Solve for convective film coefficient using: Principles of Heat Transfer by Kreith

$$
\begin{array}{llll}
\mathrm{T}_{\mathrm{C}}:=(273.15-35) \mathrm{K} & \mathrm{~T}_{\mathrm{C}}=238.15 \mathrm{~K} & \mathrm{~kJ}:=1000 \mathrm{~J} & \mathrm{mbar}:=10^{-3} \mathrm{bar} \quad \mu \mathrm{~Pa}:=10^{-6} \mathrm{~Pa} \\
\mathrm{Q}:=240 \mathrm{~W} & \mathrm{~L} 1:=2 \mathrm{~m} & \sigma:=0.012 \frac{\mathrm{~N}}{\mathrm{~m}} \quad & \mathrm{c}_{\mathrm{liq}}:=2039 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
\rho_{\mathrm{liq}}:=1096 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \rho_{\mathrm{V}}:=31 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \mu_{\mathrm{liq}}:=178 \mu \mathrm{~Pa} \cdot \mathrm{~s} & \mu_{\mathrm{V}}:=12 . \mu \mathrm{Pa} \cdot \mathrm{~s} \\
\mathrm{k}_{\mathrm{liq}}:=0.153 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} & \mathrm{k}_{\mathrm{V}}:=0.013 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} & & \\
\mathrm{~h}_{\mathrm{liq}}:=123.05 \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~h}_{\mathrm{V}}:=436.23 \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \Delta \mathrm{~h}:=\mathrm{h}_{\mathrm{v}}-\mathrm{h}_{\mathrm{liq}} & \Delta \mathrm{~h}=313.18 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\mathrm{x}_{\mathrm{i}}:=0.05 & \mathrm{x}_{\mathrm{O}}:=0.85 & \mathrm{mdot}:=\frac{\mathrm{Q}}{\left(\mathrm{x}_{\mathrm{O}}-\mathrm{x}_{\mathrm{i}}\right) \cdot \lambda} & \mathrm{mdot}=9.579 \times 10^{-4} \frac{\mathrm{~kg}}{\mathrm{~s}}
\end{array}
$$

Tube dimensions $t:=.012 \mathrm{in} \quad$ wall thickness

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{O}}:=2.8 \mathrm{~mm} \quad \mathrm{~d}_{\mathrm{i}}:=\mathrm{d}_{\mathrm{O}}-2 \cdot \mathrm{t} \quad \mathrm{~A}_{\mathrm{C}}:=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{i}}^{2} \quad \text { round tube } \\
& \mathrm{D}_{\mathrm{h}}:=\mathrm{d}_{\mathrm{i}} \quad \mathrm{D}_{\mathrm{h}}=2.19 \cdot \mathrm{~mm} \quad \mathrm{~A}_{\mathrm{t}}:=\mathrm{A}_{\mathrm{C}} \quad \mathrm{P}_{\mathrm{C}}:=\pi \cdot \mathrm{D}_{\mathrm{h}} \quad \mathrm{~L} 1=2 \mathrm{~m} \\
& \mathrm{G} 1:=\frac{\mathrm{mdot}}{\mathrm{~A}_{\mathrm{t}}} \quad \mathrm{G} 1=254.209 \frac{\mathrm{~kg}}{\mathrm{~m}^{2} \cdot \mathrm{~s}} \\
& \mathrm{~h}_{\text {flux }}:=\frac{240 \mathrm{~W}}{\mathrm{P}_{\mathrm{C}} \cdot \mathrm{~L} 1} \quad \mathrm{~h}_{\text {flux }}=1.744 \times 10^{4} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \quad \mathrm{~T}_{\text {sat }}:=\mathrm{T}_{\mathrm{C}} \quad \mathrm{~T}_{\text {sat }}=238.15 \mathrm{~K} \quad \begin{array}{l}
\text { fluid saturation } \\
\text { temperature }
\end{array} \\
& \mathrm{k}_{\mathrm{W}}:=200 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} \quad \text { aluminum tube wall } \quad \text { for } \mathrm{T}_{\text {sat }}=238 \mathrm{~K} \text { the saturation pressure is 12.024bar } \\
& \mathrm{P}:=12.024 \mathrm{bar} \quad \mathrm{P}=1.202 \times 10^{6} \mathrm{~Pa} \quad \quad \operatorname{Pr}_{\text {liq }}:=\frac{\mu_{\mathrm{liq}} \cdot \mathrm{C}_{\mathrm{liq}}}{\mathrm{k}_{\mathrm{liq}}} \quad \quad \operatorname{Pr}_{\text {liq }}=2.372 \\
& \alpha_{\text {liq }}:=\frac{\mathrm{k}_{\text {liq }}}{\rho_{\text {liq }} \cdot \mathrm{c}_{\text {liq }}} \quad \alpha_{\text {liq }}=6.846 \times 10^{-8} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \text { thermal diffusivity }
\end{aligned}
$$

