
F E - D  D e s i g n  R e v i e w ,  F e b  1 9 9 9

K. Einsweiler          Lawrence Berkeley National Lab
FE-D Design Overview, Feb 23 1999    1 of 36

Introduction and Overview for FE-D Design Review

K. Einsweiler, LBNL

Overview of system specifications and design of module

Summary of previous submissions and relevant results

Overview of FE-D specifications and design at the top level

Introduction to verification issues: SPICE models
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System Design of Pixel Modul
First requirements analysis and discussions
system design in 96:

• Two chip design, including a single controller and event-bui
16 front-end chips bumped to a single silicon substrate.
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Features:
• Basic interface to the outside uses a 3-wire protocol (Serial

which maps onto the SCT opto-link protocol

• Provide a “transparent mode” interface through MCC to FE 
testing.

• Basic interconnections between FE and MCC use bussed s
will not operate when recording events, so it uses full-swin
signals use low-swing differential “LVDS-like” signaling. Po
0.5 mA drivers (FE chips only), external or bussed signals 

• To provide enhanced speed and robust module design, the 
connected from the FE to the MCC in a star topology (16 pa

• Only analog signal between MCC and FE at this time is VC
All FE chips have internal current references and adjustme
analog operating points.

• Architecture is “data-push” style: each crossing for which LV
causes all FE chips to autonomously transmit back hit infor
crossing. LV1 signal may remain set for many contiguous c
readout of longer time intervals. MCC merges such events

• Synchronization signal available to ensure FE chips label LV

• System uses two analog supplies to reduce power dissipati
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Requirements Summary
Power budget: 

• Total for module is based on 0.6W/cm2 power density, inclu
dissipation in services within the pixel tracker volume. This 
chips, sensor leakage, opto-link, and power transmission.

• Within this budget, MCC is allocated roughly 300 mW, and 
250 mW (150mW analog, 100mW digital). The analog budg
to be 40µW/pixel

Geometry:
• The active die area for the FE chip is 7.2 x 10.8 mm, of whi

sensitive area for particle detection. The sensitive area of t
extend to the edge of the die along 3 sides, with all addition
concentrated on the remaining side.

• Physics studies indicate that the pixels should be as narrow
dimension, and a 50µ pitch has been chosen as reasonabl
long direction, adequate resolution is obtained with a dimen
The present prototyping program has frozen the length at 4
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Demonstrator Program
• In 1997, we agreed on overall design specifications for the 

necessary to implement this module design in a prototype 
pursue two prototypes for the FE chip. This was based par
partly on the goal of submitting designs to two rad-hard ven

• One was called FE-A, and was designed for submission to 
This process was viewed as a prototype vehicle for DMILL
submitted in Oct. 97, and testing began in Jan. 98. A secon
version, FE-C, was submitted in May 98. This chip has 880

• The second was referred to as FE-B, and was designed for
0.8µ CMOS. This process was viewed as a prototype vehic
chip was submitted in Feb. 98, and testing began in Apr. 98
850K transistors.

• A DMILL prototype matrix (no EOC, simple readout) called 
submitted in Jul 97 and tested in Jan 98, to verify the FE de

• The MCC was submitted in May 98, along with the FE-C, a
summer. FE-C chips were tested and bonded for evaluatio

• All of these chips contain minor errors, but in all cases their f
close to the submission goals. Extensive lab testing and te
been carried out on all chips. Excellent performance has be
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Demonstrator FE Chip Geomet
• Agreement on pixel size was struck in Sept 96, in order to a

parallel detector and electronics development. 

• The geometry adopted was 50µ x 400µ for the pixel size, w
18 columns of 160 pixels per column.

• The geometry was mirrored between columns, so that the i
column 0 and 17 are on the outside, and all other columns 

• The input pad geometry in the inner column pairs is then a 
pitch pads. The metal pad is specified to be 20µ square, w
the passivation for the bump-bonding.

• The cut die size must not extend beyond 100µ from the edge
three sides of the die. Hence, nothing outside of the pixel c
three sides of the chip, to allow module construction.

• The bottom of the chip (all peripheral logic and I/O pads) ar
making the total active die region 7.2mm x 10.8mm.

