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WBS 1.1.1 Pixel System
Sensors, Opto-links, and On-detector Electronics

Major Topics:
•Sensors (WBS 1.1.1.2): Status and Issues

•Opto-links (WBS 1.1.1.3 and 1.1.1.4): Status and Issues

•On-Detector Electronics and Test System (WBS 1.1.1.3): Status and Issues

Details of our 0.25µ electronics program and schedule will 
follow in the talk of P. Denes

Summary and Conclusions

Prototype Results in Appendix
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Sensor Concepts

Basic requirement is operation after 1015 NIEL
•Requires partially depleted operation. Chosen n+ pixels in n-

basic configuration (does require double-sided processing).

•Two isolation techniques studied for the n+ pixel implants. Se
implantation over the whole wafer (so-called p-spray) appro
technique, observe only bulk leakage in I/V curve after full do

critical high-dose p implantation between n+ implants, so yie
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Final Sensor Design (Sensor 2)
•Final design is based on small gap, and includes bias grid to 

pixel implants at ground for I/V characterization) and to keep
from floating to large potential in case of bump-bonding defe
“moderated” p-spray to improve pre-rad breakdown voltage

•Sensor 2 wafer layout had 3 module tile designs (“no dot”, “s
dot” bias structures). SMD (small dot) chosen based on yiel

Fig. 10. Design detail of the bias grid in the second sensor prototype.
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Prototype History:
•Sensor 1 designs: Initial designs from 1997 covering a wid

with CIS and Seiko. Extensively tested in the lab and testbea
irradiation of single chips and subsequent flip-chip to rad-so

•Sensor 1b designs: Evolution of p-spray designs to include
final production concept (SSGb). Only CIS was a vendor. E
lab and beam in 1999. A second identical run (sensor 1c) w
yield for standard and moderated p-spray.

•Sensor 2 designs: Emphasis on final wafer layout, significa
vendors and allow us to build a large number of modules. Us
including moderated p-spray and 50% of wafers oxygenated

•Oxygenation: Technique involves diffusion into wafers for 1
O atmosphere. Only useful when irradiation is predominantl
(neutron damage un-affected). Two major effects (other pro

•Modification of reverse annealing behavior by “saturating” th
annealing. This gives about half depletion voltage for a fixed
layer, roughly doubles lifetime dose (ignoring trapping effec

•Increase of reverse annealing time constant by about 4. This
of room temperature exposure on irradiated sensors, and co
access scenarios. Largely understood in terms of defect phe

•FDR (Dec 3 99) and PRR (Feb 2 00) successfully completed
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•Pre-production order launched with two vendors: CIS and Te

•First wafers received from CIS in Jan and Tesla in Feb of thi

•First plot
CiS mod
is excell
and yield

•Second p
Leakage
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•Foundry 
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US Roles:
•There are four active testing sites in pixels (Dortmund, New 

Udine). Test procedures and acceptance criteria are defined

•UNM has performed US share of wafer probing up to the pre
necessary equipment set up. 

•Team is led by Seidel (physicist) and Hoeferkamp (engineer

•University of Oklahoma could operate as a second site for te

Next Steps and Remaining Issues:
•Complete evaluation of pre-production prototypes from two v

are in the process of being bump-bonded using FE-D2S chi

•Pre-production wafer quality looks good to excellent, so all in
two vendors are ready to fabricate production wafers.

•US schedule has procurement occuring in FY02. There appe
to keeping this schedule.
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Deliverables:
US Responsibilities include the following:

•Participate in the design and testing of the sensors.

•Contribute roughly 20% towards the common procurement o
production sensor wafers.

•Cost estimate for production is based on tender quotes. Fund
Management Contingency category with high priority for rel

U.S. ATLAS E.T.C.
WBS Profile Estimates

Funding Source: All Funding Type: Project

Institutions:All

WBS FY 96 FY 97 FY 98 FY 99 FY 00 FY 01 FY 02 F
Number Description (k$) (k$) (k$) (k$) (k$) (k$) (k$)