Condition for nucleate boiling to occur

$$
\Delta \mathrm{T}_{\mathrm{n}}:=\left(\frac{8 \cdot \sigma \cdot \mathrm{~h}_{\mathrm{flux}} \cdot \mathrm{~T}_{\mathrm{sat}}}{\lambda \cdot \rho_{\mathrm{V}} \cdot \mathrm{k}_{\mathrm{liq}}}\right)^{0.5} \quad \Delta \mathrm{~T}_{\mathrm{n}}=0.518 \mathrm{~K} \quad \text { any differential film temp above this }
$$

Reference: Kreith $\mathrm{x}:=0 . .6$ really method by Chen $\left(\begin{array}{c}.05 \\ .1 \\ .3 \\ .5 \\ .6 \\ .7 \\ .85\end{array}\right)$ this a linear change flow quality along the tube length

h_{c} is the cooling from forced convection. The next step is to calculate the cooling from evaporation.

Solving for evaporation requires assuming a temperature difference between the tube wall and the saturation temperature of the fluid. After calculating this contribution we can solve for this temperature difference through the combination of both cooling mechanisms. If the end result agrees with the assumption, the process stops otherwise the process is repeated with a new assumed $\Delta \mathrm{T}_{\text {sat }}$

$$
\mathrm{Re}_{\mathrm{TP}_{\mathrm{i}}}:=\frac{\mathrm{G1} \cdot\left(1-\mathrm{x}_{\mathrm{i}}\right) \cdot \mathrm{D}_{\mathrm{h}}}{\mu_{\mathrm{liq}}} \cdot\left(\mathrm{Ftt}_{\mathrm{i}}\right)^{1.25} \cdot 10^{-4} \quad \text { needed to calculate } \mathrm{S}_{\mathrm{tt}}
$$

$$
\operatorname{Re}_{\mathrm{TP}}=\left(\begin{array}{c}
0.485 \\
0.699 \\
1.388 \\
1.91 \\
2.11 \\
2.26 \\
2.33
\end{array}\right) \quad \mathrm{Stt}:=\left[1+0.12 \cdot\left(\mathrm{Re}_{\mathrm{TP}}^{\mathrm{i}},{ }^{1.14}\right]^{-0.1} \quad \mathrm{Stt}=\left(\begin{array}{l}
0.995 \\
0.992 \\
0.984 \\
0.978 \\
0.976 \\
0.974 \\
0.973
\end{array}\right)\right.
$$

essentially constant over
the tube length

For the assumed $\Delta \mathrm{T}_{\text {sat }}$ (wall temp-fluid saturation temp) we calculate the value of $\Delta \mathrm{P}_{\text {sat }}$ for CO_{2}. This value is the change in saturation pressure corresponding to the change in fluid temperature. At -35C the change in saturation pressure per degree C is 45080 Pa , or for $2.5 \mathrm{C} \Delta \mathrm{T}_{\text {sat }}$, the change is 112700 Pa
$\Delta \mathrm{T}_{\text {sat }}:=2.55 \mathrm{~K}$ temperature difference between wall and fluid, assumed to start the process.
$\Delta \mathrm{p}_{\text {sat }}:=114954 \mathrm{~Pa} \quad \Delta \mathrm{p}_{\text {sat }}=1.15 \times 10^{3} \cdot$ mbar \quad pressure difference for temperature difference of 2C

