

Upgrade Stave Study Topics

- Current Analysis Emphasis
 - <u>Thermal solution for stave with double-</u> sided modules
 - 192W per 1.064m stave length
 - <u>Coolant tube analysis</u>
 - Stress analysis for C₃F₈ and CO₂ working fluids
 - Pressure drop calculations
 - Convective/boiling film coefficients
- Design drawings
 - Doubled-sided module design, 4.6mm sandwich (core height)
 - Single-sided module *prototype* stave,
 7.33mm sandwich
 - Assembly tooling for producing prototype composite sandwich structure---are complete

Double-sided module stave

Structural Considerations

- Results of previous studies (108W stave)
 - Principal area of concern was gravity sag
 - Sandwich properties for stave chosen to hold sag to <60microns, horizontal orientation (thermal strain effects <10microns)
 - Quick summary:
 - » Resulted in core height of 4.6mm and K13D2U composite facings with 4 to 1 fiber orientation
 - » Slightly flat tube, with 2mm flat section for improved thermal contact
- Questions now address 192W stave-double-sided modules and hybrids
 - 1st Approach
 - Analyze thermal performance with same tube geometry (referred to as "semi-flattened tube")
 - Add thermal solutions for round tube with two candidate coolants C_3F_8 and CO_2
- Eventually return to structural analysis

Coolant Tube Stress Analysis

Compare Semi-Flatten Tube versus Round Tubes

December 2006 W. O. Miller

FEA-Section of Tube

- Tube Shape
 - Both prototype stave tube and tube for the "proposed stave" geometry have a semiflatten shape
 - Flat portion is ~2mm across, to enhance thermal contact.
 - Both tubes are AI tubes with 12mil wall
 - For simplicity the shape of the sides are assumed to be circular with radius defined by core height (distance between composite facings)

December 2006 W. O. Miller

4.6mm Semi-Flattened Tube

- NASTRAN solution
 - Internal pressure of 100 psi
 - Stress bar is Pascal; average von Mises stress in middle between two truncated faces is 6062 psi.
 - Deflection of corresponding node in this region is 15.5 microns.
- 100 psi pressure is equivalent to 6.9bar
 - Pressure of C₃F₈ at -25°C is 1.67 bar and at 25°C the pressure is 8.7bar
 - Allowable yield stress for workhardened 1100 Series Al is ~18,000 psi

Middle is region of interest

Stress at ends affected by end conditions

7.33mm Semi-Flattened Tube

- FEA solution-Prototype stave
 - Average element Von Mises stress on the crown at 100 psi is <u>20308 psi</u>. Stress bar legend is in Pascal.
 - Corresponding nodal deflection is 87.8microns
- Prototype test
 - Plan to use low pressure coolant, stress should not be a problem
 - <u>Not recommended to use C₃F₈ in</u> <u>this size of tube</u>

- 4.6mm Semi-Flattened tube for stave cooling
 - In spite of work-hardened tube structure:
 - Suspect pressure above 500psi (34bar) becomes a significant issue in terms of stress (29,000psi) and deflection (70microns)
 - Would not be recommended for CO₂ coolant

Thermal Solutions

•Objective: Evaluate Effect of Increased Heat Load for Stave with Double-Sided Modules (192W)

•Establish 1st order result of thermal gradient for two tube geometries, semi-flattened and circular

Thermal Analysis

- Parasolids model of stave
- Double-sided silicon wafers, 12.4cm long
- 4 hybrids per wafer
- 6 chips per hybrid
- Dissipated power to the coolant U-Tube is 192W.
- The stave length (exclusive of end caps) is 1064mm long. The width is 71.5mm (including the side strips)

December 2006 W. O. Miller

Stave Thermal Model

- Computational Economy
 - Sliced the stave into short section providing full length module with partial modules at each end
 - Thermal result has a slight periodicity from 1mm separation between
 12.4cm modules—creates break in heat spreading by silicon module

December 2006 W. O. Miller

Thermal Property Parameters

FEA Model Properties

Material	K- (W/mK)	Thickness (mm)
Silicon Wafer	148	0.28
Silver-Adhesive	1.55	0.0508
Dielectric/BeO Hybrid	8	0.38
Cable Bus	0.12	0.125
Composite Facing		0.75
Stave axis	384	
Transverse	97	
Through thickness	1.44	
Coolant tube (Al)	204	0.3048
CGL Adhesive	1	0.0762

Suspect the cable bus thermal conductivity is somewhat low; thermal property will be determined in order to improve thermal quality of results

Double-Sided Stave Geometry

- Stave parameters
 - 4.6mm semi-flattened AI tube, 12mil wall.
 - 192W for double sided module,
 0.5W per chip, 12chips per module
 - Module length is 12.4cm, with row of chips nominally every 3cm
- Coolant
 - C₃F₈, entering at -25°C, assumed film coefficient of 2342W/m²K
- Results
 - Peak chip temperature approximately -12°C at region "A"
 - Module temperature nominally minus 15°C

Slight periodicity due to 1mm separation at beginning of each module

High Pressure Coolant Tube

- Geometry of coolant circuit modified to accommodate a round tube
- Aluminum tube: 4.6mm OD (4mm ID), hoop stress for 60bar (1000psi) would be 6546psi
- Saturation of CO₂ at 25°C is 933psi.