1.1.1.2 Sensors 0 0 0 0 0 97 35

1.1.1.2.1 Design/Engineering 0 0 0 0 0 35 35

1.1.1.2.1.1 Test design 0 0 0 0 0 35 35
1.1.1.2.1.1.1  Design - New Mexico 0 0 0 0 0 35 35

1.1.1.2.3 Production 0 0 0 0 0 62 0

1.1.1.2.3.1 Barrels, Disks and B-layer(s 0 0 0 0 0 62 0
1.1.1.2.3.1.1 Preproduction 0 0 0 0 0 16 0
1.1.1.2.3.1.2 Production 0 0 0 0 0 0 0
1.1.1.2.3.1.3 Testing 0 0 0 0 0 46 0
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On-Detector Electronics, Opto-links, Power
System Design:

•Pixel Array (Bonn/CPPM/LBL): FE chip of 7.4 x 11.0mm di
8.0mm active area. The chip includes a serial command de
and Sync timing inputs, and serial 40 Mbit/s data output. Th
associated with a particular crossing is “requested” by send
correct latency. FE chip then transmits corresponding digita

•Module Controller (Genova): Collects data from 16 FE chip
silicon event builder. Performs basic integrity checks and fo
implements module level command/control. The 16 FE chip
to MCC in star topology to eliminate bottlenecks and increas

•Opto-link (OSU/Siegen/Wuppertal): Multiplexed clock/cont
s link to module, data is returned on one or two 80 Mbit/s da
are VCSELs, receivers are epitaxial Si PIN diodes. Basic lin
package, and there are two additional small optolink chips w
The fibers are rad-hard silica-core stepped-index multi-mod

•Power Distribution: Significant ceramic decoupling on modu
tapes used to reach patch panels at end of support (PP0, 1m
round cable to transition on cryostat wall (PP2, 7m), then co
USA15 cavern. Filtering, transient protection, and possibly l
regulation would be performed on intermediate patch panels
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Summarize all connections required for modu

•There are five power supply voltages with their separate retu
voltage that uses VVDCRet as a reference.

•VVDC powers both the DORIC and the VDC, and VPIN may
the opto-package instead of routing through the DORIC.

•Present concept is that DORIC, VDC and their passive comp
Opto-package are placed on Opto-card. Interface requires 3
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Pixel Opto-links:
•All AC signals (clock/commands/data) are transmitted optica

•Receiver: Fiber output is converted using an epitaxial Silico
output (small current signal) is sent to the DORIC chip, whic
MHz crossing clock and a bi-phase mark encoded comman
40 Mbit/s serial stream. It uses a delay-locked loop to extrac
a high quality 50% duty-cycle clock) and decode the comma
command stream includes the synchronous LVL1 trigger co
synchronous commands, and slow configuration commands
interface is used to the MCC chip.

•Driver: The VDC chip converts LVDS data output streams fr
current pulses suitable for driving the VCSELs chosen for da
pixel applications, the outer layers plan to use a single 80 M
(provides roughly a factor 4 of safety), and the B-layer will us
streams. The format is NRZ, so the 80 Mbit/s link consists o
each 40 MHz clock edge. The VCSEL drive current is adjus
remotely-controlled voltage. This allows in situ I/L curves, a
operation at high bias to force rapid annealing of radiation d

•SCT groups (RAL/Oxford collaboration) have designed and 
chips in pure bipolar AMS design. They work well, but do no
doses. For several reasons, pixels have converted designs 
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Status of Pixel DORIC and VDC
•OSU and Siegen converted SCT design from AMS bipolar to

Chips included in FE-D1 submission. VDC-D1 worked fairly 
several design errors related to poor modeling of parasitics.

•Second generation fabricated in FE-D2 submission. DORIC-
well, but only when used as a bare die very close to opto-pa

•VDC-D2 shows problem with behavior of dim current (should

•DORIC-D2 suffers from preamp DC offsets, and general has
error rate than the SCT DORIC-4A chip. However, it appear

•In Feb, submitted 0.25µ prototype VDC-I and DORIC-I with f
For now, treat both DMILL and 0.25µ as candidate technolo
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Status of Opto-package developm
•Original SCT development was done with Marconi. Package

very expensive and complex. Idea was to develop a cheap 

•Both Taiwan and OSU have worked on different approaches

•Agree to use SCT-qualified PIN (Centronics) and VCSEL (M
have been evaluated in neutron, gamma, and proton beams

•Taiwan package (left) uses layered PCB, special 45 degree 
active alignment to achieve good performance.

