Solve for convective film coefficient using: Principles of Heat Transfer by Kreith

$$
\begin{array}{lc}
\mathrm{kJ}:=1000 \mathrm{~J} & \mathrm{mbar}:=10^{-3} \mathrm{bar} \quad \mu \mathrm{~Pa}:=10^{-6} \mathrm{~Pa} \\
\mathrm{~T}_{\mathrm{i}}:=(273.15-25) \mathrm{K} & \mathrm{~T}_{\mathrm{i}}=248.15 \mathrm{~K} \quad \mu_{\mathrm{v}}:=10.28 \mu \mathrm{~Pa} \cdot \mathrm{~s} \quad \mu_{\mathrm{liq}}:=267.5 \mu \mathrm{~Pa} \cdot \mathrm{~s} \\
\mathrm{c}_{\mathrm{liq}}:=1019 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} & \rho_{\mathrm{liq}}:=1565 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \rho_{\mathrm{V}}:=16.39 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
\mathrm{k}_{\mathrm{V}}:=0.009 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} & \mathrm{k}_{\mathrm{liq}}:=0.053 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} \quad \quad \sigma:=.014 \frac{\mathrm{~N}}{\mathrm{~m}} \quad \quad \text { surface tension at } 247 \mathrm{~K} \\
\mathrm{~h}_{\mathrm{liq}}:=173.7 \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~h}_{\mathrm{v}}:=275.6 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \Delta \mathrm{~h}:=\mathrm{h}_{\mathrm{v}}-\mathrm{h}_{\mathrm{liq}} \quad \Delta \mathrm{~h}=101.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \lambda:=\Delta \mathrm{h} \\
\mathrm{Q}:=240 \mathrm{~W} & \mathrm{~L} 1:=2 \mathrm{~m} \\
\mathrm{x}_{\mathrm{i}}:=0.05 & \mathrm{x}_{\mathrm{O}}:=0.85
\end{array} \quad \begin{aligned}
& \mathrm{mdot}:=\frac{\mathrm{Q}}{\left(\mathrm{x}_{\mathrm{O}}-\mathrm{x}_{\mathrm{i}}\right) \cdot \lambda}
\end{aligned}
$$

Tube dimensions $t:=.012$ in wall thickness

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{h}}:=4.9 \mathrm{~mm}-2 \cdot \mathrm{t} \quad \mathrm{c}_{\mathrm{r}}:=\frac{4.9}{2} \mathrm{~mm}-\mathrm{t} \quad \mathrm{w}_{\mathrm{C}}:=2 \mathrm{~mm} \quad \mathrm{~A}_{\mathrm{C}}:=\mathrm{w}_{\mathrm{C}} \cdot \mathrm{c}_{\mathrm{h}}+\pi \cdot \mathrm{c}_{\mathrm{r}}{ }^{2} \\
& \mathrm{P}_{\mathrm{C}}:=2 \cdot \mathrm{w}_{\mathrm{C}}+2 \cdot \pi \cdot \mathrm{c}_{\mathrm{r}} \quad \mathrm{D}_{\mathrm{h}}:=4 \cdot \frac{\mathrm{~A}_{\mathrm{C}}}{\mathrm{P}_{-}} \quad \mathrm{D}_{\mathrm{h}}=5.272 \cdot \mathrm{~mm} \quad \mathrm{~A}_{\mathrm{t}}:=\mathrm{A}_{\mathrm{C}} \\
& \mathrm{G} 1:=\frac{\mathrm{mdot}}{\mathrm{~A}_{\mathrm{t}}} \quad \mathrm{G} 1=127.791 \frac{\mathrm{~kg}}{\mathrm{~m}^{2} \cdot \mathrm{~s}} \\
& \mathrm{~h}_{\text {flux }}:=\frac{240 \mathrm{~W}}{\mathrm{P}_{\mathrm{C}} \cdot \mathrm{~L} 1} \quad \mathrm{~h}_{\text {flux }}=6.866 \times 10^{3} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \quad \mathrm{~T}_{\text {sat }}:=\mathrm{T}_{\mathrm{i}} \quad \mathrm{~T}_{\text {sat }}=248.15 \mathrm{~K} \quad \begin{array}{l}
\text { fluid saturation } \\
\text { temperature }
\end{array} \\
& \mathrm{k}_{\mathrm{W}}:=200 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} \quad \text { aluminum tube wall } \quad \text { for } \mathrm{T}_{\text {sat }}=238 \mathrm{~K} \text { the saturation pressure is 1.67bar } \\
& \mathrm{P}:=1.671 \text { bar } \quad \mathrm{P}=1.671 \times 10^{5} \mathrm{~Pa} \quad \quad \operatorname{Pr}_{\text {liq }}:=\frac{\mu_{\text {liq }} \cdot \mathrm{C}_{\text {liq }}}{\mathrm{k}_{\text {liq }}} \quad \operatorname{Pr}_{\text {liq }}=5.143 \\
& \alpha_{\text {liq }}:=\frac{\mathrm{k}_{\text {liq }}}{\rho_{\text {liq }} \cdot \mathrm{c}_{\mathrm{liq}}} \quad \alpha_{\text {liq }}=3.323 \times 10^{-8} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \text { thermal diffusivity }
\end{aligned}
$$

