
Prompt Photon Production at ATLAS

Mike Hance
University of Pennsylvania
16 December 2010



Photons

GeV
Scale

10−15 → 10−18 m

Photons were the focus of our first
(built-in) particle detectors....

One of the basic objects
reconstructed at modern
detectors
Present in many interesting
final states
Probes QCD and new physics
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Outline

Outline of today’s seminar:

Prompt Photons at ATLAS
SM Prompt Photon Physics (Overview)
The LHC and ATLAS
Photon ID
Background Estimates
Inclusive Isolated Cross Section

Future Work With Photons
More Inclusive Studies
SM Diphotons
Higgs
Exotics
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Prompt Photon Physics



Inclusive Isolated Prompt Photons

How are photons produced in pp collisions?
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At leading order, the dominant mechanism at the LHC is the Compton-like
process.

This is true for all EγT (at Tevatron, annihilation process dominates at
high EγT )
Allows us to probe the gluon content of the proton
We call these direct photons
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Inclusive Isolated Prompt Photons

But the story goes beyond leading order....
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Fragmentation

At NLO, photons are produced via QED radiation off quark lines (brems) or
via fragmentation

At low EγT , these processes are very important
At higher EγT , the LO diagrams are dominant
We call these fragmentation photons
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Isolation?

Why only consider isolated prompt photons?

vs

Isolation helps suppress backgrounds (e.g. π0 → γγ), also helps suppress
fragmentation photons.
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Prompt Photons at NLO
State of the art for theoretical predictions:

Fully NLO calculators available - most commonly used is JETPHOX
Allows for different isolation prescriptions
Benchmark for most recent Tevatron analyses
Sister package to DIPHOX, for diphoton production

Some recent work at NNLL by Becher et al, but still relies on
JETPHOX for isolation
All rely on unphysical scales to make finite predictions at NLO

Renormalization, factorization, fragmentation scales, all set to ≈EγT
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Measuring the Cross Section

One of the first questions we can ask (and answer): how many do we see?

dσ
dEγ

T
= N · P · U

∆Eγ
T · ε · L

N: Number of candidates
P: Purity of candidates
∆pT : Size of pT bin
ε: Efficiency (trigger, reconstruction, selection)
U: Unfolding factors (detector response)
L: Integrated luminosity

Fortunately, we have just the detector for the job....

M. Hance 9 / 56 LBNL RPM- 16 December 2010



The LHC and ATLAS





First beam in 2009



First 7 TeV collisions in 2010



Luminosity

After all of the initial fits and starts... the machine performance has been
excellent:
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Absolute luminosity calibration using van der Meer scans:
Many methods within ATLAS - all agree within a few percent
11% total uncertainty on luminosity - dominated by bunch intensity
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A Toroidal LHC ApparatuS



Inner Detector

Transition Radiation Tracker

350k channel tracker
4mm (diameter) straws
TR detection: e/π±

discrimination
≈36 hits on track
≈130µm resolution

Semi-Conductor Tracker

6.3M channels
4 cylinders, 8 hits/track
≈17µm resolution

Pixel Tracker

80M channels, 3 layers
≈10µm resolution
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Calorimetry

EM Calorimeter
PB-LAr Accordion
∆E/E =

(
10%/

√
E
)
⊕ .7%

.025×.025 cells (η × φ)
Angular res.: 50 mrad /

√
E

Hadronic Calorimeter

Fe-scintillator for |η| < 1.7
∆E/E =

(
50%/

√
E
)
⊕ 6%

Cu-LAr for 1.5 < |η| < 3.2
∆E/E =

(
50%/

√
E
)
⊕ 3%
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Detector Operations

Several years worth of
cosmics runs paid off for
first collisions!

Good operational
efficiency from all
subsystems - will improve.
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Photon Reconstruction and ID



Calorimeter Clusters

Sliding Window cluster finding (5×5
cells)
Clusters of different sizes for photons
and electrons:

Electrons: 3×7 cells
Unconverted photons: 3×5 cells
Converted photons: 3×7 cells

Electrons identified by associated track
∆ϕ = 0.0245

∆η = 0.025
37.5mm/8 = 4.69 mm
∆η = 0.0031

∆ϕ=0.0245x4
36.8mmx4
=147.3mm

Trigger Tower

TriggerTower∆ϕ = 0.0982

∆η = 0.1

16X0
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2X0
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00

 m
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m
m

η

ϕ

η = 0

Strip towers in Sampling 1

Square towers in 

Sampling 2

1.7X0

Towers in Sampling 3

∆ϕ×�∆η = 0.0245×�0.05

Clusters are fully calibrated offline:
Simulation tuned using Test Beam data
Energy resolution: 3% in TB, better than that with Z → ee
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Photon/π0 Discrimination