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{b}_{0}}:=.00122 \cdot\left(\frac{\mathrm{k}_{\mathrm{liq}}{ }^{0.79} \cdot \mathrm{c}_{\mathrm{liq}}{ }^{0.45} \cdot \rho_{\mathrm{liq}}^{0.49}}{\sigma^{0.5} \cdot \mu_{\mathrm{liq}}^{0.29} \cdot \lambda^{0.24} \cdot \rho_{\mathrm{v}}^{0.24}}\right) \cdot \Delta \mathrm{T}_{\mathrm{sat}}{ }^{0.24} \cdot \Delta \mathrm{p}_{\mathrm{sat}}^{0.75} \cdot \mathrm{Stt}_{0} \quad \text { Chen } \\
& \mathrm{h}_{\mathrm{b}_{0}}=4815.221 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad \mathrm{~h}_{0}:=\mathrm{h}_{\mathrm{b}_{0}}+\mathrm{h}_{\mathrm{c}_{0}} \quad \mathrm{~h}_{0}=6.833 \times 10^{3} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}
\end{aligned}
$$

$$
\Delta \mathrm{t}_{\mathrm{b}}:=\frac{\mathrm{h}_{\mathrm{flux}}}{\mathrm{~h}_{0}} \quad \Delta \mathrm{t}_{\mathrm{b}_{0}}=2.552 \mathrm{~K} \quad \Delta \mathrm{~T} \text { assumed was } 2.5 \mathrm{C}
$$

For the next quality 0.1

$$
\begin{aligned}
& \Delta \mathrm{T}_{\text {sata }}:=2.4 \mathrm{~K} \quad \text { temperature difference between wall and fluid, assumed to start the process. } \\
& \Delta \mathrm{p}_{\text {sata }}:=108192 \mathrm{~Pa} \quad \Delta \mathrm{p}_{\text {sat }}=1.082 \times 10^{3} \cdot \mathrm{mbar} \quad \text { pressure difference for temperature difference of } 2 \mathrm{C} \\
& \mathrm{~h}_{\mathrm{b}_{1}}:=.00122 \cdot\left(\frac{\mathrm{k}_{\mathrm{liq}}{ }^{0.79} \cdot \mathrm{c}_{\mathrm{liq}}{ }^{0.5} \cdot \mu_{\mathrm{liq}}^{0.29} \cdot \lambda^{0.24} \cdot \rho_{\mathrm{l}}{ }^{0.24}}{0.49}\right) \cdot \Delta \mathrm{T}_{\text {sat }}^{0.24} \cdot \Delta \mathrm{p}_{\mathrm{sat}}{ }^{0.75} \cdot \mathrm{Stt}_{1} \quad \text { Chen } \\
& \mathrm{h}_{\mathrm{b}_{1}}=4523.196 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad \mathrm{~h}_{1}:=\mathrm{h}_{\mathrm{b}_{1}}+\mathrm{h}_{\mathrm{c}_{1}} \quad \mathrm{~h}_{1}=7.224 \times 10^{3} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \\
& \Delta \mathrm{t}_{\mathrm{b}_{1}}:=\frac{\mathrm{h}_{\mathrm{flux}}}{\mathrm{~h}_{1}} \quad \Delta \mathrm{t}_{\mathrm{b}_{1}}=2.414 \mathrm{~K} \quad \Delta \mathrm{~T} \text { assumed was } 2.4 \mathrm{C}
\end{aligned}
$$

For the next quality 0.3
$\Delta \mathrm{T}_{\text {sata }}:=2.05 \mathrm{~K} \quad$ temperature difference between wall and fluid, assumed to start the process.

$$
\begin{aligned}
& \Delta \mathrm{p}_{\text {sath }}:=92414 \mathrm{~Pa} \quad \Delta \mathrm{p}_{\text {sat }}=924.14 \cdot \mathrm{mbar} \quad \text { pressure difference for temperature difference of } 2 \mathrm{C} \\
& \mathrm{~h}_{\mathrm{b}_{2}}:=.00122 \cdot\left(\frac{\mathrm{k}_{\mathrm{liq}}{ }^{0.79} \cdot \mathrm{c}_{\mathrm{liq}}{ }^{0.45} \cdot \rho_{\mathrm{liq}}{ }^{0.5} \cdot \mu_{\mathrm{liq}}^{0.29} \cdot \lambda^{0.24} \cdot \rho_{\mathrm{v}}^{0.24}}{0.49}\right) \cdot \Delta \mathrm{T}_{\mathrm{sat}}^{0.24} \cdot \Delta \mathrm{p}_{\mathrm{sat}}{ }^{0.75} \cdot \mathrm{Stt}_{2} \quad \text { Chen } \\
& \mathrm{h}_{\mathrm{b}_{2}}=3837.293 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad \mathrm{~h}_{2}:=\mathrm{h}_{\mathrm{b}_{2}}+\mathrm{h}_{\mathrm{C}_{2}} \quad \mathrm{~h}_{2}=8.513 \times 10^{3} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \\
& \Delta \mathrm{t}_{\mathrm{b}_{2}}:=\frac{\mathrm{h}_{\mathrm{flux}}}{\mathrm{~h}_{2}} \quad \Delta \mathrm{t}_{\mathrm{b}_{2}}=2.048 \mathrm{~K} \quad \Delta \mathrm{~T} \text { assumed was } 2.04 \mathrm{C}
\end{aligned}
$$