Condition for nucleate boiling to occur

$$
\Delta \mathrm{T}_{\mathrm{n}}:=\left(\frac{8 \cdot \sigma \cdot \mathrm{~h}_{\mathrm{flux}} \cdot \mathrm{~T}_{\text {sat }}}{\lambda \cdot \rho_{\mathrm{v}} \cdot \mathrm{k}_{\mathrm{liq}}}\right)^{0.5} \quad \Delta \mathrm{~T}_{\mathrm{n}}=1.468 \mathrm{~K} \quad \text { any differential film temp above this }
$$

$$
\mathrm{X}_{\text {tinverse }_{\mathrm{i}}}:=\left(\frac{\mathrm{x}_{\mathrm{i}}}{1-\mathrm{x}_{\mathrm{i}}}\right)^{0.9} \cdot\left(\frac{\rho_{\mathrm{liq}}}{\rho_{\mathrm{v}}}\right)^{0.5} \cdot\left(\frac{\mu_{\mathrm{v}}}{\mu_{\mathrm{liq}}}\right)^{0.1} \quad \mathrm{X}_{\text {ttinverse }}=\left(\begin{array}{c}
0.498 \\
0.976 \\
3.29 \\
7.054 \\
10.161 \\
15.122 \\
33.607
\end{array}\right)
$$

$$
\begin{aligned}
& \mathrm{Ftt}_{\mathrm{i}}:=2.35 \cdot\left(\mathrm{X}_{\text {ttinverse }_{\mathrm{i}}}+0.213\right)^{0.736} \quad \mathrm{Ftt}=\left(\begin{array}{c}
1.829 \\
2.67 \\
5.913 \\
10.116 \\
13.146 \\
17.528 \\
31.372
\end{array}\right) \quad \mathrm{h}_{\mathrm{C}}=\left(\begin{array}{c}
\\
\text { convective cooling } \\
\mathrm{h}_{\mathrm{C}_{\mathrm{i}}}:=0.023 \cdot\left[\frac{\mathrm{G} 1 \cdot\left(1-\mathrm{x}_{\mathrm{i}}\right) \cdot \mathrm{D}_{\mathrm{h}}}{\mu_{\mathrm{liq}}}\right]^{0.8} \cdot \mathrm{Pr}_{\mathrm{liq}} 0.4 \cdot \frac{\mathrm{k}_{\mathrm{liq}}}{\mathrm{D}_{\mathrm{h}}} \cdot \mathrm{Ftt}_{\mathrm{i}} \\
1360.304 \\
1478.678 \\
1040.713 \\
1566.271 \\
1610.082
\end{array}\right) \cdot \frac{\mathrm{W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}
\end{aligned}
$$

h_{c} is the cooling from forced convection. The next step is to calculate the cooling from evaporation.