Single Photon π0 Candidate
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Shower Evolution - Layer 2

The layer 2 shower shape cuts require compact clusters consistent with
single photons:

ηR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s/

0.
02

5

1

10

210

310

410

510

610

ηR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s/

0.
02

5

1

10

210

310

410

510

610

Data 2010
 candidates)γSimulation (all 

)γSimulation (prompt 

ATLAS Preliminary
Unconverted photons

-1Ldt = 15.8 nb∫ = 7 TeV,  s

φR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s/

0.
02

5

1

10

210

310

410

510

610

φR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s/

0.
02

5

1

10

210

310

410

510

610
ATLAS Preliminary

-1Ldt = 15.8 nb∫ = 7 TeV,  s

Unconverted photons

Data 2010
 candidates)γSimulation (all 

)γSimulation (prompt 

ηR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s/

0.
02

5

1

10

210

310

410

510

610

ηR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s/

0.
02

5

1

10

210

310

410

510

610 ATLAS Preliminary

-1Ldt = 15.8 nb∫ = 7 TeV,  s

Converted photons

Data 2010
 candidates)γSimulation (all 

)γSimulation (prompt 

φR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s/

0.
02

5

1

10

210

310

410

510

610

φR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s/

0.
02

5

1

10

210

310

410

510

610
ATLAS Preliminary

-1Ldt = 15.8 nb∫ = 7 TeV,  s

Converted photons

Data 2010
 candidates)γSimulation (all 

)γSimulation (prompt 

Width in η
Width in φ
Leakage into hadronic calorimeter

M. Hance 22 / 56 LBNL RPM- 16 December 2010



Shower Evolution - Strips

The layer 1 (strips) provide excellent eta resolution, and allow increased
discrimination of single photons from π0’s

ratioE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s/

0.
02

5

210

3
10

410

ratioE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s/

0.
02

5

210

3
10

410

Data 2010
 candidates)γSimulation (all 

)γSimulation (prompt 

ATLAS Preliminary
-1

Ldt = 15.8 nb∫ = 7 TeV,  s

|<2.37η|≤1.8

sideF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s/

0.
02

5

10

210

3
10

410

5
10

sideF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s/

0.
02

5

10

210

3
10

410

5
10

Data 2010
 candidates)γSimulation (all 

)γSimulation (prompt 

ATLAS Preliminary
-1

Ldt = 15.8 nb∫ = 7 TeV,  s

|<2.37η|≤1.8

Look for two local maxima, or wider showers in η or φ
Usually measured over the equivalent of a few cells at layer 2

⇒ Largely uncorrelated with isolation variables
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Conversion Finding

All that ID material comes at a price....
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Conversion reconstruction is critical, especially outside of central barrel:
Look for secondary vertices consistent with pair production
Also a clean source of low ET electrons
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Conversion Finding
Dedicated algorithms reconstruct conversion vertices with high efficiency up
to R ≈ 800 mm:

Back-tracking, from TRT into Si detectors, for vertex finding
Cluster-seeded vertex matching to ’recover’ photons tagged as electrons
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Conversion finding is also a powerful way to map the detector material:
Material mapping is critical for precision measurements (W mass)
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Measured Efficiencies
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Trigger Efficiency: 99.5%
Reconstruction efficiency: 82%

Including recoverable acceptance
losses

ID efficiency determined from MC:
Shift shower-shapes in MC to match
data
Separately for converted/unconverted
Verified using W → eν
Systematics from:

Material effects
Pileup
Conversions
Many more....

Overall systematics ≈15% (relative)
Will improve with Z → llγ (several inverse femtobarns)

Preliminary
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Calorimeter Isolation
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(Uncalibrated) sum of cells outside of 5×7 central core:
In this case: ∆R =

√
∆φ2 + ∆η2 < .4

Need to correct for out-of-core leakage (Molière radius ≈ .1)
Also need to account for non-perturbative effects....

Preliminary
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Corrections for Underlying Event/Pileup

To correct for ambient energy not associated with the hard scatter, there are
several different techniques on the market:

“Look at 90◦” technique, AKA TransMin/TransMax methods,
AKA ...

