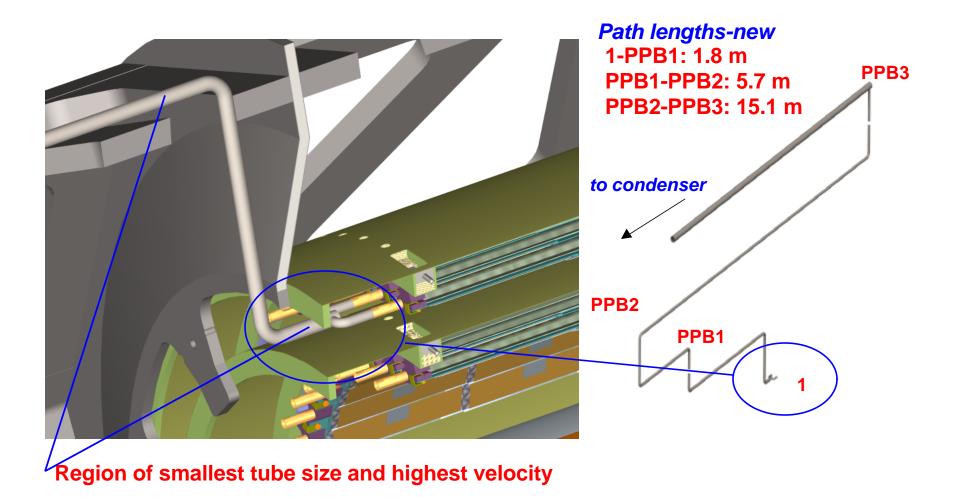
ATLAS

PIXEL DETECTOR

- Low pressure C₄F₁₀ evaporative cooling of detector modules
 - concept demonstrated with extensive prototype testing
 - employs wet mixture of vapor achieved through throttling fluid at nominally 2 bar at entrance to carbon-carbon thermostructures
 - ~500 mbar wet mixture evaporates in thermostructure, exiting at quality on the order of 0.88(?)
 - low pressure in the thermostructures, as opposed to very high pressures:
 - limit distortion
 - minimize material
 - reduce risk
- Questions to be addressed in this discussion
 - What impact does a low pressure system choice have on the vapor return line size
 - Would we be wise to seriously consider a condenser?

C4F10-- #2 W.O. Miller CERN Review Meeting May 1999

ATLAS C4F10 Cooling Analysis


Analysis Scope

- Fluid calculations for vapor return-first cut to verify low pressure concept
 - establish minimum line size consistent with objective of providing 250 mbar at a compressor or a condenser inlet, depending upon concept
 - Consider potential flow states *and their effect on line losses*
 - single phase vapor-
 - isothermal versus adiabatic wall condition
 - minimizes system complexity and pressure gradients
 - potential incompressible flow solution for Mach number<0.3
 - two phase flow-
 - evaluate effect of quality (0.5 to >0.9) on pressure gradients in vapor return line
- System concept-arrive at technical approach for low pressure system
 - Condenser versus compressor concept
 - Thermodynamics of system operation and conservation of fluid inventory