Solving for evaporation requires assuming a temperature difference between the tube wall and the saturation temperature of the fluid. After calculating this contribution we can solve for this temperature difference through the combination of both cooling mechanisms. If the end result agrees with the assumption, the process stops otherwise the process is repeated with a new assumed $\Delta \mathrm{T}_{\text {sat }}$

$$
\mathrm{Re}_{\mathrm{TP}_{\mathrm{i}}}:=\frac{\mathrm{G} 1 \cdot\left(1-\mathrm{x}_{\mathrm{i}}\right) \cdot \mathrm{D}_{\mathrm{h}}}{\mu_{\mathrm{liq}}} \cdot\left(\mathrm{Ftt}_{\mathrm{i}}\right)^{1.25} \cdot 10^{-4} \quad \text { needed to calculate } \mathrm{S}_{\mathrm{tt}}
$$

$$
\mathrm{Re}_{\mathrm{TP}}=\left(\begin{array}{c}
0.509 \\
0.774 \\
1.626 \\
2.272 \\
2.522 \\
2.71 \\
2.805
\end{array}\right) \quad \mathrm{Stt}:=\left[1+0.12 \cdot\left(\mathrm{Re}_{\mathrm{TP}}^{\mathrm{i}},{ }^{1.14}\right]^{-0.1} \quad \mathrm{Stt}=\left(\begin{array}{c}
0.995 \\
0.991 \\
0.981 \\
0.974 \\
0.971 \\
0.969 \\
0.968
\end{array}\right)\right.
$$

essentially constant over the tube length

For the assumed $\Delta T_{\text {sat }}$ (wall temp-fluid saturation temp) we calculate the value of $\Delta \mathrm{P}_{\text {sat }}$ for C3F8. This value is the change in saturation pressure corresponding to the change in fluid temperature. At -25 C the change in saturation pressure per degree C is 6800 Pa , or for $5 \mathrm{C} \Delta \mathrm{T}_{\text {sat }}$, the change is 34000 Pa
$\Delta \mathrm{T}_{\text {sat }}:=4.77 \mathrm{~K}$ temperature difference between wall and fluid, assumed to start the process.

$$
\begin{aligned}
& \Delta \mathrm{p}_{\mathrm{sat}}:=\Delta \mathrm{T}_{\mathrm{sat}} \cdot 6800 \frac{\mathrm{~Pa}}{\mathrm{~K}} \quad \Delta \mathrm{p}_{\mathrm{sat}}=324.36 \cdot \mathrm{mbar} \quad \begin{array}{l}
\text { pressure difference for temperature } \\
\text { difference }
\end{array} \\
& \mathrm{h}_{\mathrm{b}_{0}}:=.00122 \cdot\left(\frac{\mathrm{k}_{\mathrm{liq}}{ }^{0.79} \cdot \mathrm{c}_{\mathrm{liq}}{ }^{0.45} \cdot \rho_{\mathrm{liq}} 0.49}{\sigma^{0.5} \cdot \mu_{\mathrm{liq}}{ }^{0.29} \cdot \lambda^{0.24} \cdot \rho_{\mathrm{v}} 0.24}\right) \cdot \Delta \mathrm{T}_{\mathrm{sat}}{ }^{0.24} \cdot \Delta \mathrm{p}_{\mathrm{sat}}{ }^{0.75} \cdot \mathrm{Stt}_{0} \quad \quad \text { Chen } \\
& \mathrm{h}_{\mathrm{b}_{0}}=1025.288 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad \mathrm{~h}_{0}:=\mathrm{h}_{\mathrm{b}_{0}}+\mathrm{h}_{\mathrm{c}_{0}} \quad \mathrm{~h}_{0}=1.436 \times 10^{3} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \\
& \Delta \mathrm{t}_{\mathrm{b}_{0}}:=\frac{\mathrm{h}_{\mathrm{flux}}}{\mathrm{~h}_{0}} \quad \Delta \mathrm{t}_{\mathrm{b}_{0}}=4.78 \mathrm{~K} \quad \Delta \mathrm{~T} \text { assumed was 4.77C}
\end{aligned}
$$