Event-by-event correction, using transverse regions to estimate ambient
energy from underlying event

Counting primary vertices
Assume a certain amount of energy contributed by each min-bias
interaction
Can combine this with tracking information to get the charged particle
contribution to the cone of interest, making it more event-driven

Others?

A relatively new method, different from the above, uses low pT jets (and
their areas) to estimate the ambient energy:

Method proposed by Cacciari, Salam, and Sapeta
(http://arxiv.org/abs/0912.4926)
Developed for ATLAS by Brian Martin and Joey Huston
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Subtracting the Non-perturbative Contributions
Basic procedure of the jet area correction method:

Bin the detector in strips of η
In our case: 0.00, 1.50, 3.00, 4.00, 5.00
If bins are too small, results are not
stable

Run jet finding
kT algorithm, to avoid overly smoothed
jet shapes
Minimum pT at 0, to allow for very soft
objects

Courtesy of Wikipedia

Compute Voronoi areas of jets (partitioning the (η, φ) space into
regions defined by nearest jet)
From the jets and their areas, find the median energy density for the η
bin

Median helps to avoid any scale effects from setting an upper bound on jet
pT

For events with low multiplicity and hard interactions, can remove n most
energetic jets from event (where n ≈ 2)

Correction to isolation variables made based on the cone size
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Ambient Energy Corrections
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Corrections appear to be well behaved, and consistent with MC. Average
correction for 1 PV:

PYTHIA: 440 MeV
HERWIG: 550 MeV
Data: 540 MeV

Preliminary Work in Progress
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Background Estimation



Background Estimates

To estimate the residual background: use isolation.

vs

Main challenge: modeling signal and background isolation profiles:
Stay data-driven as much as possible
Avoid biases from untuned MC
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Background Estimates

To model the background - reverse
some photon ID cuts:

Cuts on the strip variables are
good candidates
Not strongly correlated with
isolation
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2-D Sidebands
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Isolation Templates

Transverse Isolation Energy [GeV]

-5000 0 5000 10000 15000 20000 25000

E
nt

rie
s 

/ G
eV

0

200

400

600

800

1000

1200

1400

1600

Transverse Isolation Energy [GeV]

-5000 0 5000 10000 15000 20000 25000

E
nt

rie
s 

/ G
eV

0

200

400

600

800

1000

1200

1400

1600 0.0088±Est. Purity  = 0.64

 < 30 GeV
γ
T E≤25 

| < 1.37γη0.6 < |

 = 7 TeVs2010 Data, 
Signal Template
Background Template
Fit Result

 Work in ProgressATLAS
-1 L dt = 880 nb∫

Transverse Isolation Energy [GeV]

-5000 0 5000 10000 15000 20000 25000

E
nt

rie
s 

/ G
eV

0

50

100

150

200

250

300

Transverse Isolation Energy [GeV]

-5000 0 5000 10000 15000 20000 25000

E
nt

rie
s 

/ G
eV

0

50

100

150

200

250

300
0.011±Est. Purity  = 0.85

 < 40 GeV
γ
T E≤35 

| < 0.6γη|

 = 7 TeVs2010 Data, 
Signal Template
Background Template
Fit Result

 Work in ProgressATLAS
-1 L dt = 880 nb∫

A full template fit is also possible
Signal from Z → ee and W → eν

Background from reverse cuts
MLL fit for signal yield for
Eiso

T < 3 GeV
Results compatible with ABCD
method

Agree within uncorrelated
uncertainties

 [GeV]
T

Photon p

10 20 30 40 50 60 70 80 90 100

E
st

im
at

ed
 P

ur
ity

 -
 T

ru
e 

P
ur

ity

-0.3

-0.2

-0.1

0

0.1

0.2

0.3 | < 0.6η |≤0 

| < 1.37η |≤0.6 

| < 1.81η |≤1.52 

| < 2.37η |≤1.81 

ATLAS Simulation
“Work in Progress”

M. Hance 35 / 56 LBNL RPM- 16 December 2010



Cross Section Measurement



Cross Section Measurement

We now have most of the ingredients for the cross section measurement:

dσ
dEγ

T
= Nyield U

(∫ Ldt) ∆Eγ
T εtrigger εreco εID

Nyield (= N · P) extracted from purity measurements, ε from efficiency
measurements.

Unfolding coefficients (U) evaluated using PYTHIA signal MC:
Ratio of true:reconstructed ET distributions
Overall small bin-to-bin migrations because of good resolution in
calorimeter

A few percent, always larger than 1.0, approaching 1.0 at high ET

Depend on |η| (material effects) and ET(resolution + bin size effects)
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Cross Section Measurement
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Cross Section: Higher |η|
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Future Photon Studies with ATLAS



To higher energies....