C4F10-- #3 W.O. Miller CERN Review Meeting May 1999

Stave Return Line Used As Example

C4F10-- #4 W.O. Miller CERN Review Meeting May 1999

Evaluation Process

• General approach

ATLAS

PIXEL DETECTOR

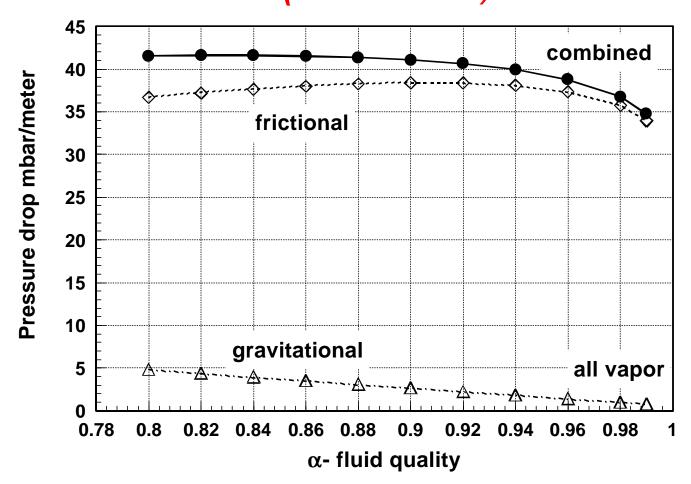
- first cut at tube sizes within the detector region where space constraints impose significant limitations on size
 - started with <6 mm initial tube ID
- iterate with staff working service layout for larger tube, as required
- make first cut at heat gain and tube outer surface temperatures
 - will require a number of iterations
- evaluate prospect for achieving minimum 250 mbar return pressure out to 140 meters
 - presumed location of compressor
- Based solution on 450 mbar exit pressure from stave
 - 200 mbar allowed if 250 mbar is to be realized at compressor inlet

C4F10-- #5 W.O. Miller CERN Review Meeting May 1999

Single Phase- Dry Vapor Return (6 mm diameter)

Tube Section	Tube	Pressure Loss	Static	Fluid	Fluid	Remarks
	Diameter	mbar	Exit	Velocity	Density	
	mm		Pressure	m/sec	kg/m ³	
			mbar		C	
@ Stave exit	3.4		450	41.9	5.1	Complete loss of
						dynamic head
Stave	6 after	8		16.8	5.01	Accounts for pressure
manifold Y-	Branch					loss merging into 6 mm
Branch						tube
			441.7	16.8	5.01	Entrance to 1.5 m run
1.5 m	6	39.3				
	6	11.2				3 elbows
		50.5 combined	391.2	18.98	4.44	Exit after 1.5 m run
5.4	6	208.2				
		21.7				3 elbows
		229.9	136.5	46.03	1.83	Exit after 5.4 m run
		combined				
25	13	6.3	141.6	4.7	1.61	Exit after 25 m run,
						with some pressure
						recovery

<u>Goal of >250 mbar not satisfied at exit</u> (Mach~0.5, compressible flow solution req'd)



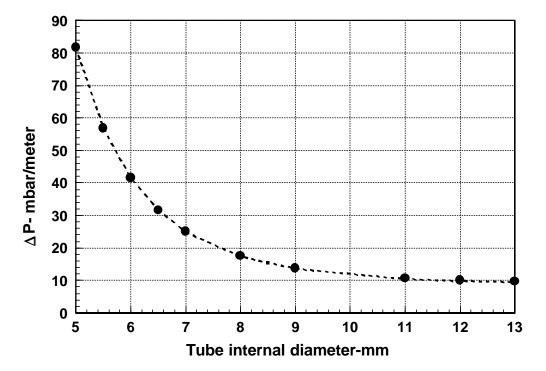
ATLAS

PIXEL DETECTOR

C4F10-- #6 W.O. Miller CERN Review Meeting May 1999

Two Phase Flow- Pressure Drop (6 mm diameter)

C4F10-- #7 W.O. Miller CERN Review Meeting May 1999


Two Phase Flow- Line Pressure Drop (88% exit quality)

- Pressure drop contributions
 - two phase flow estimation
 - frictional +gravitational
 - based on separated flow model
- Conclusion

ATLAS

PIXEL DETECTOR

- Internal tube diameter approaching 7 mm would be recommended
- pressure drop for 1.5 tube run of 7 mm tube diameter with associated elevation change change of 1.5 meter
 - 37.5 mbar,about double to single phase fluid estimation*

*slide 10

C4F10-- #8 W.O. Miller CERN Review Meeting May 1999

ATLAS Decision on Small Tubes

Two Phase Flow-versus Single Phase <6 mm tube diameter not practical, >6mm desirable