•OSU package (right) uses molded components and precise 
performance at low cost, but with larger dispersion in outpu

ground
plane

base

PIN

VCSEL
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Opto-Card Concept for Mounting Opt
•Original concept was to keep fast timing signals in optical fo

the pixel module. Given the very challenging services integr
detector, especially the barrel, this has proven to be difficult

•Present concept involves grouping opto-links at the ends of 
structure (attaching them to PP0). This consolidates fiber in
packages onto a single card with electrical connection to PP
can be fully tested and burned in prior to installation. In addit
at a radius of 15cm, decreasing problems due to SEU effec
This does require high quality electrical pigtails to pixel mod

P
ca

Fi
be
B
su
us
op
w
V
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Test System for Opto-chips and Opto
•OSU has built a first prototype of a high-performance opto-lin

be used for testing a complete opto-card.

•Use VDC a
source, an
data decod
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Irradiation qualification:
•Collaborative effort of SCT and pixels (Wuppertal from pixels

systematic irradiation studies of optical fibers and opto-elem
VCSELs) up to pixel fluences. Results show no significant r
operated with adequate bias voltage (up to about 7V), and p
operated with sufficient bias current (up to about 20mA).

•Only known issue at this time is single event upsets caused 
very thin epitaxial layer of the PIN diode. Irradiations at PSI 
effect, but at the new radius of the opto-cards, this should n

more than about 10-9.

•Pixels has recently significantly upgraded the MCC comman
fault tolerant. Critical commands (particularly LVL1) are suc
under any single bit error, and are only mis-interpreted unde

Next Steps:
•During April 01 PS run, a complete opto-card will be irradiate

during the irradiation using OSU opto-link test system.

•New 0.25µ versions of opto-chips submitted in Feb, expecte

•Have scheduled ATLAS review to decide on opto-package s

•Finalizing design of opto-package and opto-card to match re
services layout for Insertable Pixel design.
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Deliverables
US Roles

•Contribute to design of opto-chips (VDC and DORIC) in DMI
processes. 

•Contribute 50% towards opto-chip fabrication. Baseline in co
conservatively assumed to be DMILL.

•Probe 50% of opto-chips.

•Supply fraction of opto-cards corresponding to number of mo
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Electronics Challenges and Requirem
Main challenges are in FE chips:

•Operate properly after total dose of 50 MRad (nominal ATLAS
cope with expected leakage currents from sensors of up to 
the B-layer, this corresponds to a lifetime of about 2 years a

•Operate with low noise occupancy (below 10-6 hits/pixel/cros
about 3Ke with good enough timewalk to have an “in-time” t
4Ke (hit appears at output of discriminator within 20ns of ex
requires a small threshold dispersion (about 300e) and low 

•Associate all hits uniquely with a given 25ns beam crossing.
timing come from timewalk in the preamp/discriminator, digit
clock distribution on module, and relative timing of different 

•Meet specifications with nominal analog power of 40µW/cha
total power for FE chip of 200mW (worst case budget is 70µ

Status of MCC chip:
•First version fabricated by Genova in AMS technology. Chip

and 400K transistors. Other than a few very minor errors, it 

•Second generation (final design) fabricated in DMILL proces
Observed yield is poor (less than 10%), so now working on 
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FE Electronics Prototypes
Several generations of prototypes have been 

•First “proof of principle” chips were built in 96.

•First realistic prototypes were designed in two parallel efforts
a rad-soft HP prototype (FE-B) and a rad-soft AMS prototyp
These were 18 column, 160 row chips with 50µ x 400µ pixe

•Prototypes of critical elements made in both rad-hard proces
and Honeywell SOI) to study performance and radiation har

•Initial rad-hard activity focussed on common design DMILL c
by common design Honeywell chip (FE-H).

Features of initial rad-hard FE design:
•Preamplifier provides excellent leakage current tolerance an

time-over-threshold (TOT) behavior via feedback bias adjus

•Discriminator is AC-coupled, and includes 3-bit trim DAC for

•Readout architecture uses distributed 7-bit timestamp bus, a
trailing-edge latches in each pixel to define times of LE and

•Asynchronous data push architecture used to get data into b
of the chip, where they are stored for the L1 latency, after wh
for readout or deleted. Chip transmits Trigger/Row/Column/
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Initial Radiation Hard Strategy
Pursued essentially identical designs with tw

•ATMEL/DMILL: Began first work on FE-D in Summer of 98. 
submitted to TEMIC on Aug 10 99. Design contained some 
digital readout from FE-B design to fit into DMILL constraint
improvements. Performance targeted at outer layers, with 4
EOC buffers per column pair.