November 29, 2010 – 18 : 09 DRAFT 2
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Figure 1: Inclusive ET spectrum of isolated photon candidates passing the robust tight selection. The
marker positions correspond to the bin weighted averages.

A factor of 40 more data has been ac-
cumulated since the last analysis was
frozen....

Can extend the ET-reach to
≈400 GeV
Tight, isolated photons above
100 GeV are very pure
(> 90%)

Compton process still dominant at high ET → constrain gluon content of
proton for PDFs.

In addition to the inclusive analysis, we plan to measure the γ+jet cross
section separately:

Event kinematics provide more information
Angular separation sensitive to fragmentation component
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Isolation Studies
Stefano Frixione proposed an isolation prescription for reducing the
fragmentation component in the inclusive analysis:

Eisolation
T (R) < (εs · EγT) ·

(
1− cos(R)
1− cos(R0)

)n

Apply progressively tighter cuts on smaller and smaller cones
Terminates at R = 0 with a cut at 0
Eliminates collinear fragmentation component, leaving only the direct
component

Theoretically attractive, as the fragmentation component is less well
understood

We worked with Frixione and the JETPHOX authors to modify the
prescription to take into account experimental constraints:

Discrete calorimeter granularity→ discrete cone sizes
Molière radius not zero→ terminate at R ≈ .1
Needs ’corrections’ to to reconstructed isolation to properly remove
non-perturbative contributions to the isolation cone
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Frixione Isolation

A discrete, generalized form of this prescription will be used in the next
analysis:

Eisolation
T (R) <

((
ER0

T

)m + (εs · EγT)m
)1/m

·
(

1−cos(R)
1−cos(R0)

)n
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Diphoton Measurements

Born Brem Box
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Around 1 nb for ET > 15 GeV
Largest (irreducible) background to H → γγ

Biggest challenge is extending the analysis to low ET

A critical step towards finding a low mass Higgs!
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Higgs Physics
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H → γγ remains one of the more powerful channels at low mH .
Critical for probing near the LEP limit
These plots from 2009/2010 MC studies: roughly 50% gains in
sensitivity since then (analysis improvements, pessimistic MC WRT
data)
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SUSY and Exotic Searches

Getting a bit more exotic....
Most recent work in ATLAS: UED searches
in γγ + Emiss

T

Probing TeV−1 sized UED
2× (γ∗ → γ + G) = γγ + Emiss

T
Λ: UV cutoff for radiative corrections
R: compactification radius
Set ΛR = 20

D0 limit: 1/R > 477 GeV (6.3 fb−1)
ATLAS: 1/R > 728 GeV (3 pb−1)

4

TABLE I. The number of observed γγ candidates, as well as the SM backgrounds estimated from data and expected UED
signal for 1/R values of 500 and 700 GeV, given in various Emiss

T ranges. The uncertainties are statistical only. The first row,
for Emiss

T < 20 GeV, is the control region used to normalize the QCD background to the number of observed γγ candidates.

Emiss
T range Data Predicted background events Expected UED signal events
(GeV) events Total QCD W (→ eν) + jets/γ 1/R = 500 GeV 1/R = 700 GeV
0 - 20 465 465.0 ± 9.1 465.0 ± 9.1 - 0.28 ± 0.06 0.02± 0.01

20 - 30 45 40.5 ± 2.2 40.41 ± 2.17 0.11± 0.07 0.45 ± 0.07 0.03± 0.01
30 - 50 9 10.3 ± 1.3 10.13 ± 1.30 0.16± 0.10 1.60 ± 0.12 0.08± 0.01
50 - 75 1 0.93 ± 0.23 0.85 ± 0.23 0.08± 0.05 2.84 ± 0.16 0.14± 0.01

> 75 0 0.32 ± 0.16 0.28 ± 0.15 0.04± 0.03 40.45 ± 0.62 4.21± 0.06
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FIG. 3. Emiss
T spectrum for the γγ candidates, superimposed

on the total SM background prediction. Also shown are the
expected UED signals for 1/R = 500 GeV and 700 GeV.
Variable sized bins are used, and the vertical error bars and
shaded bands show the statistical errors.