- Reference P.B. Whalley "Boiling-Condensation and Gas-Liquid Flow" for two phase flow models
 - Return pressure loss estimated using separated flow model
 - Frictional and gravitational pressure terms, *no elbow losses included*
 - Void fraction for fluid quality of 0.8 essentially equal to 1, nearly all vapor
- Single Phase Flow
 - Dry vapor return (x_o~1.0)
 - Compressible flow regime
 - Isothermal flow solution in inner detector region
 - Ignored gravitational term, since density decreased quickly

- Single Phase Results
 - 26.2 mbar/meter first 1.5 meters
 - 35 mbar/meter next 5.4 meters
 - local pressure decayed to point where Mach number approached 0.5
 - iterative solution required
 - Critical flow would occur at tube diameter 4.7 mm and 2.5 meters
 - Conclusion tube diameter too small, recommend 7 mm initially
- Two Phase Results
 - Comparable results at quality of 0.98 (singularity occurs at α=1) 35 mbar/meter
 - gravitational pressure gradient becomes significant at low quality
 - Pressure loss on the order of 242 mbar in first 6.9 meters at tube diameter of 6 mm, without considering elbow losses
 - Conclusion tube diameter too small at 6 mm

C4F10-- #9 W.O. Miller CERN Review Meeting May 1999

Single Phase- Dry Vapor Return (7 mm diameter return)

Tube Section	Tube Diameter	Pressure Loss	Static Exit	Fluid	Fluid	Remarks
		mbar		Velocity	Density	
	mm		Pressure	m/sec	kg/m ³	
			mbar			
@ Stave exit	3.4		450	41.9	5.1	Complete loss in
						dynamic head
Stave	7 after	8		16.8	5.01	Accounts for pressure
manifold Y-	Branch					loss merging into 7 mm
Branch						tube
			445.5	12.24	5.05	Entrance to 1.5 m run
1.5 m	7	18.3				
	7	5.8				3 elbows
		24.1 combined	421.4	12.94	4.78	Exit after 1.5 m run
5.4	9	21.2				
	-	2.3				3 elbows
		23.5 combined	395.7	8.3	4.5	Exit after 5.4 m run
25	13	2.3	394.2	1.7	1.61	Exit after 25 m run

Tube size resulted in incompressible flow throughout.

C4F10-- #10 W.O. Miller CERN Review Meeting May 1999

Two Phase Flow Up to 5.4 meters

Tube Section	Tube Diameter mm	Pressure Loss mbar	Static Exit Pressure mbar	Vapor Velocity m/sec	Psuedo Fluid Density kg/m ³	Remarks
@ Stave exit	3.4		450	41.9	5.1	Complete loss in dynamic head
Stave manifold Y- Branch	7 after Branch	8				
			442	8.3	7.7	Entrance to 1.5 m run
1.5 m	7	37.5				
	7	11.4				3 elbows
		56.9 combined	385.1	8.3	7.7	Exit after 1.5 m run
5.4	9	74.2		5.7		
		2.3				3 elbows
		76.5 combined	308.6	8.3	4.5	Exit after 5.4 m run
25	13	2.3	306.3*	1.7	1.61	Exit after 25 m run
						*assumed to be all vapor at this point

More analysis needed--must define at what point system is all vapor part of next step in analysis

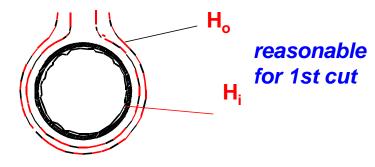
Preliminary Conclusions-Based on Stave Model (7 mm diameter tube)

- Two Phase Flow-estimate
 - total rough estimate of static pressure <u>306 mbar</u>
 - after 31 meters, with some pressure variance around detector of the order of 8.25 mbar
- Single Phase Flow-estimate
 - total rough estimate of static pressure <u>394 mbar</u>
 - after 31 meters, with no known pressure variance around detector of the unless tube geometry is asymmetric
- Two solution methods give slightly different results
 - largely the same since tube diameter has been increased