•Comments: Initial version of front-end chip (FE-D1) showed 
concentrated in two circuit blocks. Second set of wafers for 
processed (FE-D1b), and showed same behavior. Extensive
towards technology problems. Second run was made, with 
many minor bug fixes (FE-D2). Will summarize these results

•Honeywell/SOI: Began serious work on FE-H in Fall 99. At 
and CERN had TAA agreements in place to do design. In ad
was in process of revising Layout Rules, which caused sign
number of minor improvements relative to FE-D, taking adv
device density and third metal layer. Design was made more
performance was targeted at B-layer as well (400µ pixel wit

•Comments: Had completed almost all layout work and were 
verification in July 00, when we learned of cost increase to $
quantities. This made continued work impractical, and this p
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Summary of FE-D1 DMILL Run
Reticle included many die (10 in total):

•Two pixel FE chips (FE-D). Several errors were found and re
simulation. Two significant yield problems are believed to or
fabrication problems, and made operation of the chips very 

•Prototype MCC chip. A prototype of several key elements of

20mm2 core size. Included FIFO block for final chip, plus la
command decoder block. Observed yield of about 80% for s
of 8 packaged die to 30MRad carried out at PS in Oct 00. A
irradiation, but many no longer function correctly after sever
under investigation. 

•Prototype CMOS opto-link chips (one DORIC-p and three VD
discussed previously.

•Additional test chips: LVDS buffer for rad-hard test board, PM
and special pixel transistors, Analog Test chip with all critica
elements. All work well, and transistor parameter measurem
slightly faster than typical. Many detailed characterizations o

•Second half-lot (FE-D1b) processed several months later wi
changes, and observed same poor yield results for FE-D ch
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Details of Bottom of Chip:

•Layout is very dense, with 400µ pixel and overall die comple
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Example of Defect Analysis in Yield S
•Two chips which had been characterized in the lab had serie

pads deposited by FIB surgery to allow probing of suspect “

•Measurements were made of DC performance of the suspec
complex to interpret since they are done in situ), as well as 
performance (using an FET Picoprobe) of waveforms during

•Both DC and dynamic measurments confirm existence of de

•Two 1
place
was o
secon
the su
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DC curves for pixels previously classified goo

•Bad pixels consistently show apparent drain-source resistan
few 100’s of KOhms. Good pixels show resistance of many 
larger, with actual value most likely limited by Tungsten resi
deposition.
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Dynamic measurements of a good and a bad 
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TMEL agreed to 
 a special collection 

ied (Leff, poly etch, 
 to understand the 

 two versions of the 
 with same design 
 errors fixed (FE-
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ic blocks (Hit Logic 
gister) replaced with 
s but with threshold 

 removed (FE-D2S).

C-D2 as a complete 
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Summary of FE-D2 Run
•Submitted second run to ATMEL for fabrication July 26 00. A

fabricate a standard prototype run (8 wafers delivered), plus
of 9 corner runs where three separate parameters were var
and contact etch). The goal was to look at yield correlations
technology problems observed in the FE-D1 run.

•Run included
FE chip. One
but all known
D2D), and o
yield dynam
and Pixel Re
static version
trim circuitry

•Included MC
design addre
system need
second gene
and several 
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Results from FE-D2 Run
•Yield for original design (FE-D2D) was similar to the FE-D1 r

unacceptable:

•Minimal digital test criteria are working Global and Pixel Reg
Columnpairs. Only one chip in 8 wafers satisified these requ

FE-D2D (DYNAMIC IMPLEMENTATION) STANDARD WAF
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•Comparison of yield distribution for each corner run paramet
show any correlation with the processing variations tried by

•Corner
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•Yield for FE-D2S design looked much more promising:

•Observe decent yield for simple digital tests (about 50%), bu
some bad pixels.

 

 

FE-D2S (STATIC IMPLEMENTATION) STANDARD WAF
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•Small correlations with corner runs were observed for Pixel R
single bad pixel fraction. No other global yield correlations s
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 0.8µ

chip module 
r further study.