trigger requirement is essentially fully efficient for sig-267

nal events satisfying the offline analysis cuts. The var-268

ious signal systematic uncertainties are summarized in269

Table II, including the dominant 11% uncertainty on the270

integrated luminosity [17]. Uncertainties in the efficiency271

for reconstructing and identifying the γγ pair arise due272

to differences between MC and data in the distributions273

of the photon identification variables, the need to extrap-274

olate these studies to the higher ET values (see Fig. 1)275

typical of the UED photons, the impact of the photon276

quality cuts, varying the scale of the photon ET cut,277

and uncertainties in the detailed material composition278

of the detector. Together these provide a systematic un-279

certainty of 4.1% (3.7%) for 1/R = 500 (700) GeV. The280

influence of pileup gives a systematic uncertainty of 1.6%.281

Systematic effects on the Emiss
T reconstruction, including282

pileup, varying the cluster energies within the current un-283

certainties, and varying the expected Emiss
T resolution be-284

tween the measured performance and MC expectations,285

combine to give a 1% uncertainty on the signal efficiency286

for 1/R = 500 GeV, decreasing to 0.2% for 700 GeV.287

Finally, the 1% statistical error on the signal efficiency288

as determined by MC is treated as a systematic uncer-289

tainty on the result. Adding in quadrature, the total290

systematic uncertainty on the signal is 11.9% (11.8%)291

for 1/R = 500 (700) GeV.292

TABLE II. Systematic uncertainties for the 1/R = 700 GeV
UED signal. For more details, see the text.

Source of uncertainty Uncertainty
Integrated luminosity 11%
Photon reconstruction and identification 3.7%
Effect of pileup 1.6%
Emiss

T reconstruction and scale 0.2%
Signal MC statistics 1%
Total 11.8%

Given the good agreement between the measured Emiss
T293

spectrum and the expected background, a limit was set294

on 1/R in the specific UED model considered here. A295

Bayesian approach was used to calculate a limit based296

on the number of observed and expected events with297

Emiss
T > 75 GeV. A Poisson distribution was used as298

the likelihood function for the expected number of sig-299

nal events, and a flat prior was used for the signal cross300

section. Gaussian priors were used for the various sources301

of uncertainty, which were treated as nuisance parame-302

ters. It was verified that the result is not very sensitive303

to the detailed form of the assumed priors. Fig. 4 depicts304

the resulting 95% CL upper limit within the context of305

the UED model considered, together with the LO UED306

cross section as a function of 1/R. The LO cross section307

was used since higher order corrections have not been308

calculated for the UED model. An uncertainty on the309

signal cross section due to parton distribution functions310

(pdf) was determined by comparing the predictions us-311

ing MRST2007 [18] pdf’s with those from the full set of312

error pdf’s of CTEQ6.6 [19]. The resultant uncertainty,313

namely 8% essentially independent of 1/R, is shown by314

Along these same lines:
Some SUSY searches (GMSB) have identical signatures
γγ resonances (Direct RS-graviton search)
Model-independent resonance searches
γ + l + Emiss

T (sleptons) and many other combinations
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Conclusion



Conclusion

First ATLAS measurement of prompt photon production

Photons are characterized for the first time by ATLAS
Good efficiency for very high purity, especially at high ET

Cross-section measurement up to 100 GeV, in three η regions
Extending to ≈ 500 GeV with all 2010 data

Good agreement with theory for EγT > 30 GeV
Some things to be understood at lower EγT

Lots of interesting γ physics to come

UED searches (currently)
Di-photon cross section, resonance searches
Higgs searches at low mass
SUSY, exotics, model independent searches...
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Single Photon Trigger Efficiency
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Previous Measurements
7
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FIG. 2: Fraction of isolated prompt photons as a function of
Eγ

T . The systematic uncertainty band is discussed in the text.

Eγ
T

dσ/dEγ
T

dηγ Syst. Unc.
(GeV) (pb/GeV) (%)
30–34 (1.23±0.01)×102 +15.5,−14.5
34–39 (6.21±0.03)×101 +10.8, −9.8
39–44 (3.10±0.02)×101 +9.8, −8.4
44–50 (1.72±0.02)×101 +10.2, −8.1
50–60 (7.93±0.08)×100 +10.1, −8.4
60–70 (3.54±0.05)×100 +9.8, −8.5
70–80 (1.76±0.03)×100 +10.0, −9.1
80–90 (9.08±0.14)×10−1 +9.3, −7.9
90–110 (4.41±0.05)×10−1 +8.8, −8.7
110–130 (1.68±0.03)×10−1 +8.6, −8.7
130–150 (7.25±0.16)×10−2 +7.8, −8.0
150–170 (3.41±0.08)×10−2 +8.8,−10.0
170–200 (1.46±0.04)×10−2 +8.8, −9.1
200–230 (5.66±0.24)×10−3 +9.0,−10.6
230–300 (1.38±0.08)×10−3 +10.0,−10.7
300–400 (1.49±0.21)×10−4 +15.2,−13.4