C4F10-- #12 W.O. Miller CERN Review Meeting May 1999

Vapor Return Tube- Heat Gain

- Analysis objectives
 - ultimately establish fluid temperature as function path length
 - point at which dry vapor is attained in the return path, in terms of exit quality
 - fluid density and velocity for updating pressure drop calc's
 - iterate analysis information on tube thermal insulation and thermal boundary conditions become available
 - heat transport influenced by tube bundling arrangements, as well
 - provide information for refrigerant cycle analysis
- Initial step
 - solve for free convection heat transfer of isolated tube
 - bound heat gain
 - solve for heat transport for bundled tube arrangement using CFD code as required
 - establish reduction in heat gain from bundled arrangement and confines of walls


C4F10-- #13 W.O. Miller CERN Review Meeting May 1999

Thermal Boundary and Heat Transfer Coefficient

• Approach-Initial step

- evaluated free convective coefficient for isolated horizontal tube
- inside film coefficient determined from flow parameters, velocity, etc., from fluid analysis
- outside film coefficient based conventional method for determining free convection coefficient, i.e., ΔT between surface and surroundings, fluid buoyancy, etc.
- solution of simultaneous equations
- More detail needed
 - tube bundle arrangement
 - adjacent inlet and return lines?
 - orientation
 - proximity of walls--significant effect on free convection coefficient

Isolated horizontal tube

Multiple tubes bundled, tube shape?

No evaporation of a fluid, based on sensible heat gain only to accurately determine at what point residual vapor is evaporated is the next step

C4F10-- #14 W.O. Miller CERN Review Meeting May 1999

Return Vapor Line

Tubing Layout

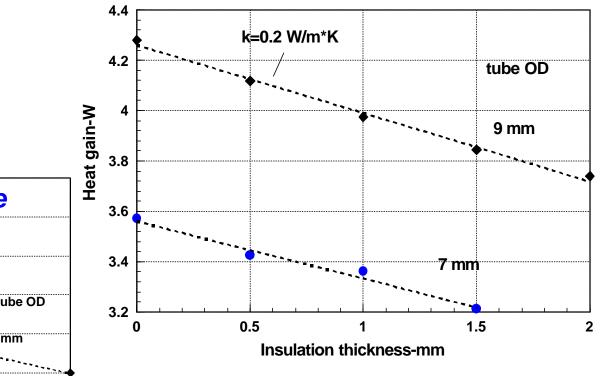
(latest info courtesy of Eric Anderssen)

	Current	Desired		Tubes	Exhaust per side		Dimension	Insulation		Total 2.2 m
Location	Diameter	Diameter	Length		inally)		ed tube size	Thickness	Temperature	
				Stave	Disk	Inside	Outside	dry gas	[]	(uninsulated)
Pixel Envelope	7	7	0.01	3	3			dry gas	-10	Ť
Pixel Envelope	7	7	0.01	3	3			dry gas	-10	
Pixel Envelope	7	7	0	3	3			dry gas	10	
Pixel Envelope	7	7	0.15	3	3			dry gas	-10	
Pixel Envelope	7	7	0	3	3			dry gas	-10	
Pixel Envelope	7	7	0.6	3	3			dry gas	10	
Leave Pixel Envelope	7	7	0.1	3	3			dry gas	-10	1.3 m
SCT Barrel	7	7	0.02	3	3			dry gas	<u>-10</u>	
SCT Barrel	7	7	0	3	3			dry gas		
SCT Barrel	7	7	0.35	3	3			dry gas	-10	
SCT Barrel	7	7	0.02	3	3			dry gas		
Leave Thermal Barrier	7	7	0.04	3	3			dry gas	-10	↓
TRT Gap	7	7	0.5	3	3	21 X 14	31 X 24	5mm	20	
PPB1	7	7	0	3	3			dry gas	20	
PPB1	7 to 7	7 to 9	0.04	3	3			dry gas	20	.04 m
PPB1	7	9	0	3	3			dry gas	· · · · · · 20	.04 m
Cryostat Bore	7	9	2.5	3	3	27 X 18	38 X 28	5mm	20	•
PPF1	7	9	0.3	3	3	27 X 18	38 X 28	5mm	20	
Cryostat Side	7	9	2	3	3	27 X 18	38 X 28	5mm	25	
Enter Tile nooses	7	9	0	3	3	27 X 18	38 X 28	5mm	25	
Enter PPB2	7	9	0.2	3	3			dry gas	25	
PPB2	7	9	0.3	3	3			dry gas	25	
PPB2	7 to 13	9 to 13	0.05	3	3			dry gas	25	.85 m
PPB2	13	13	0.3	3	3			dry gas	25	₩