For the next quality 0.5

$$
\begin{aligned}
& \Delta \mathrm{T}_{\text {sata }}:=1.83 \mathrm{~K} \text { temperature difference between wall and fluid, assumed to start the process. } \\
& \Delta \mathrm{p}_{\text {satw }}:=82496 \mathrm{~Pa} \quad \Delta \mathrm{p}_{\text {sat }}=824.96 \cdot \mathrm{mbar} \quad \text { pressure difference for temperature difference of 2C } \\
& \mathrm{h}_{\mathrm{b}_{3}}:=.00122 \cdot\left(\frac{\mathrm{k}_{\mathrm{liq}}{ }^{0.79} \cdot \mathrm{c}_{\mathrm{liq}}{ }^{0.45} \cdot \rho_{\mathrm{liq}}{ }^{0.49}}{\sigma^{0.5} \cdot \mu_{\mathrm{liq}}^{0.29} \cdot \lambda^{0.24} \cdot \rho_{\mathrm{v}}^{0.24}}\right) \cdot \Delta \mathrm{T}_{\text {sat }}^{0.24} \cdot \Delta \mathrm{p}_{\text {sat }}{ }^{0.75} \cdot \mathrm{Stt}_{3} \quad \text { Chen } \\
& \mathrm{h}_{\mathrm{b}_{3}}=3407.788 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad \mathrm{~h}_{3}:=\mathrm{h}_{\mathrm{b}_{3}}+\mathrm{h}_{\mathrm{c}_{3}} \quad \mathrm{~h}_{3}=9.443 \times 10^{3} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \\
& \Delta \mathrm{t}_{\mathrm{b}_{3}}:=\frac{\mathrm{h}_{\text {flux }}}{\mathrm{h}_{3}} \quad \Delta \mathrm{t}_{\mathrm{b}_{3}}=1.847 \mathrm{~K} \quad \Delta \mathrm{~T} \text { assumed was 1.83C }
\end{aligned}
$$

For the next quality 0.6

$$
\begin{aligned}
& \Delta \mathrm{T}_{\text {sata }}:=1.75 \mathrm{~K} \text { temperature difference between wall and fluid, assumed to start the process. } \\
& \Delta \mathrm{p}_{\text {satw }}:=78890 \mathrm{~Pa} \quad \Delta \mathrm{p}_{\text {sat }}=788.9 \cdot \mathrm{mbar} \quad \text { pressure difference for temperature difference of 2C } \\
& \mathrm{h}_{\mathrm{b}_{4}}:=.00122 \cdot\left(\frac{\mathrm{k}_{\mathrm{liq}}{ }^{0.79} \cdot{ }_{\mathrm{c}}^{\mathrm{liq}}}{}{ }^{0.45} \cdot \rho_{\mathrm{liq}}{ }^{0.49}\right) \cdot \Delta \mathrm{T}_{\mathrm{sat}}{ }^{0.24} \cdot \mu_{\mathrm{liq}}^{0.29} \cdot \lambda^{0.24} \cdot \rho_{\mathrm{v}} 0.24 \mathrm{p}_{\mathrm{sat}}{ }^{0.75} \cdot \mathrm{Stt}_{4} \\
& \mathrm{~h}_{\mathrm{b}_{4}}=3252.5 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad \mathrm{~h}_{4}:=\mathrm{h}_{\mathrm{b}_{4}}+\mathrm{h}_{\mathrm{c}_{4}} \quad \mathrm{~h}_{4}=9.79 \times 10^{3} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \\
& \Delta \mathrm{t}_{\mathrm{b}_{4}}:=\frac{\mathrm{h}_{\text {flux }}}{\mathrm{h}_{4}} \quad \Delta \mathrm{t}_{\mathrm{b}_{4}}=1.781 \mathrm{~K} \quad \Delta \mathrm{~T} \text { assumed was } 1.75 \mathrm{C}
\end{aligned}
$$