For the next quality 0.1

$$
\begin{aligned}
& \Delta \mathrm{T}_{\text {sata }}:=4.5 \mathrm{~K} \quad \text { temperature difference between wall and fluid, assumed to start the process. } \\
& \Delta \mathrm{p}_{\text {sata }}:=\Delta \mathrm{T}_{\text {sat }} \cdot 6800 \frac{\mathrm{~Pa}}{\mathrm{~K}} \quad \Delta \mathrm{p}_{\text {sat }}=306 \cdot \mathrm{mbar} \quad \begin{array}{l}
\text { pressure difference for temperature } \\
\text { difference }
\end{array} \\
& \mathrm{h}_{\mathrm{b}_{1}}:=.00122 \cdot\left(\frac{\left.\mathrm{k}_{\mathrm{liq}}{ }_{\sigma^{0.5} \cdot \mu_{\mathrm{liq}} \cdot{ }^{0.29} \cdot \lambda^{0.24} \cdot \rho_{\mathrm{V}}{ }^{0.45} \cdot \rho_{\mathrm{liq}} 0.44}^{0.24}\right) \cdot \Delta \mathrm{T}_{\mathrm{sat}}{ }^{0.24} \cdot \Delta \mathrm{p}_{\mathrm{sat}}^{0.75} \cdot \mathrm{Stt}_{1} \quad \text { Chen }}{}\right. \\
& \mathrm{h}_{\mathrm{b}_{1}}=964.754 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad \mathrm{~h}_{1}:=\mathrm{h}_{\mathrm{b}_{1}}+\mathrm{h}_{\mathrm{c}_{1}} \quad \mathrm{~h}_{1}=1.539 \times 10^{3} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \\
& \Delta \mathrm{t}_{\mathrm{b}_{1}}:=\frac{\mathrm{h}_{\text {flux }}}{\mathrm{h}_{1}} \quad \Delta \mathrm{t}_{\mathrm{b}_{1}}=4.46 \mathrm{~K} \quad \Delta \mathrm{~T} \text { assumed was } 4.5 \mathrm{C}
\end{aligned}
$$

For the next quality 0.3
$\Delta T_{\text {sata }}:=3.74 \mathrm{~K} \quad$ temperature difference between wall and fluid, assumed to start the process.

$$
\Delta \mathrm{p}_{\text {sath }}:=\Delta \mathrm{T}_{\text {sat }} \cdot 6800 \frac{\mathrm{~Pa}}{\mathrm{~K}} \quad \Delta \mathrm{p}_{\text {sat }}=254.32 \cdot \mathrm{mbar} \quad \begin{aligned}
& \text { pressure difference for temperature } \\
& \text { difference }
\end{aligned}
$$

$$
\mathrm{h}_{\mathrm{b}_{2}}:=.00122 \cdot\left(\frac{\mathrm{k}_{\mathrm{liq}}{ }^{0.79} \cdot{ }^{\mathrm{c}} \mathrm{c}_{\mathrm{liq}}{ }^{0.45} \cdot \rho_{\mathrm{liq}}{ }^{0.49}}{\sigma^{0.5} \cdot \mu_{\mathrm{liq}}^{0.29} \cdot \lambda^{0.24} \cdot \rho_{\mathrm{v}} 0.24}\right) \cdot \Delta \mathrm{T}_{\mathrm{sat}}{ }^{0.24} \cdot \Delta \mathrm{p}_{\mathrm{sat}}{ }^{0.75} \cdot \mathrm{Stt}_{2}
$$

Chen

$$
\mathrm{h}_{\mathrm{b}_{2}}=795.001 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad \mathrm{~h}_{2}:=\mathrm{h}_{\mathrm{b}_{2}}+\mathrm{h}_{\mathrm{c}_{2}} \quad \mathrm{~h}_{2}=1.836 \times 10^{3} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}
$$

$$
\Delta \mathrm{t}_{\mathrm{b}_{2}}:=\frac{\mathrm{h}_{\mathrm{flux}}}{\mathrm{~h}_{2}} \quad \Delta \mathrm{t}_{\mathrm{b}_{2}}=3.74 \mathrm{~K} \quad \Delta \mathrm{~T} \text { assumed was } 3.74 \mathrm{C}
$$