Total path length to this point of 7.5 m

C4F10-- #15 W.O. Miller CERN Review Meeting May 1999

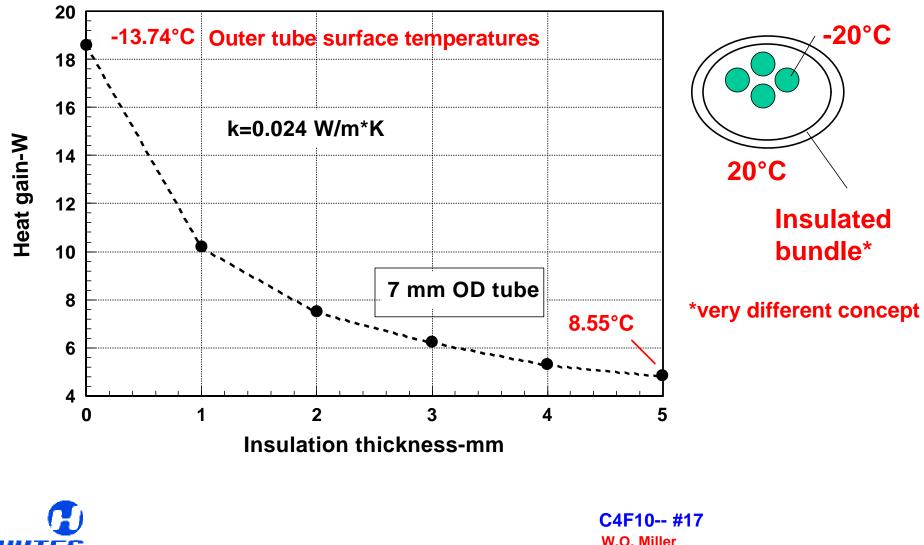
Tube Heat Gain in Cold Space-Isolated Tube (-10°C)


• Effect of insulation

ATLAS

PIXEL DETECTOR

- wrap tube with simple insulation 4.4 potentially cuts heat gain 4.2
 - creates dead nitrogen gas space



4.5 wrapped tube k=0.024 W/m*K Heat gain-W 3.5 3 tube OD 2.5 9 mm 2 7 mm 1.5 0 0.5 1.5 2 1 Insulation thickness-mm

C4F10-- #16 W.O. Miller CERN Review Meeting May 1999

ATLAS **Tube Insulation Analysis**

Tube Heat Gain in Warm Space-Isolated Tube (20°C)