• An I/O pad structure of 48 pads, each consisting of a 75µ x
and a group of 4 bump-bond pads, was frozen.
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Some highlights of the performance of the 
• Basic performance of FE-C:

•
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• Basic threshold scan results (slow shaping used for reduce

• Thresholds have been tuned, and a shaping time of about 3
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• Measured overdrive for channels in FE-C chip:

• Measure minimum c
threshold required t
discriminator within 
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• Preamp performance in DMILL:
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• Leakage current tolerance of DMILL version:
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• Threshold tuning using DMILL version:
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• Measurement of timewalk performance in FE-B:

• Curves on left show typical timewalk versus charge. Plots o
scans (change injection time for fixed charge), and indicate
uniformity across the full array.
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• Measurement of timewalk performance in FE-B:

• Curves on the left show required overdrive relative to a part
Curves on the right show the time difference distribution fo
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• Test beam results from FE-B chips:

• Measured efficiency (single crossing) varies from 98.8 to 99
to 0.1% out of time hits. In particular, the ST2 detector type
losses, and hits close to the 3K charge threshold.
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• Same results for a detector irradiated to the full 1015 LHC fl

• The overall efficiency measured for this case (about 3Ke th
but when the regions with large charge loss were excluded
efficiency was 98.2% with about 1.2% of the hits in other cr
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• Use of the TOT charge measurement to study uniformity of
different detector designs:
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• Study noise occupancy and depletion depth for irradiated d

• Plots on the left show a noise occupancy of about 10-7 hits/

1015 fluence detector operating at 600V.

• Plots on the right measure the depletion depth using cluster
inclined tracks. Similar studies with unirradiated detectors r
thickness to better than 10µ.
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Scope of this Review
This is the first external review of ATLAS FE 
electronics:

• We have completed the layout of all of the major blocks of t
just beginning to integrate these blocks into the overall floo

• We have done simulations of these top level blocks, but the
incomplete.

• We are preparing the overall chip simulation framework, an
do the overall verification.

• We are several weeks behind where we had planned to be 
principle missing ingredient for the review is documentation

• However, several comments are significant: The new DMIL
combination of circuit blocks which have been successfully
already, and so the major activity involves converting these

• In addition, we anticipate that it is the following submission w
production” design. The present chip is the first rad-hard ve
demonstrator design, and most likely will require further ite
MRad irradiation experience. Hence, we regard it as critica
well enough that we continue to learn from it, but it does no
specifications, as a pre-production chip would.
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• We need to get experience with these new chips before test
year, and so we are prepared to trade some perfection for 
roughly as we expect, and are available on time.

What do we expect from this review ?
• We hope to submit the present chip in 6-8 weeks. Dependin

this review indicates major issues for follow-up, another rev

• We would like to bring our reviewers up to speed on our de
they will continue to work with us for future submissions to H
approach true production quality chips.

• We look for your advise on whether our circuit designs look
there are specific DMILL issues, and whether our simulatio
protocols are good enough. We look forward to learning fro
greater experience in DMILL.

• We imagine a modest list of suggestions, which would incre
successful submission, and perhaps point out areas where
we could improve our designs further. Of course, any glarin
brought to our attention too !
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Overview of FE-D
Common design effort, based on combining 
aspects of FE-A/B/C chips:

• Front-end design is basically that of FE-C and MAREBO, b
Although there is a BiCMOS version of this FE (2 bipolars u
input) which has slightly better timing performance than the
version, this cell appears to be too large for FE-D.

• The FE uses a DC-feedback preamp design which provides
current tolerance, close to constant-current return to baseli
stable operation with different shaping times. 

• It is followed by an AC-coupling stage, and a fast discrimina
provides fine input baseline (threshold) control and provide
the high pass filter AC-coupling stage.

• The control logic provides a 3-bit threshold trim capability in
individual mask and calibration inject control. A global Fast
using all pixels enabled for readout, and provides a self-trig

• All critical bias currents and voltages on the chip are contro
(6 current mode, 2 voltage mode), which are referenced to
reference, and controlled via the chip command decoder.
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• Readout design is an upgraded version of the readout arch

• It uses a 7-bit Grey-coded 40 MHz “timestamp” bus as a tim
throughout the active matrix. All pixels measure their leadin
timing by asynchronously latching this reference in RAMs.

• Hits (address plus LE/TE timing) are transferred from the pi
trailing edge occurs, using a shared bus structure in the pix
bus should operate at transfer rates up to 20 MHz in order 
requirements. Low swing signal transmission and sense am
achieve this.