For the next quality 0.7

$$
\begin{aligned}
& \Delta \mathrm{T}_{\text {sath }}:=1.7 \mathrm{~K} \quad \text { temperature difference between wall and fluid, assumed to start the process. } \\
& \Delta \mathrm{p}_{\text {sath }}:=76636 \mathrm{~Pa} \quad \Delta \mathrm{p}_{\text {sat }}=766.36 \cdot \mathrm{mbar} \quad \text { pressure difference for temperature difference of 2C } \\
& \mathrm{h}_{\mathrm{b}_{5}}:=.00122 \cdot\left(\frac{\mathrm{k}_{\mathrm{liq}}{ }_{\sigma^{0.5} \cdot \mu_{\mathrm{liq}} \cdot{ }^{0.79} \cdot \mathrm{c}_{\mathrm{liq}} \cdot \lambda^{0.29} \cdot \rho_{\mathrm{liq}}}^{0.24} \cdot \rho_{\mathrm{v}} 0.24}{0.49}\right) \cdot \Delta \mathrm{T}_{\text {sat }}{ }^{0.24} \cdot \Delta \mathrm{p}_{\mathrm{sat}}{ }^{0.75} \cdot \mathrm{Stt}_{5} \\
& \mathrm{~h}_{\mathrm{b}_{5}}=3154.901 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \\
& \Delta \mathrm{t}_{\mathrm{b}_{5}}:=\frac{\mathrm{h}_{\mathrm{flux}}}{\mathrm{~h}_{5}} \quad \Delta \mathrm{~h}_{\mathrm{b}_{5}}=1.733 \mathrm{~K} \quad \mathrm{~h}_{\mathrm{b}_{5}}+\mathrm{h}_{\mathrm{c}_{5}} \quad \mathrm{~h}_{5}=1.006 \times 10^{4} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \\
& \Delta \mathrm{~T} \text { assumed was } 1.7 \mathrm{C}
\end{aligned}
$$

For the next quality 0.85
$\Delta \mathrm{T}_{\text {sata }}:=1.7 \mathrm{~K} \quad$ temperature difference between wall and fluid, assumed to start the process.
$\Delta \mathrm{p}_{\text {satt }}:=76636 \mathrm{~Pa} \quad \Delta \mathrm{p}_{\text {sat }}=766.36 \cdot \mathrm{mbar} \quad$ pressure difference for temperature difference of 2 C

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{b}_{6}}:=.00122 \cdot\left(\frac{\mathrm{k}_{\mathrm{liq}}^{0.79} \cdot{ }^{0 .} \mathrm{c}_{\mathrm{liq}}^{0.45} \cdot \rho_{\mathrm{liq}}}{\sigma^{0.5} \cdot \mu_{\mathrm{liq}}^{0.29} \cdot \lambda^{0.24} \cdot \rho_{\mathrm{v}}^{0.24}}\right) \cdot \Delta \mathrm{T}_{\mathrm{sat}}{ }^{0.24} \cdot \Delta \mathrm{p}_{\mathrm{sat}}^{0.75} \cdot \mathrm{Stt}_{6} \\
& \mathrm{~h}_{\mathrm{b}_{6}}=3152.299 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad \quad \mathrm{~h}_{6}:=\mathrm{h}_{\mathrm{b}_{6}}+\mathrm{h}_{\mathrm{c}_{6}} \quad \mathrm{~h}_{6}=1.023 \times 10^{4} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \\
& \Delta \mathrm{t}_{\mathrm{b}_{6}}:=\frac{\mathrm{h}_{\text {flux }}}{\mathrm{h}_{6}} \quad \Delta \mathrm{t}_{\mathrm{b}_{6}}=1.705 \mathrm{~K} \quad \Delta \mathrm{~T} \text { assumed was } 1.7 \mathrm{C}
\end{aligned}
$$