CERN Review Meeting May 1999

ATLAS **Tube Insulation Analysis**

Observations Based on First Cut

- Heat gain in Pixel/SCT cold region (-10°C)
 - Uninsulated, unbundled tube will gain heat via free convection heat transfer
 - unless in close proximity to walls, which disrupts convection
 - An estimate of the sensible heat gain
 - 7 mm OD tube, 4.68 W/m, or 6.1 W in 1.3 meter run
 - Amounts to 3% heat gain within the thermal enclosure @ -10°C
 - based on 202 W, modularity of two
- Heat gain in TRT Gap to PPB2 (20°C)
 - An estimate for same 7 mm, but insulated tube, 4.85 W/m, 5.3 meters, 25.7 W, or 12.7% gain @ 20 °C space temperature
 - Uninsulated portion for 7 mm, 18.8 W/m, 0.89 meters, 16.8 W, or 8.3% @ 20 °C space temperature
 - note tube surface temperature is -13.74°C
- Total vapor return tube heat gain up to insulated tube region
 - 48.6 W, or 24%--may be lower depending on thermal boundary conditions, <u>however</u>
 - if totally sensible heat gain--<u>this mounts to 27.6°C increase</u> in vapor temperature

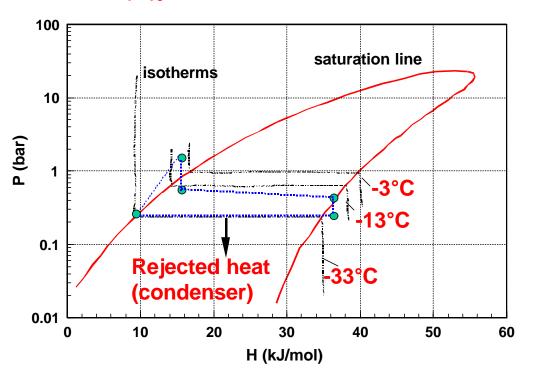
ATLAS **Tube Insulation Analysis**

Comments

- More work is needed, but
 - if fluid exits at a quality of 0.88, I.e., 12% excess cooling capacity per stave, then
 - *fluid can pick-up nominally 12% and remain constant in temperature*
 - question is over what distance is required to evaporate
 - mitigating this remark is the extent which the tubes are isolated
 - from pressure drop viewpoint it is desirable to have the fluid evaporate within the first 6 meters
 - *if dry vapor exits, the heat transfer solution must be iterated to find the fluid temperature as function of location*
 - as temperature increases the inside and outside film coefficients change significantly
 - clearly, a significant effect on predictability exists from the physical constraints
 - <u>Free</u> convective heat transfer coefficients determined for the isolated tube ranged from <10 to 18 W/m² K, which are by most standards quite high

C4F10-- #19 W.O. Miller CERN Review Meeting May 1999 C₄F₁₀ Condenser Concept

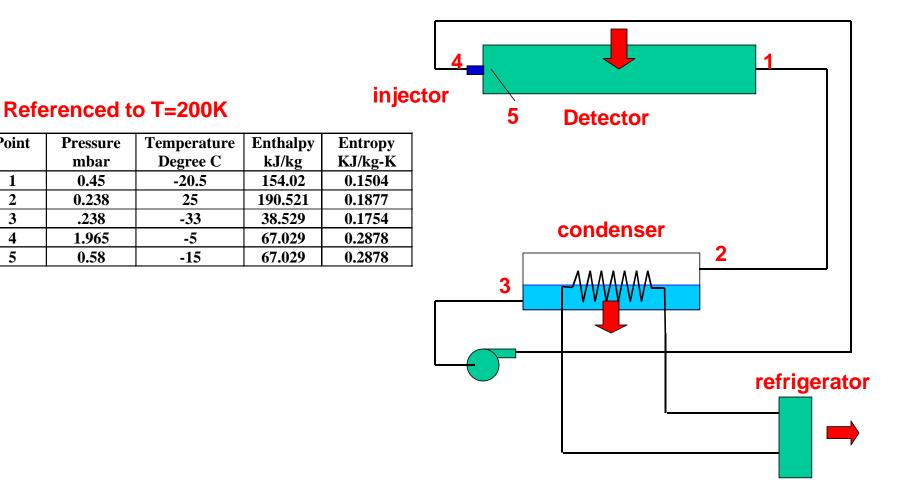
Objective-Low Pressure ~0.5 bar system


System issues in low pressure return

ATLAS

PIXEL DETECTOR

- requirement for 250 mbar minimum pressure at inlet of compressor
- compounded by distance to compressor
- need for two stage compression to provide 2 bar inlet pressure
- Condenser approach
 - minimum return pressure limited only by choice of condenser temperature T_{sat}
 - Choice of T_{sat} influenced by refrigeration power to reject heat back to ambient
 - <u>location close to detector</u> <u>is still important</u>