Cyclotron. First 
 others do not:

 tested at 88” 
g N2 coldbox 
bout -5 C.
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Status of Rad-Hard Developments in
Continuing to evaluate chips from FE-D2 run:

•FE-D2S wafers being bump-bonded into single-chip and 16-
assemblies using 6 wafers at two vendors (AMS and IZM) fo

•FE-D2S single die have been irradiated recently at LBL 88” 
results show some circuit elements survive to 50MRad, and

FE-D2S being
Cyclotron usin
to irradiate at a
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IC-D2) in the April 
t the PS in May, and 

ss than 10%) makes 
died.

nt epi deposition 
on in late May.

 FE-D/MCC-D:
s density lower than 
and yield problems.

2S, observe 
igital and analog).

 parameter shifts 
ilures in large chips. 

f future for process.

 cost increases.

.25µ processes with 
K. Einsweiler          Lawrence Berkeley National Lab
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•Irradiations taking place using opto-chips (VDC-D2 and DOR
PS run. Further irradiations of FE-D2S could be performed a
irradiations of MCC-D2 could be performed in July.

•Further testing of MCC-D2 continuing. However, low yield (le
the testing difficult. Problems in event building still being stu

•ATMEL presently running new experimental lots using differe
vendor for wafer preparation. Should get wafers for evaluati

Factors driving us to suspend design work on
•Design short-cuts required to fit into available space. Proces

expected, dynamic logic used in several blocks poses SEU 

•Experience with yield and technology quality. Even for FE-D
significant number of isolated defects (bad channels, both d

•Problems with radiation hardness for our application. Device
very large, and often seem to observe “mysterious” circuit fa

•Relatively high cost (given low and erratic yields) and lack o

•Honeywell SOI work suspended as of July 2000 due to large

Present direction:
•All design effort is being directed to the use of commercial 0

radiation tolerant layout rules.
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Nevertheless, given 
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Deep Sub-micron Approach:
•One of dominant effects of irradiation of CMOS devices is cr

charge in the critical gate oxide layers. Below about 10nm o
charge trapping largely vanishes due to quantum tunneling e
processes are the first to operate fully in this regime (they h

•The RD-49 collaboration has studied details, confirming that
leakage paths using layout, then a commercial 0.25µ proce
hard (circuits tested to 30MRad). Many technical concerns a
basically little experience with full-scale devices, so some c

•All experience so far with analog and digital designs sugges
behaves almost exactly like the SPICE BSIM3 simulations. 
our lack of experience with these processes, we are making

•CERN has negotiated a frame contract for LHC with IBM for
process which extends through 2004. This fixes prices and t
and production runs, and would provide the basis for our pr
procurement. We can also access the TSMC 0.25µ process
quantities via the MOSIS consortium as a back-up should p

•This path places us into commercial mainstream, where we c
prices and availability in the future. Depending on R&D in 0
feature sizes, it provides a technology path for upgrades to t
roadmaps suggest “baseline” process would be 0.10µ 9-me
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Test System for FE Chips and Mod
History:

•LBL/Wisconsin developed original test system in 97/98 for us
pixel “demonstrator” prototypes.

•This system has been successfully used for wafer probing, a
single chips and modules in the lab and in the testbeam.

•A total of 16 such systems are presently in use throughout th
They are the standard with which all chips and modules are

•The use of a common, high-performance test system for this
activities has allowed greater efficiency and easier comparis

Overview:
•The system consists of a PC host running National Instrume

environment and one or more VME boards (so-called PLL).

•Each VME board drives a local control card (PCC) over a lon
in turn drives the individual test cards (support cards) over a

•There are now several generations of test cards supporting 
applications from wafer probing to single chip testing to bare
the first two generations of Flex modules.
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m:
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Components of Current Test Syste

PLL

PCC
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Upgraded Test System
•New generation under design. Incorporate experience with p

optimize to cover complete range of production needs with 
hardware and software, keeping same basic interfaces to p

•Includes upgrades for greater range of test capability (vary a
timing), plus optimized buffering and variable frequency test

XXIV

Architecture is directly based upon the original PLL approach, which had prove

ideally tailored to our needs and which represents the model upon which the A

ROD design was developed.  

System Architecture  
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 available in each 
dules that should 

all stages from initial 

ly voltages, from a 
µ (and below) chips.

ization of 0.25µ FE-I 

us system is 
d layout is complete, 
o out for fabrication 
.

ting in April. Most 

LL/PICT systems to 
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Design Goals:
•New system allows complete evaluation of operating margin

chip. Optimized cuts can then be used to select die and mo
continue to work properly after full lifetime radiation doses.

