
- 1 -

Comparison of the Hybrid and Wafer Data

 V 1.0

 Vitaliy Fadeyev

 September 16, 2002

Introduction

In the course of testing the hybrids and modules, it is sometimes useful to compare the results with the wafer-level tests of the corresponding chips. When the ASIC part of the SCT database becomes fully functional, that would be the primary, and most efficient way to retrieve the information. Right now we are left with the “backdoor” way of obtaining the relevant information from the “raw” data.

This note is meant to be an outline of a step-by-step procedure of getting the information. The procedure is admittedly involved, but the backdoor way never was meant or designed to be proper, nice and convenient.

The procedure

The procedure of getting the information consists of three actions:

1. fetching the file with data,

2. processing the file,

3. looking at the data, usually with a help of ROOT macros (scripts).

All the wafer measurement data are kept at CERN. We process them locally, at vostok-lnx.lbl.gov machine running linux, under lblatlas account.

 Fetching the data file

So, the steps to get the file are:

1. Log in on atlas.cern.ch (have to have an account there; I recommend to use ssh to log in)

2. Find the relevant zip file. The data files are at the so-called CASTOR storage. The storage space is transparent for a casual user, but you have to use special commands to look at and to get the data. The command

 prompt> nsls /castor/cern.ch/user/s/sctwafer/data/

 would give you the list of directories with data files. It is somewhat

 analogous to the unix "ls" command. Each directory corresponds to a

 given tested wafer. The format of the directory names is

 <Test Site/Machine Name>-Z<lot #>-W<wafer #>-D<Test Date>

 Please note that there may be more than one test/directory for a given

 wafer. I recommend "grep'ing" the "nsls" command output for a known lot

 number when you are looking for a wafer data. Once you know the

 directory name, you can look inside with the same "nsls" command.

 Typically you'd see a zip file with the "raw" data and a root file with the

 processed results. In principle, one wants the root data file. However, there

 is a problem that the root data file is larger than one's allowed home

 directory disk space, so it is not possible to copy it over.

3. So, the next step is to copy the zip file to the home directory of the login account you are using:

 prompt> rfcp /castor/cern.ch/user/s/sctwafer/data/<dir name>/<zip file>.zip ./

 At this point the system may seem to hang up for a few seconds to a few

 minutes. This is due to the nature of the CASTOR storage.

4. Transfer the file to vostok-lnx machine:

 prompt> scp -pr <zip file> lblatlas@vostok-lnx.lbl.gov:/datafiles/

 The scp command will prompt you for the lblatlas account password. It

 may take a few minutes to transfer the file. The scp is nice enough to

 report on the transfer progress continuously.

Processing the data file

Processing the data is as easy and straightforward procedure as getting them. The following steps are involved:

1. Log in to vostok-lnx as lblatlas. You have to set up the right environment for the ROOT-related data processing. The command is

 prompt> . ~/set_LD_LIBRARY_PATH_v7_7

 Please not the dot at the beginning of the command.

2. Change to the data storage directory.

 prompt > cd /datafiles

 "/datafiles" is a dedicated large disk for the data storage. Therefore, we

 keep the zip and root files on that disk, and analyse them from the lblatlas
 home area.

3. Make a proper directory for the zip file and move the file to it. “cd” to that directory. You can also copy the file to the "/datafiles/zipfiles" directory, if you care to save it.

4. Unpack the zip file, i.e.

 prompt> unzip <zip-file>

 Remove the zip file, you do not need it anymore.

 Depending on the directory structure of the host machine where the zip

 file was generated, there may be a directory tree unpacked. What you

 want is just "Chip*.dat" data files. If there is a tree, please move the data

 files to the current directory and remove the extraneous directories.

5. Now you are in the position to really process the data. There are two steps involved:

· Making the root file (the bulk of the processing).

 Copy “wafer.map” file over, i.e.

 prompt>cp ../wafer.map ./

 Run the executable making the root file, i.e.

 prompt>../tstWafer >& run_tstWafer.log &

 The program will run in the background, and the log file with its

 output will be created. You do not necessarily want to look at it, but

 it's a good idea to leave traces of the activity in case something

 strange happens later on.

 This is the bulk of the data processing. It takes 1-2 hours to get thru.

 The file “kk.root” will be created. It's a good idea to rename it in the

 same fashion the zip file was named, i.e. preserving the test site

 name, wafer ID numbers and test date.

 It is also a good idea to "save" the newly created "bare" root file, i.e.

 prompt> cp <basename>.root ../rootfiles/

· Now you need to reprocess the file to collect the physical observables into the Chip object status registers. A typical command would be

 prompt> ../MkDST <basename>.root 0 1 1 800. 1 1 0.85 >& run_mkdst.log &

 Of the MkDST command line arguments, only number "800." Is

 important at this point. It means the noise cut level (noisy chips are

 "cut off"). In principle, this value can be derived from the chip noise

 distribution for the wafer by running yet another macro. However,

 the number "800." is sufficiently large to be very inclusive for our

 purposes.

 It takes a couple of minutes for the program to run. At this point you

 have a properly made root file.