C₄F₁₀ Pressure-Enthalpy Curve

HYTEG

C4F10-- #20 W.O. Miller CERN Review Meeting May 1999 C₄F₁₀ Condenser Concept

System Schematic

HYTE

Point

1

2

3

4

5

ATLAS

PIXEL DETECTOR

C4F10-- #21 W.O. Miller **CERN Review Meeting May 1999**

Example Schematic-Arbitrarily Worst Case Scenario

- Comments
 - No attempt to avoid vapor return temperature reaching 25°C
 - Presumes injector temperature of -5°C
 - Pressure drop, PT 5 to PT 1, based on two phase calculation for a stave
 - Specified pressure of 238 mbar at condenser inlet is arbitrary
- Results
 - Heat input from, PT 5 to PT 1, is 86.99 kJ/kg
 - if quality X_o equals 1 at exit, all heat addition is from detector
 - $X_o < 1$, then some heat is picked-up within the detector space
 - Maximum heat gain in return line PT 1 to PT 2 is 36.5 kJ/kg
 - Maximum heat input to return liquid to -5 °C, PT 3 to PT 4, 28.5 kJ/kg
 - Result forces condenser to remove, PT 2to PT 3, 151.99 kJ/kg
 - for 15 kW system, condenser rejects 151.99 kJ/kg, or 74.7% more heat than required (11.21 kW excess)
 - optimization of the heat cycle can improve this situation
 - colder inlet to injector
 - thermal isolation of vapor return lines or auxiliary cooling

C4F10-- #22 W.O. Miller CERN Review Meeting May 1999

What We Would Propose At This Stage-More Work!

• Refine cooling cycle analysis

ATLAS

PIXEL DETECTOR

- predict heat transport in thermostructures
 - establish quality and margin for *dry-out*
 - assess benefit of increasing thermostructure hydraulic diameter for improved heat transport
- evaluate refrigerator cycle required to pump heat out
 - re-evaluate condenser temperature and return vapor temperature
- detail analysis of heat transfer associated with vapor and inlet lines to account for heat pick-up and determination of line insulation
 - thermal interaction of cold and warm lines due to their proximity
 - may be more optimum in long tube runs to effectively maintain fluid temperature by secondary cooling loop, e.g., water/methanol
- Full scale experimental mock-up of coolant system
 - Provide semblance of representative operational states for all elements
 - Demonstrate operating parameters for each element
 - compare experimental results with predictions

C4F10-- #23 W.O. Miller CERN Review Meeting May 1999

Issues Remaining for C₄F₁₀ System

- Need to add confidence to the experimental base established to date on the low pressure C₄F₁₀ system
 - not clear that a compressor at 140 meters would be acceptable, more analysis is needed
 - need information on required compressor pumping speed
 - results obtained thus far suggest
 - continue investigation of both systems, by adding more detail to the thermal hydraulic analysis
 - refine the proposed condenser concept
 - factor in reality of servicing, maintenance considerations
 - ensure mass accumulation in condenser system will not become a problem
 - centrifugal pump with pressure relief approach
 - condenser sizing
 - need for removing non-condensible gas accumulation?
 - refrigeration system requirements-for condenser concept
 - satisfy heat rejection at -33 °C
 - evaluate option of higher condenser temperature

ATLAS

PIXEL DETECTOR

C4F10-- #24 W.O. Miller CERN Review Meeting May 1999