For the next quality 0.5

$$
\begin{aligned}
& \Delta \mathrm{T}_{\text {sata }}:=3.32 \mathrm{~K} \text { temperature difference between wall and fluid, assumed to start the process. } \\
& \Delta \mathrm{p}_{\text {satk }}:=\Delta \mathrm{T}_{\text {sat }} \cdot 6800 \frac{\mathrm{~Pa}}{\mathrm{~K}} \quad \Delta \mathrm{p}_{\text {sat }}=225.76 \cdot \mathrm{mbar} \quad \begin{array}{l}
\text { pressure difference for temperature } \\
\text { difference }
\end{array} \\
& \mathrm{h}_{\mathrm{b}_{3}}:=.00122 \cdot\left(\frac{\mathrm{k}_{\mathrm{liq}}{ }^{0.79} \cdot{ }^{\mathrm{c}} \mathrm{c}_{\mathrm{liq}}^{0.45} \cdot \rho_{\mathrm{liq}}{ }^{0.49}}{\sigma^{0.5} \cdot \mu_{\mathrm{liq}}{ }^{0.29} \cdot \lambda^{0.24} \cdot \rho_{\mathrm{v}}{ }^{0.24}}\right) \cdot \Delta \mathrm{T}_{\text {sat }}{ }^{0.24} \cdot \Delta \mathrm{p}_{\text {sat }}{ }^{0.75} \cdot \mathrm{Stt}_{3} \quad \text { Chen } \\
& h_{b_{3}}=701.13 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad \mathrm{~h}_{3}:=\mathrm{h}_{\mathrm{b}_{3}}+\mathrm{h}_{\mathrm{c}_{3}} \quad \mathrm{~h}_{3}=2.061 \times 10^{3} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \\
& \Delta \mathrm{t}_{\mathrm{b}_{3}}:=\frac{\mathrm{h}_{\text {flux }}}{\mathrm{h}_{3}} \quad \Delta \mathrm{t}_{\mathrm{b}_{3}}=3.33 \mathrm{~K} \quad \Delta \mathrm{~T} \text { assumed was 3.32C }
\end{aligned}
$$

For the next quality 0.6

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{sata}}:=3.19 \mathrm{~K} \text { temperature difference between wall and fluid, assumed to start the process. } \\
& \Delta \mathrm{p}_{\text {sath }}:=\Delta \mathrm{T}_{\text {sat }} \cdot 6800 \frac{\mathrm{~Pa}}{\mathrm{~K}} \quad \Delta \mathrm{p}_{\text {sat }}=216.92 \cdot \mathrm{mbar} \quad \begin{array}{l}
\text { pressure difference for temperature } \\
\text { difference }
\end{array} \\
& \mathrm{h}_{\mathrm{b}_{4}}:=.00122 \cdot\left(\frac{\mathrm{k}_{\mathrm{liq}}{ }^{0.79} \cdot{ }^{\mathrm{C}} \mathrm{l}_{\mathrm{lqq}}{ }^{0.45} \cdot \rho_{\mathrm{liq}}{ }^{0.49}}{\sigma^{0.5} \cdot \mu_{\mathrm{liq}}{ }^{0.29} \cdot \lambda^{0.24} \cdot \rho_{\mathrm{v}} 0.24}\right) \cdot \Delta \mathrm{T}_{\mathrm{sat}}{ }^{0.24} \cdot \Delta \mathrm{p}_{\mathrm{sat}}{ }^{0.75} \cdot \mathrm{Stt}_{4} \\
& \mathrm{~h}_{\mathrm{b}_{4}}=671.984 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad \mathrm{~h}_{4}:=\mathrm{h}_{\mathrm{b}_{4}}+\mathrm{h}_{\mathrm{c}_{4}} \quad \mathrm{~h}_{4}=2.151 \times 10^{3} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \\
& \Delta \mathrm{t}_{\mathrm{b}_{4}}:=\frac{\mathrm{h}_{\text {flux }}}{\mathrm{h}_{4}} \quad \Delta \mathrm{t}_{\mathrm{b}_{4}}=3.192 \mathrm{~K} \quad \Delta \mathrm{~T} \text { assumed was 3.19C }
\end{aligned}
$$