•Cover wider range of needs, including parametric testing at 
wafer probing, to module testing, and module burn-in.

•System designed to allow operation over wide range of supp
minimum of 1.6V up to 4V, to cover testing of 0.8µ and 0.25

•New system will be operating in time for complete character
chips described in next talk.

Schedule:
•TurboPLL design is complete. Transfer of VHDL from previo

complete, almost all upgrades now defined and written. Boar
but optimizing routing of critical high-speed paths. Should g
within next month. Components purchased for first 10 cards

•PICT/TurboPCC schematics are complete, board layout star
components in hand for initial construction of 5 PICT cards.

•Higher performance probe card designed and simulated.

•On schedule to deliver total of 15 PLL/PCC systems and 5 P
the pixel collaboration this calendar year.
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Production Testing Plans

•New system addresses range of needs from wafer probing t
XVIII

IC Wafer Production  

Under -bump metallisation  

Bump deposition  
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hly 20% towards the 
 50% of FE ICs.

ute approximately 
tion.

le chip and module 
ting/burn-in (LBL).

Y 03 FY 04 FY 05 Total
(k$) (k$) (k$) (k$)

354 26 0 1616

161 0 0 989
11 0 0 469
0 0 0 216

151 0 0 304

0 0 0 367
0 0 0 130
0 0 0 10
0 0 0 54
0 0 0 173

193 26 0 261
140 26 0 185

53 0 0 76
K. Einsweiler          Lawrence Berkeley National Lab
ATLAS Pixel S

Deliverables:
US Responsibilities include:

•FE chip design, testing and production (LBL): Contribute roug
common procurement of the series production. Test roughly

•Opto-link chip design, testing and production (OSU): Contrib
50% towards the common procurement of the series produc

•Design and provide hardware/software for lab/testbeam sing
testing, production FE wafer probing, production module tes

WBS FY 96 FY 97 FY 98 FY 99 FY 00 FY 01 FY 02 F
Number Description (k$) (k$) (k$) (k$) (k$) (k$) (k$)

1.1.1.3 Electronics 0 0 0 0 0 615 621

1.1.1.3.1 Design/Engineering 0 0 0 0 0 381 446
1.1.1.3.1.1 IC design 0 0 0 0 0 189 269
1.1.1.3.1.2 Test design 0 0 0 0 0 140 75
1.1.1.3.1.3 Systems Engineering 0 0 0 0 0 52 101

1.1.1.3.2 Development and Prototypes 0 0 0 0 0 234 133
1.1.1.3.2.1 Atmel/DMILL prototypes 0 0 0 0 0 130 0
1.1.1.3.2.2 Honeywell 0 0 0 0 0 10 0
1.1.1.3.2.3 0.25 Micron 0 0 0 0 0 0 54
1.1.1.3.2.4 Test 0 0 0 0 0 94 79

1.1.1.3.3 Production 0 0 0 0 0 0 42
1.1.1.3.3.1 Front-end ICs 0 0 0 0 0 0 19
1.1.1.3.3.2 Optoelectronics 0 0 0 0 0 0 23
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Summary and Conclusions
Sensors:

•Extensive design and prototype program now complete. Pro
including operation after lifetime radiation doses, is accepta

•Oxygenated material provides significant increase in operati
dose and access scenarios) and will be used for production

•Pre-production with two final vendors completed and under e

•Would be ready to proceed with production order later this y

Opto-links:
•Second generation of opto-chips in DMILL are working relati

level evaluations will continue using complete opto-card wit

•Improved design submitted in 0.25µ. Both DMILL and 0.25µ
candidates for opto-chip production.

•Expect to select package in June 01, and proceed to finalize

On-Detector Electronics:
•Prototypes built using rad-soft electronics have been extensi

testbeam, Present designs basically meet all ATLAS require



U S  A T L A S  L e h m a n  R e v i e w ,  M a r  2 0 0 1

ensors and Electronics, Mar 21 2001    40 of 49

 to catastrophic cost 

technology reasons. 
to look for generic 
pended all design 

ndergoing further 
pear to work, and 

te, and is on 
ear. 

have now been 
K. Einsweiler          Lawrence Berkeley National Lab
ATLAS Pixel S

•Honeywell SOI design for FE chips has been abandoned due
increases from vendor.

