High Thermal Conductivity, Mesophase Pitch-Derived Carbon Foams

by Dr. James Klett

Metals and Ceramics Division P.O. Box 2008, Oak Ridge National Laboratory Oak Ridge, Tennessee, 37831-6087 (423) 574-5220 klettjw@ornl.gov www.ms.ornl.gov/cimtech/cimtech.html

Keywords: Graphite Foam, Thermal Conductivity, Thermal Management

Outline

- Graphite Foams
- Foam Structure and Properties
 - ⇒ Scanning Electron Microscopy
 - ⇒ Optical Microscopy cross polarized light interference patterns
 - ⇒ X-ray Analysis
 - ⇒ Thermal properties Xenon Probe Flash Diffusivity Technique
 - → Mechanical Properties
- Engineered Graphite Foam Applications
 - \Rightarrow Heat sinks
 - ⇒ Heat Exchangers
 - ⇒ Satellites
 - ⇒ Heat Resistant Composites

Typical Carbon Foams

- Made from amorphous carbons
- More recently made from pitches and mesophases
- ➤ 5-25% dense
- > Thermal insulators $\Rightarrow \kappa < 10 \text{ W/m} \cdot \text{K}$
- strengths similar to honeycomb materials
- ability to absorb tremendous amounts of impact energy

ORNL Mesophase-Derived Graphitic Foam

- Graphitic ligaments
 - \Rightarrow Graphitic-like properties (high κ , E, σ)
- Dimensionally stable, low CTE
- No outgassing
- Open Porosity
- Excellent thermal management material

Mesophase Pitch

- > Typical molecular structures are different
 - ⇒ may affect shear orientation during processing
 - ⇒ may affect mechanical and thermal properties

Typical Petroleum Derived Mesophase

Mesophase Pitch

- Under proper processing and heat treatments, the mesophase molecules become a Discotic Nematic Liquid Crystal
 - → (400°C, 40 hours, Nitrogen Cover)

Traditional Carbon Foams - Manufacture

Traditional "Blowing" techniques

Bubble Growth

- Bi-Axial Extension causes liquid crystal to orient parallel to surface of bubble
 - → similar to extension caused during formation of fibers.

Traditional Carbon Foams - Problems

Traditional "Blowing" techniques

Novel Production Method

- Proprietary method (many patents filed)
- Unlike traditional foaming techniques
 - ⇒ No blowing (flashing) or pressure drop required
 - → saves steps
 - ⇒ No oxidative stabilization required
 - → improved thermal properties

Mesophase Pitch Precursors

- > Two separate 100% mesophase pitches
 - ⇒ Synthetic mesophase from naphthalene
 - → Proprietary high melting point mesophase from petroleum pitch

Mesophase	Softening Point [°C]	Mesophase Content [°C]	Carbon Yield @1000°C, N ₂
Mitsubishi ARA 24	237	100	78
Conoco	355	100	87

Foam Processing

- Proprietary foaming method developed at ORNL
- Foams of both pitches were produced under 4 different processing conditions
 - ⇒ A, B, C, D.
- > The goal was to produce foams with varying density
 - ⇒ properties as a function of density could be determined.
- ➢ Foams carbonized at 1000°C at 0.2°C/min
- ➢ Foams graphitized at 2800°C at 9°C/min

Properties of Graphitized Foams

	AR Derived Foam		Conoco Derived Foam	
Processing Condition	Density [g/cm ³]	Mean Pore Diameter* [m m]	Density [g/cm ³]	Mean Pore Diameter* [m m]
Α	0.25	354 ± 115	0.32	89 ± 79
В	0.39	361 ± 150	0.43	70 ± 54
С	0.48	293 ± 136	0.54	66 ± 65
D	0.57	275 ± 120	0.59	60 ± 49

*From optical image analysis

Foam Microstructure - AR Pitch

Α

Graphitic Structure - AR Pitch -D

Graphitic Alignment and Structure - AR Pitch

Graphitic Alignment and Structure - AR Pitch

Foam Microstructure - Conoco Pitch

Graphitic Structure - Conoco Pitch -D

Graphitic Alignment and Structure - Conoco Pitch

Graphitic Alignment and Structure - Conoco Pitch

Microstructures

AR Derived Foam (D)

Conoco Derived Foam (D)

Comparison of Ligaments to High Performance Fibers

- Composites made with DKD-x fibers graphitized at 2800°C for 1 hour
- > After high heat treatment DKD-x fibers very similar to K1100
- > Estimated thermal conductivity is ~600-800 W/m·K

Comparison of Ligaments to High Performance Fibers

Comparison of Ligaments to High Performance Fibers

Thermal Properties - Graphitized Foams

Helium Pycnometry - skeletal density

		Thermal
Material	Density	Conductivity
	[g/cm ³]	[W/m·K]
P55 fiber	2.00	120
P120 fiber	2.17	640
K1100 fiber	2.20	1000
ORNL Graphite Foam	2.23	?