For the next quality 0.7

$$
\begin{aligned}
& \Delta T_{\text {mata }}:=3.1 \mathrm{~K} \quad \text { temperature difference between wall and fluid, assumed to start the process. } \\
& \Delta \mathrm{p}_{\text {satu }}:=\Delta \mathrm{T}_{\text {sat }} \cdot 6800 \frac{\mathrm{~Pa}}{\mathrm{~K}} \quad \Delta \mathrm{p}_{\text {sat }}=210.8 \cdot \mathrm{mbar} \quad \begin{array}{l}
\text { pressure difference for temperature } \\
\text { difference }
\end{array} \\
& \mathrm{h}_{\mathrm{b}_{5}}:=.00122 \cdot\left(\frac{\mathrm{k}_{\mathrm{liq}}{ }^{0.79} \cdot \mathrm{c}_{\mathrm{liq}}{ }^{0.45} \cdot \rho_{\mathrm{liq}}{ }^{0.49}}{\sigma^{0.5} \cdot \mu_{\mathrm{liq}}{ }^{0.29} \cdot \lambda^{0.24} \cdot \rho_{\mathrm{v}}{ }^{0.24}}\right) \cdot \Delta \mathrm{T}_{\text {sat }}{ }^{0.24} \cdot \Delta \mathrm{p}_{\mathrm{sat}}{ }^{0.75} \cdot \mathrm{Stt} 5 \\
& \mathrm{~h}_{\mathrm{b}_{5}}=651.799 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad \mathrm{~h}_{5}:=\mathrm{h}_{\mathrm{b}_{5}}+\mathrm{h}_{\mathrm{C}_{5}} \quad \mathrm{~h}_{5}=2.218 \times 10^{3} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \\
& \Delta \mathrm{t}_{5}:=\frac{\mathrm{h}_{\text {flux }}}{\mathrm{h}_{5}} \quad \Delta \mathrm{t}_{\mathrm{b}_{5}}=3.095 \mathrm{~K} \quad \Delta \mathrm{~T} \text { assumed was 3.1C }
\end{aligned}
$$

For the next quality 0.85
$\Delta \mathrm{T}_{\text {sata }}:=3.05 \mathrm{~K} \quad$ temperature difference between wall and fluid, assumed to start the process.

$$
\Delta \mathrm{p}_{\mathrm{sat}}:=\Delta \mathrm{T}_{\mathrm{sat}} \cdot 6800 \frac{\mathrm{~Pa}}{\mathrm{~K}} \quad \Delta \mathrm{p}_{\mathrm{sat}}=207.4 \cdot \mathrm{mbar} \quad \begin{aligned}
& \text { pressure difference for temperature } \\
& \text { difference }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{b}_{6}}:=.00122 \cdot\left(\frac{\mathrm{k}_{\mathrm{liq}}^{0.79} \cdot \mathrm{c}_{\mathrm{liq}}{ }^{0.45} \cdot \rho_{\mathrm{liq}}{ }^{0.49}}{\sigma^{0.5} \cdot \mu_{\mathrm{liq}}^{0.29} \cdot \lambda^{0.24} \cdot \rho_{\mathrm{v}}^{0.24}}\right) \cdot \Delta \mathrm{T}_{\text {sat }}{ }^{0.24} \cdot \Delta \mathrm{p}_{\text {sat }}^{0.75} \cdot \mathrm{Stt}_{6} \\
& \mathrm{~h}_{\mathrm{b}_{6}}=640.695 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad \quad \mathrm{~h}_{6}:=\mathrm{h}_{\mathrm{b}_{6}}+\mathrm{h}_{\mathrm{c}_{6}} \quad \mathrm{~h}_{6}=2.251 \times 10^{3} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \\
& \Delta \mathrm{t}_{\mathrm{b}_{6}}:=\frac{\mathrm{h}_{\text {flux }}}{\mathrm{h}_{6}} \quad \Delta \mathrm{t}_{\mathrm{b}_{6}}=3.05 \mathrm{~K} \quad \Delta \mathrm{~T} \text { assumed was } 3.05 \mathrm{C}
\end{aligned}
$$