•Transfer of FE chip design to DMILL has basically failed for 
Will continue to evaluate FE-D2S design over next months 
problems and to develop and refine test methods. Have sus
work towards a production DMILL FE.

•Opto-chip designs in DMILL appear to be working, and are u
evaluation. First prototype opto-packages and opto-cards ap
intensive characterization is now beginning.

•Design of production version of test system is almost comple
schedule for delivery to the collaboration by the end of this y

•All on-detector design activity and cost/schedule definitions 
focussed on 0.25µ versions of electronics (see next talk).
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Lab Measurements using Rad-soft Pro
Examples of threshold and noise behavior in 

•Using individual Trim DACs, manage to achieve excellent di

•Measured noise is quite good, even for small-gap design pre
remains acceptable after irradiation (reduced shaping time a
from leakage current itself both increase noise).
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Examples of timing and charge measurement
�8����
����
��

��
	������
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���	���	


•Timing performance at large 
charge is excellent, and timewalk is 
acceptable.

•Charge measurement is high quality, 
but requires individual calibrations. 
Uniformity of internal calibration is 
good.
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Examples of Module Results:
Bare Module (FE chips wire-bonded to PC boa
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Performance of best Flex module is not as go

•Many impressive results from first prototype modules, but m
needed to check whether high quality modules can be built 
manner. Lab and testbeam characterization ability is now w
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beam Results
le:
ensor types, and 

direction of pixel:
ricked sensors
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K. Einsweiler          Lawrence Berkeley National Lab
ATLAS Pixel S

Sensor+Rad-soft Electronics Prototype Test
Measure resolution versus incident track ang

•Compare digital (binary) and analog algorithms for different s
also compare effect of “bricking” (half-pixel stagger) in long 
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on in pixel:
ile new small-gap 
n:
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K. Einsweiler          Lawrence Berkeley National Lab
ATLAS Pixel S

Measure charge collection versus track locati
•Original n-ring design has serious charge loss problems, wh

design is much better, with only small loss at bias dot locatio
Tile 2 Design   Threshold 2 Ke
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• p-spray insulation
• no floating atoll
• modified bias grid

-0.4 -0.2 0
0

20

mean charge

mean charg

0

20

-0.4 -0.2

mean charg

0

20

-0.02



U S  A T L A S  L e h m a n  R e v i e w ,  M a r  2 0 0 1

ensors and Electronics, Mar 21 2001    47 of 49

al time:
of old design (post-
ns are removed:

e’
iated Vbias = 600 V

Thr. 3 Ke
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0 hits 0.4

not matched 0.0

not in time 1.2

60

|xloc| < 0.01

|yloc| < 0.15
K. Einsweiler          Lawrence Berkeley National Lab
ATLAS Pixel S

Measure efficiency as a function of track arriv
•Behavior of new design (pre-rad) is excellent, and behavior 

rad) is very good, provided that poor charge collection regio

Efficiency ‘In Time’
Detector Tile 2 new design (with bias grid)

 not Irradiated - Thr. 3 Ke

efficiency 99.1 Losses 0.9
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 measure uniformity 

e full depletion at 
 after lifetime dose.
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on depth
K. Einsweiler          Lawrence Berkeley National Lab
ATLAS Pixel S

Measure depletion depth in sensors:
•Look at cluster width for highly inclined tracks and use this to

and depth of charge collection inside of sensor:

•Pre-rad result agrees with 280µ thickness. At 600V bias, los
about half the lifetime dose, and still collect from about 180µ
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ilicon
am in June 00.

completed in July 00.

pletion depth by 
 at large incidence 
ract cluster length.

o sensor types after 

o about 6x1014 n-
me dose for outer 

, get significantly 
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 sensors, with full 
 400V bias, 
o partial depletion at 
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d analysis shows no 
sses or other 
ects of oxygenation.
K. Einsweiler          Lawrence Berkeley National Lab
ATLAS Pixel S

Test Beam Results for Oxygenated S
•First tests with irradiated single chip sensors in CERN testbe

•Additional tests, including single chips with full lifetime dose, 

•Measure de
using tracks
angle to ext

•Compare tw

irradiation t
equiv. (lifeti
layers).

•As expected
better perfo
oxygenated
depletion at
compared t
600V bias f

•More detaile
efficiency lo
negative eff
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