Thermally Conductive Foams

$$\boldsymbol{k}_{bulk} \approx 0.35 \left(\frac{\boldsymbol{r}}{\boldsymbol{r}_{skel}} \right) \boldsymbol{k}_{ligament}$$

	Relative	Ligament	Bulk
	Density	Conductivity	Conductivity
	[%]	[W/m⋅K]	[W/m·K]
Aluminum foam	25	180	~15
Copper foam	25	400	~40
Foam with P55 type ligament	25	120	~12
Foam with P120 type ligament	25	640	~60
ORNL Graphite Foam	25		180

Crystal Parameters of Foams

Foam	Specific Gravity	Interlayer Spacing d ₀₀₂ * [nm]	Crystal Size L _a [nm]	Stack Height L _c [nm]
Mitsubishi ARA24				
А	0.25	.3364	11.8	48.2
В	0.39	.3362	17.8	46.6
C	0.48	.3360	21.5	79.3
D	0.57	.3355	18.4	82.4
Conoco B				
А	0.35	.3357	16.7	29.5
В	0.40	.3363	13.0	38.7
C	0.49	.3358	19.5	97.6
D	0.59	.3360	19.8	50.8

*perfect graphite is 0.3354

Comparison of Crystal Parameters to Fibers

Material	HTT	d ₀₀₂ -spacing*	L _a (crystal size)	L _c (stack height)	к
	[°C]	[nm]	[nm]	[nm]	[W/m·K]
P30-x fiber ⁽⁶⁾	2500	0.3375	50	32	>500
K321 fiber ⁽⁶⁾	2500	0.3376	33	50	>500
EWC-600 ⁽⁶⁾		0.3374	55	32	640
Clemson Ribbon ⁽²⁾	2400	0.3380	32	12	950
K1100 ⁽³⁾		0.3366	85	51	1000
Fixed catalyst VGCF ⁽¹⁾	2800	0.3366	40 ⁽⁴⁾	37 ⁽⁴⁾	1950
AR Foam Ligament	2800	0.3355	19	82	>1750
Conoco Foam Ligament	2800	0.3360	20	51	>1750

* Turbostratic graphite = >0.3440 nm

Single crystal graphite = 0.3354 nm

Crystal Effects on Thermal Conductivity

(data from Rellick, et. al., (6))

Ligament Conductivity

- Compelling evidence to extremely high thermal conductivity in ligaments of ORNL Graphite Foam
 - ⇒ optical microscopy
 - → significantly larger monochromatic regions than K1100 fibers
 - ⇒ Helium Pycnometry
 - → higher skeletal density than K1100 fibers
 - ⇒ X-ray analysis
 - → d-spacing closer to pure graphite than K1100 fibers
 - → plot of d-spacing indicates conductivity about 1800 W/m·K
 - ⇒ Bulk thermal conductivity
 - → order of magnitude greater than aluminum foams of similar relative density
 - ➡ anticipate ligaments to be order of magnitude greater than aluminum

Thermal Properties vs Other Materials

		Thermal Conductivity		Specific Conductivity	
Material	Specific Gravity	//	T	//	\bot
		[W/m·K]	[W/m·K]	[W/m·K]	[W/m·K]
AR Derived Foam D-2800	0.56	187	187	334	334
Conoco Derived Foam D-2800	0.59	134	134	227	227
Copper	8.9	400	400	45	45
Aluminum 6061	2.8	180	180	64	64
EWC-300/Epoxy Resin	1.72	109	1	63	1
K321/AR Pitch Carbon/Carbon	1.77	233	20	132	11
Amoco SRG	1.76	650	20	369	11
Aluminum Foam	0.5	12	12	24	24

 † Specific Conductivity = Thermal Conductivity/Specific Gravity

Laminate Fabrication and Joining Techniques

> Autoclave process

Cure at 35 psi, 150°C, 30 minutes

Flexural Testing

No Load

Load = 200 lb Displacement = 0.17 in

Typical Flexural Testing Results

Flexural Testing Results

Copper Facesheets

Compression Testing

No Load

Load = 220 lbDeflection = 0.2 in

Typical Compression Testing Results

Thermal Testing of Laminates

Material	Specific	Thermal Conductivity		Specific Conductivity	
	Gravity	//	\perp	//	
		[W/m·K]	[W/m·K]	[W/m·K]	[W/m·K]
Al-A	0.75	~150	51	200	68
Al-B	0.75	~150	64	200	86
Си-А	1.17	~150	60	128	51
Си-В	1.21	~150	55	124	45
EWC-300/Epoxy resin ⁽¹⁾	1.72	109	1	63	0.6
K321/AR Pitch Carbon-Carbon ⁽²⁾	1.88	233	20	124	10.6
Aluminum	2.77	150-200	150-200	54-72	54-72
Aluminum Foam ⁽³⁾	0.50	12	12	24	24
Aluminum Honeycomb ⁽⁴⁾	0.19		~10		52

Predicted Thermal Conductivity

The limiting factor in the thermal conductivity is the adhesive.