• Significant buffering is provided in the end of column region
the L1 latency (up to 3.2µs in ATLAS). Twenty buffers are a
column pair. The coincidence with the L1 trigger is perform
from rejected crossings are immediately cleared.

• A readout sequencer stores information on up to 16 events 
soon as the output serial link is empty, transmission of a ne
begins. Essentially, sending a L1 trigger corresponds to ma
all hits associated with the corresponding beam crossing, w
off the FE chip to the MCC.
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• Global control of the chip is implemented using a simple co
global register controls Latency, DAC values, enabled colu
and several other parameters. 

• A pixel register which snakes through the active array provi
control lines in the pixel (Select, Mask, Trim<0:2>). 

• Each chip on a module is geographically addressed, and its
by external wire-bonds to avoid confusion.
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FE-D Block Diagram:
Basic FE block diagram, expanded from mod

• Basic Digital I/O shown on bottom: 4 CMOS inputs for contr
LD), and 4 fast, differential I/O’s for timing and readout (XC

• Calibration and monitoring are shown on the right. A fast, dif
supplies calibration timing, and an analog voltage input (VC
calibration input. Dedicated monitoring pins include FastOR

• Within the
front-end
discrimin
block, an

• Just below
matrix is 
control fo
blocks, a
the reado

• Finally, th
readout c
command
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etry of die:
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FE-D Pinout and Geometry
Sketch of pin assignments and overall geom
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l

f to ground (parasitic) 
mance should still be 

rs provide negative 

ize charge sharing).

ould be 200µ.

m2 is about 6Ke with 
se to operate at the 
 prototype experience 

(this would be 2Ke for 
efined using a 
 of 25ns, however, we 
is could be achieved 
uired overdrive for a 
ging requirement for 
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Front-end, biassing and contro
Summary of the requirements:

• A nominal capacitive load of 200 fF is expected, roughly hal
and half to the nearest neighbors (inter-pixel). Good perfor

obtained with loads of 400-500fF. The n+ on n-bulk detecto
signals.

• Pixels are oriented to maximize signal and efficiency (minim

• The outer layers should be 250µ silicon, and the B-layer sh

• The expected signal after the lifetime dose of 1015 n-equiv/c
200V bias, and about 10Ke with 600V bias. We now propo
higher bias at the end of the detector lifetime, and have real
to show that this works well.

• This leads to an in-time threshold requirement of about 3Ke 
the lower bias voltage). This requirement has often been d
maximum timewalk relative to some large reference charge
believe 20ns is the right target for the complete FE chip. Th
by for example setting a 2Ke threshold, and having the req
timewalk of 20ns be less than 1Ke. This is the most challen
our front-end.
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hich must be injected 

ers, and 0.5µs for the 
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odest analog 
ithout a large impact 

in each pixel.

ed. In all present 
 problems have been 
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• Noise should be less than 300e and threshold dispersion le
leading to an overall threshold “variation” of less than 400e

• Leakage current tolerance should be at least 50nA per pixe
changes in operating performance, and independently ach

• Noise occupancy should be less than 10-6 hits/crossing/pixe

• Crosstalk between neighboring pixels should be less than 5
defined as the ratio between the threshold and the charge w
into a pixel to fire its neighbors.

• A double pulse resolution of 2µs is required for the outer lay
B-layer, in order to achieve our total deadtime requirement

• It is required to provide binary readout of each pixel, but a m
resolution (4-5 bits) is very desirable if it can be achieved w
on the other performance specifications.

• A threshold range of 0 - 6Ke is needed.

• A calibration injection capacitor of 10fF should be included 

• We do not know whether real diode input protection is need
chips, no explicit input protection is provided, and no major
observed.
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 cap, and 40ns 
5V. Cascode and 

ut 6µA, plus two 
e threshold and AC-
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FE and Control Blocks:

• Preamp has roughly 3fF DC feedback design, 10fF injection
risetime. Input transistor operates at about 9µA bias and 1.
follower operate at 3V and about 1.5µA each.

• Discriminator is AC-coupled and uses a bias current of abo
tunable voltage supplies (VTH and VCCD) which control th
coupling time constant.
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 good linearity.
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.
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FE Biassing and Control Blocks:

• A VBE reference is used to supply a 16µA reference current
DACs. It has 2-bit trim capability to ensure roughly +/-1µA 
parameter variations within DMILL corners (this is a conven

• The current mode DACs are a rad-tolerant 8-bit design with

• The two tunable voltage supplies use resistor chains to con
which supply the necessary voltages.