Round tube is supplemented with graphite foam transition to enhance thermal contact

Stave with Round Cooling Tube

- Thermal Solution-effective 192W per stave, 4.6mm round tube Cable K=0.12W/mK
 - High conductivity graphitic foam bonded to tube to enhance thermal contact coefficient
 - Foam material has thermal conductivity of 125W/mK normal to tube axis and 50W/mK along tube axis
 - Average convective film coefficient of 3000W/m²K used in model
- Results
 - Peak chip temperature -12.6°C, with module peak surface temperature nominally -13°C

Uncertainty in Cable K

- Thermal Solution-repeated with higher K, *increased to 1W/mK*
 - High conductivity graphitic foam bonded to tube to enhance thermal contact coefficient
 - Foam material has thermal conductivity of 125W/mK normal to tube axis and 50W/mK along tube axis
 - Average convective film coefficient of 3000W/m²K used in model
- Results---improves chip temperature by ~4°C and silicon by ~2°C
 - Peak chip temperature -16°C, with module surface temperature nominally -17°C

December 2006 W. O. Miller

Coolant Pressure Drop and Convective Heat Transport

•Objective: 1^{st} order calculations for the semi-flatten tube and circular tube for both C_3F_8 and CO_2

December 2006 W. O. Miller

Tube Hydraulic and Thermal Evaluation

- Stave with C₃F₈ Coolant: <u>Semi-Flattened tube</u>
 - Assumptions: entering quality 5%, exiting 75%
 - Resulting mass flow for 192W, 2.7g/s
 - 4.6mm semi-flattened tube, D_h=5.0mm
 - Entering Fluid -25°C and 1.67bar
 - Average frictional pressure drop 0.137bar, resulting saturation exiting fluid temperature becomes -27°C
 - Average film coefficient is 1800W/m²K
- Conclusion
 - From hydraulic and heat transport standpoint the tube is *slightly too large*
 - Need to update the thermal solution for lower than estimated film coefficient
 - Original estimate based on higher coolant inlet quality and higher mass flow rate

- Stave with C₃F₈ Coolant: <u>Round tube</u>
 - Assumptions: entering quality 5%, exiting 75%
 - Resulting mass flow for 192W, 2.7g/s
 - 4.6mm round tube, D_h=4mm
 - Entering Fluid -25°C and 1.67bar
 - Average frictional pressure drop 0.41bar, resulting saturation exiting fluid temperature becomes -32°C
 - Average film coefficient is 2500W/m²K
- Conclusion
 - Coolant temperature varying between -25°C and -32°C helps to hold silicon temperature
 - Similar to having average coolant temperature of approximately -28.5°C
 - From hydraulic standpoint the tube is *slightly small*
 - <u>Average predicted frictional pressure drop encroaches on requisite vapor</u> <u>return pressure</u>

- Stave with <u>CO₂ Coolant</u>: <u>Round tube</u>
 - Assumptions: entering quality 5%, exiting 75%
 - Resulting mass flow for 192W, 0.82g/s
 - 4.6mm round tube, D_h=4mm (satisfies our core height issue in a sandwich to minimize gravity sag)
 - Entering Fluid -35°C and 12bar
 - Average frictional pressure drop is negligible, 0.034bar, essentially no change in saturation temperature over the 2m tube length
 - Average film coefficient is 4650W/m²K
- Conclusion
 - From hydraulic and heat transport standpoint the tube is *more than adequate*
 - <u>Stress, for a 1000 psi max pressure is 6545 psi, which would be considered</u> <u>allowable for Aluminum tubing</u>

- Silicon Module Temperature for 2m stave with 192W heat load
 - If requirement is -25°C, the coolant most likely must enter at -35°C or at least minus 30°C.
 - C₃F₈ saturation pressure at -35°C is 1.04bar, which means a 0.67bar reduction in available return pressure to the compressor from ATLAS conditions, may be a system problem
 - Is -30°C acceptable from system standpoint?
 - Frictional pressure loss in a 4.6mm semi-flatten tube with a hydraulic diameter of 5mm at -35°C coolant inlet is estimated to be 0.18bar, further contributing to return pressure problem
 - For a "hard" silicon temperature of -25°C, CO₂ entering at -35°C is preferable
- Prospects for C₃F₈ at -25°C---most of problem comes from the 192W heat load
 - Need to improve thermal modeling by quantifying the thermal conductivity of the components
 - Consider strategy of augmenting heat spreading beneath the chips

<u>i T i</u>