Potential Applications

"Out of the Box" Thinking

Foams as Heat Sinks

Actual devices

Finned foam heat sink running in Pentium 133 computer since December 12, 1998.

Other Finned Heat Sinks

Aluminum Heat Sink from P133 Computer

Finned Foam Heat Sink

Satellite Applications?

- Current concept spreads heat across larger area & reduces temperature
- Heat is rejected to space with T⁴ relationship
- A very low through thickness thermal conductivity of current carbon-carbon (20 W/m·K) and honeycomb core limits heat rejection
- The higher through-thickness thermal conductivity of the foam (180 W/m·K) will increase temperature on outside surface
- High temperature on outside surface will increase radiation
- Smaller panel footprint, or more electronics can be utilized.

Cross Flow Heat Exchangers

- > Foam rigidized with Carbon CVI for dramatic improvement in durability
- Surface skin produced during manufacture would become impermeable to H₂ (already demonstrated in Fuel Cell Bi-polar plate testing)
- > Can be bonded together or "Glued" together during the CVI Process
 - ⇒ porous structure allowed deposition to bond structure together

Heat Transport - Forced Diffusion

Measured $U_o = 6,000 - 11,000 \text{ W/m}^2 \cdot \text{K}$ depending on air humidity an increase by a factor of more than 2 orders-of-magnitude over typical radiators

Heat Transport - Forced Convection

Measured $U_o = 1000 \text{ W/m}^2 \cdot \text{K}$ depending on air humidity 1 order-of-magnitude improvement

Heat Exchangers- Forced Convection

Current Radiator Demonstrated

Measured $U_o = 1000 \text{ W/m}^2 \cdot \text{K}$ depending on air humidity

Similar design tested for 800 hp racing engine

Heat Exchangers- Forced Convection

Energy Balance

Current heat exchanger utilize high flow rates and low temperature changes.

$$q = \dot{m} c_p \Delta T$$

- ⇒ for example: automotive radiator for 150 hp engine
 - → Current: $\Delta T < 5^{\circ}F$
 - → Target: $\Delta T \sim 100^{\circ} F$
 - ◆ radiator fluid temperature cannot fall below ~200°F
 - \rightarrow Allows for a decrease in mass flow (m) of air by a factor of at least 20.

$$q = \dot{m} c_p \Delta T$$

$$\downarrow \qquad \uparrow$$
Decrease Increase by 20 by 20

Pressure drop through graphitic foam

Workability

Heat Resistant Composites

Standard Polymer

Foam/Polymer

Conclusions

- By engineering process of producing pitch foams, thermal conductivity can be varied with density to achieve desired targets
- Light weight materials with thermal conductivities as high as aluminum can be produced
- Porous media heat exchangers can be designed that are dramatically smaller
- Out-of-the-Box designs can be used for the development of novel and radically different heat exchange devices
- Laminated foams can be used for structural members where high thermal conductivity and light weight are necessary.

Research sponsored by the U. S. Department of Energy, Office of Advanced Automotive Technologies, Office of Transportation Technologies, Energy Efficiency and Renewable Energy.

Special thanks to Claudia Walls, Marie Williams, and Hsin Wang Oak Ridge National Laboratory

References

- 1 Lake, M., Mat. Tech., <u>11</u> (4), 131-144 (1996).
- 2 Jones, S. P., C. C. Fain, and D. D. Edie, *Carbon*, <u>35</u>(10), pp. 1533-1543 (1997).
- 3 Sullivan, B., "Design of High Thermal Conductivity Carbon-Carbon for Thermal Management Applications," Proceedings of the 22nd Annual Conference on Composites, Materials, and Structures, Cocoa Beach, Fl., Jan 25-30 (1998).
- 4 Brito, K., and D. P. Anderson, Proceedings of the 34th International SAMPE Symposium, Vol 34, No. 1, p. 190 (1989).
- 5 Amoco Product Literature (1997).
- 6 Rellick, G. R., P. M. Adams, and H. A. Katzman, "Microstructural and X-ray Diffraction Studies of Carbon/Carbon Composites for Thermal Management Applications," Report for Naval Surface Warfare Center, Carderock Division, Report No. ATR-98(8565)-1, March 1998.
- 7 Steiner, K., J. Banhard, J. Baumister, and M. Weber, "Production and Properties of Ultra-Lightweight Aluminum Foams for Industrial Applications," Proceeding from the 4th International Conference on Composites Engineering, Edited by David Hui, July 6-12, pp. 943-944 (1997).
- 8 Olhlorst, C. W., W. L. Vaughn, P. O. Ransone, and H-T Tsou, "Thermal Conductivity Database of Various Structural Carbon-Carbon Composite Materials," NASA Technical Memorandum 4787, November 1997.