• A single column enable bit controls the major operations of 
allows bypassing a column pair in the pixel shift register ch
column pair in the HitBus FastOR net, and bypassing the s
a column pair when transfering an event out of the FE chip
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eam crossing.

end up to 3.2µs.

ces between leading 

ull GEANT simulation 
s to operate with a 20 
ir in order to provide 
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erway for this layer.

overflow of the EOC 
olumn pair overflows, 
 is stretched to cover 
ave lost hits due to 
OE word.

h phase lies between 
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Digital readout
Summary of the requirements:

• Make a unique association of each hit pixel with a 40 MHz b

• Store hits in pixel array for L1 latency period, which can ext

• Make a modest TOT measurement by counting time differen
and trailing edges in 40 MHz units.

• Simulations for the current architecture exist, driven by the f
of ATLAS. This suggests that the current architecture need
MHz column clock rate and have 20 buffers per column pa
safe operation of the outer layers. The B-layer requirement
and require something like 30 buffers. Further study is und

• There is only a single error condition which occurs, namely 
buffers. In the case where the EOC buffer block in a given c
hits are lost until a free buffer exists, and the error condition
a full L1 latency (covering all possible events which could h
this condition). The error status is then transmitted in the E

Specifications:
• Clock duty cycle specified to be between 40% and 60% (hig

10ns and 15ns, or nominal +/- 2.5ns).



F E - D  D e s i g n  R e v i e w ,  F e b  1 9 9 9

FE-D Design Overview, Feb 23 1999    31 of 36

out:
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Block diagram of the basic column-pair read
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Block diagram of the Readout Control:
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Block diagram of Command Decoder and Glo

• Simple command protocol, based on a 21-bit command field
high and associated data may be transmitted. This support
independent commands.

• Global Register controls overall operation of FE chip. Becau
importance of its bits, it does a parity calculation (chain of X
and generates a Parity Error if the parity is not what is expe
This parity error is transmitted as part of the EOE word to f
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Block diagrams of remaining blocks in the pe

• The previous chips use a compensated FET switch to chop
and inject the corresponding charge into the pixel injection
circuit is under study to perform this task, see talk of P. Fisc

• There is a reset generator that either uses the external RES
the SYNC input in XCK clocks, to generate internal reset s
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• There are three basic reset signals. The Resync makes sur
module are using the same trigger number (it resets the trig
SoftReset puts the chip into the “empty” state for data, but 
configuration information. Finally, the HardReset also reset
information to default states (typically zero for most registe

• There is a self-trigger generator, which either passes the inp
trigger processing circuits, or uses the internal FastOR sign
LV1 signal after a programmable latency. This allows the c
trigger mode with a source, and it will simply produce outpu
sees a signal on the internal FastOR.

• There is a dual 8-fold output multiplexor which selects whic
data stream is transmitted off the chip through the serial ou
inputs are synchronized with XCK, while the second eight a
multiplexor circuit is used both for the  standard serial outp
MONHIT output pins.

• The LVDS driver/receiver circuits use a second internal curr
define the drive current. The common mode voltage is refe
supply using a diode. While not quite conforming to the LVD
design works well enough for local pixel module communica
corner simulations of the performance of a driver/receiver p
loading. The most critical signal (XCK) was found to be wit
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PICE models (strictly 

Rad, including 
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dget, which is clearly 
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Simulation Issues
• Base timing and drive analyses on use of TEMIC-supplied S

optimized for ELDO use only).

• We have models for fast/typical/slow pre-rad and after 25 M
possible rebound effects in NMOS. We use these models e
corner analyses.

• We perform analyses with fast-fast pre-rad, typical prerad, a
as our three nominal cases. These three SPICE models ar
annotate delays in our simple standard cell libraries for use
as well, so we can also perform corner simulations in Verilo

• Our goal is to make a chip that is still fully functional at supp
AVcc of 3.0V/1.5V and DVdd of 3.0V.

• This looks very challenging for some critical circuit blocks.

• The principal requirement is that we live inside our power bu
easier at lower supply voltages. However, for the digital sup
uses only 70 mW at 3.5V (the budget is 100 mW). We wou
this DMILL chip operates correctly for the worst case (slow
somewhat elevated supply voltage of 3.5V, or perhaps eve
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