Looking at the data

Now you can run a macro in the root session to compare wafer test data with hybrid/module data. Change directory to the proper one.

 prompt> cd /home/lblatlas/xcheck_chips_hybrid/

Make a link to the newly created root file, for example,

 prompt> ln -s /datafiles/SCIPPW-Z40859-W02-D20020503/SCIPPW-Z40859-W02-D20020503.root scippw-z40859-w02-d20020503.root

There are several macros in the current directory, designed for different purposes.

Bad channel checks

To check the bad channel list from the wafer data for a chip, use “lkup_chip_channels.C” . It has the following three arguments:

1. (int) chip number on the wafer, starting from 1 (this is what supplied with the gelpacks),

2. (char *) the name of the root file with the wafer test results,

3. (int, optional) the chip number on the hybrid, starting from 0.

To run the macro, you type

 prompt> root

this starts the root session. At the root prompt, you type something like

 root prompt> .x lkup_chip_channels.C(123, "simple.root", 3)

Then the macro runs, and the results are printed on the screen.

To check the bad channel list for the 12 chips on a hybrid, you can do the following:

1. take “lkup_E12_channels.C” routine, rename it appropriately (E12 --> your hybrid name)

2. in the code itself

· rename the routine name,

· replace the chips numbers with yours

 ("-1" operation is to correct the numbering from the one supplied

 with the gelpack info to the one used internally in the root file; the

 latter starts from 0),

· replace the root file name in the line "TFile f...." .

Now you can run the new macro. It does not have arguments, because there is quite a bit of information to supply. So, I resolved to multiplying essentially the same routine many times and modifying the internals. This method has the advantage that the information stays in the files, which is useful for re-running the routines or tracing the bugs.

Comparison of the two tests

Another common task is to check the compatibility of the wafer- and hybrid-level results for a chip. One can use macro “lkup_chip_hybrid.C” to compare the gain and offset. It has the following arguments:

1. (int) the number of the chip on the wafer (information provided with the gelpacks),

2. (char *) text file with the channel-wise hybrid test results

3. (char *, optional) the basebame of the output picture files (*.ps and *.gif)

Note that there is no root file name in the argument. This macro expects that the root file would already be opened in the root session:

root prompt> .x rootlogon.C

root prompt> TFile f("simple.root")

Here, the “rootlogon.C” macro is needed to load the shared libraries necessary for the root to understand the data file structure.

It is a good idea to close the file, if you are done with it, and you are going for another root file:

 root prompt> f.Close()

 root prompt> TFile f("simplistic.root")

One has to be careful with the file with the hybrid test results. Look up the format of “E12/E12_RC_479_12.txt” for an example. Any entry on any line beyond the inner noise number can confuse the script. This means that the comment at the end of the line has to be deleted. I usually use emacs with "Ctrl-x r k" command to delete a rectangle. This works for a large number of lines, but one has to watch other comments besides the "partbonded", which may be longer.

This macro will display the wafer- and hybrid-test plots of gain and offset versus the chip channel number. They are also saved in Postscript and GIF formats to the disk, according to the 3rd argument of the routine.

To decide if the wafer- and hybrid-test measurements pertain to the same chip (they should, if all material and information flow goes well), we can compare the two measurements of the same quantity. The idea is the following.

If the same chip quantity was measured twice, then the two plots of the quantity versus the channel number will “trace” each other. We can calculate their variances, i.e. the R.M.S. of the quantity, derived from the 128 values for different channels. The difference of the plots should be nearly constant, with the variation dominated by the measurements errors. The variance of the difference is then small compared to the geometrical sum of the individual variances.

If, on the other hand, the two measurements pertain to different physical chips, then the two plots are unrelated. In this case, the value of the variance of the difference would be close to the geometrical sum of the individual variances.

So, several parameters will be printed on the screen, for example:

 rmsD = 2.73019, rmsSum = 13.4066, ratio = 0.203644 <<<<<<<<<<<<<<<<<

Here, the rmsD is the variation of the two measurements difference,

rmsSum is the geometrical average of the the measurement averages, and the ratio = rmsD/rmsSum . The "<<<<..." is printed on the screen, if the ratio is less than 0.8, meaning that the measurements pertain to the same physical chip. The 0.8 is an empirical threshold, which works well. If the "<<<<..." is not printed, then the case is suspicious.

The printout is done separately for the gain and offset comparisons. Of these, the offset is the most reliable, since it varies much more than the gain. The power of the identification method relies crucially on the variation of a quantity as a function of the channel number. For a hypothetical case of constant function, the verification cannot be made.

In case if you want to do the comparison for the whole hybrid, you can take the macro “lkup_E12_hybrid.C”, rename it, modify the content appropriately, and run.

Retrieving other information

Once you have the root file, all the relevant information is in principle available. The scripts described above can be a starting point. The root file has a very hierarchical structure. It contains object Wafer, which contains objects Chip, each of which contains object Channel. The best source for the detailed description of the objects and their data is, of course, the source code. It is located in the directory ~lblatlas/unix_v7_7_anal/wafer/ .

Other tips

 One can easily hang the root session without even trying very hard. If this happened, you can do the following to get rid of the session:

· open another session under lblatlas account,

· look for the root process number:

 prompt> ps aux | grep lblaltas

· find the root session and kill it:

 prompt> kill -9 xxxx

 here, xxxx is the root session process number.

Be careful not to kill other things, like your own new shell session.