TABLE I: Measured inclusive isolated prompt photon cross
section for photons in the pseudorapidity region |ηγ | < 1.0
and 30 < Eγ

T < 400 GeV. The uncertainties in the central col-
umn are statistical. The additional 6% luminosity uncertainty
is not included in the table. A parton-to-hadron correction
(Chad = 0.91 ± 0.03) is applied to the pQCD predictions.
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FIG. 4: The inclusive cross section for the production of
isolated photons as a function of pγ

T . The results from the
NLO pQCD calculation with jetphox are shown as solid line.

than 0.3% for pγ
T > 70 GeV. The measured cross section,

together with statistical and systematic uncertainties, is
presented in Fig. 4 and Table I. (The data points are
plotted at the pT value for which a smooth function de-
scribing the cross section is equal to the average cross
section in the bin [22].) Sources of systematic uncer-
tainty include luminosity (6.5%), event vertex determi-
nation (3.6%− 5.0%), energy calibration (9.6%− 5.5%),
the fragmentation model (7.3%− 1.0%), photon conver-
sions (3%), and the photon purity fit uncertainty (shown
in Fig. 3) as well as statistical uncertainties on the de-
termination of geometrical acceptance (1.5%), trigger ef-
ficiency (11% − 1%), selection efficiency (5.4% − 3.8%)
and unsmearing (1.5%). The uncertainty ranges above
are quoted with the uncertainty at low pγ

T first and the
uncertainty at high pγ

T second. Most of these systematic
uncertainties have large (> 80%) bin-to-bin correlations
in pγ

T . Varying the choice of NN cut from 0.3 to 0.7
changed the measured cross section by less than 5%.

Results from a next-to-leading order (NLO) pQCD cal-
culation (jetphox [23, 24]) are compared to our mea-
sured cross section in Fig. 4. These results were derived
using the CTEQ6.1M [25] PDFs and the BFG [26] frag-
mentation functions (FFs). The renormalization, fac-
torization, and fragmentation scales were chosen to be
µR =µF =µf =pγ

T . Another NLO pQCD calculation [27],
based on the small-cone approximation and utilizing dif-
ferent FFs [28], gave consistent results (within 4%). As
shown in Fig. 5, the calculation agrees, within uncertain-
ties, with the measured cross section. The scale depen-
dence in the NLO pQCD theory, estimated by varying
scales by factors of two, are displayed in Fig. 5 as dashed
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FIG. 5: The ratio of the measured cross section to the theo-
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cates just the statistical uncertainty. Dashed lines represents
the change in the cross section when varying the theoretical
scales by factors of two. The shaded region indicates the un-
certainty in the cross section estimated with CTEQ6.1 PDFs.

TABLE I: The measured differential cross section for the pro-
duction of isolated photons, averaged over |η| < 0.9, in bins
of pγ

T . 〈pγ
T 〉 is the average pγ

T within each bin. The columns
δσstat and δσsyst represent the statistical and systematic un-
certainties respectively. (Five events with pγ

T > 300 GeV,
including one with pγ

T = 442 GeV, were not considered in
this analysis.)

pγ
T 〈pγ

T 〉 d2σ/dpγ
T dη δσstat δσsyst

(GeV) (GeV) (pb/GeV) (%) (%)

23−25 23.9 4.14×102 0.1 23
25−30 26.9 2.21×102 0.1 19
30−34 31.7 1.01×102 0.2 16
34−39 36.0 5.37×101 0.2 15
39−44 41.1 2.88×101 0.3 14
44−50 46.5 1.58×101 0.4 13
50−60 53.8 7.90×100 0.4 13
60−70 63.9 3.39×100 0.6 13
70−80 74.1 1.68×100 0.9 12
80−90 84.1 9.34×10−1 1.3 12
90−110 97.2 4.38×10−1 1.4 12

110−130 118 1.66×10−1 2.3 12
130−150 138 7.61×10−2 3.5 13
150−170 158 3.20×10−2 5.6 13
170−200 181 1.59×10−2 6.5 14
200−230 212 7.36×10−3 9.8 14
230−300 256 1.81×10−3 13 15
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Inner Tracker Endcap
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Purity Estimates
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Non-Collision Backgrounds
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Will become more critical when extending past 100 GeV
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