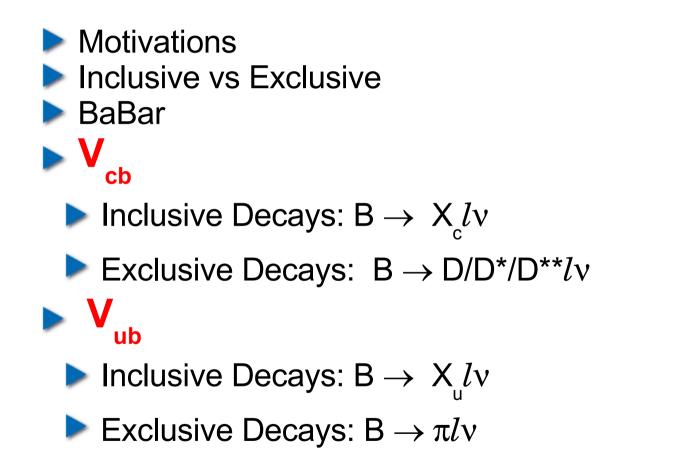
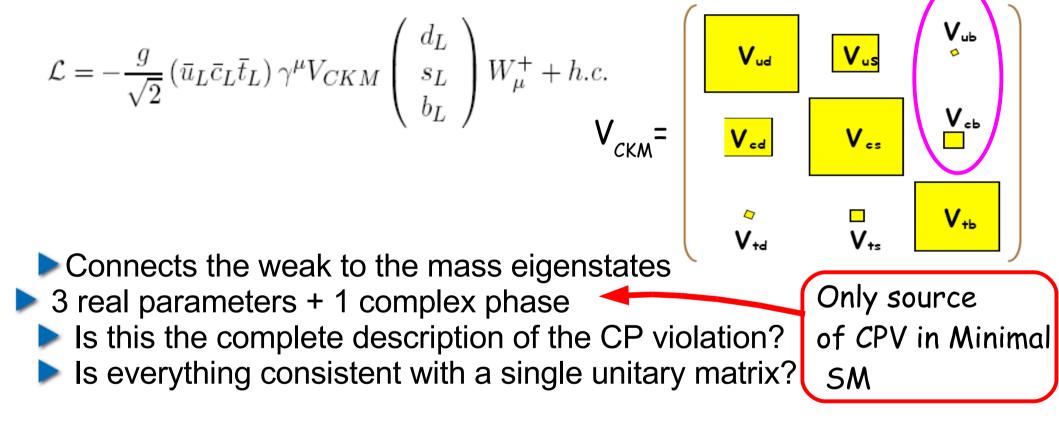
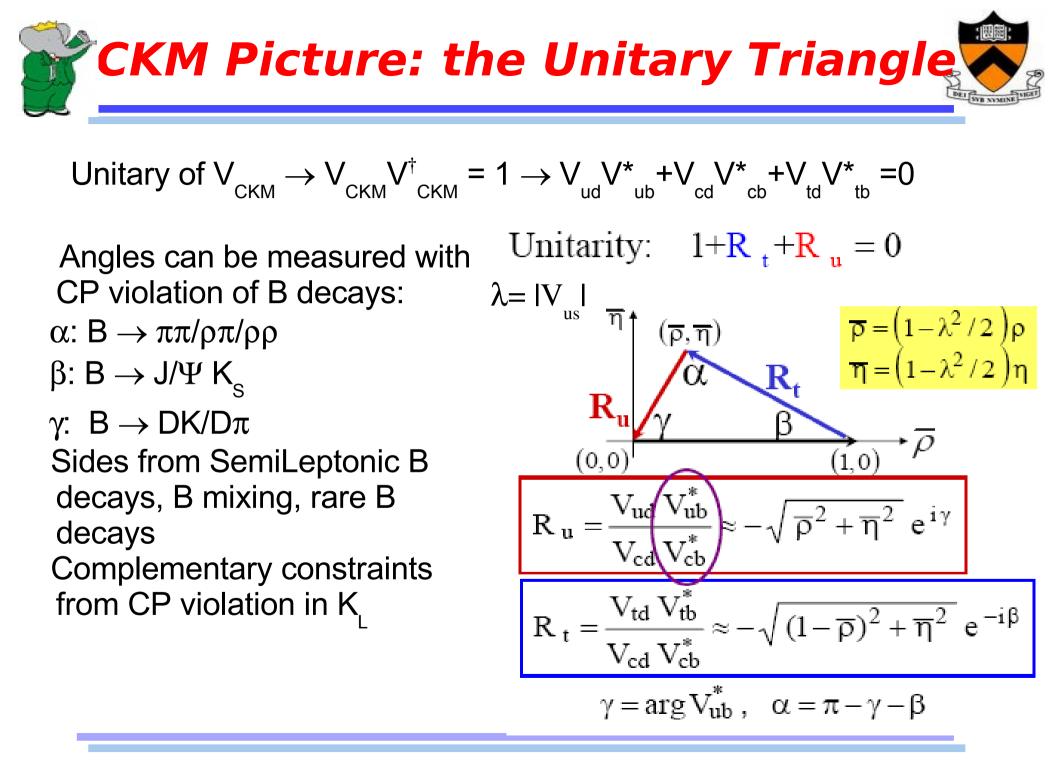


B Semileptonic Decays at BaBar


David Lopes Pegna (Princeton University)

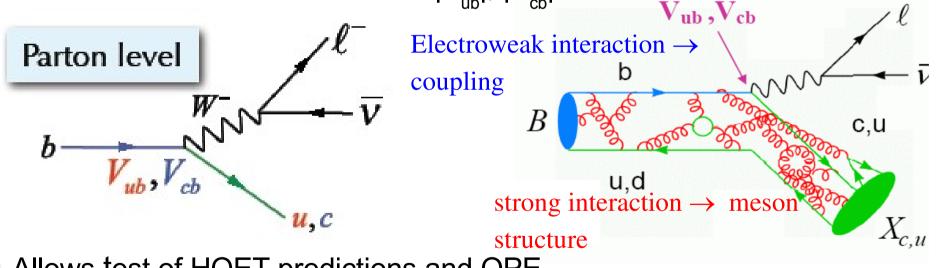

RPM, Berkeley 6 March 2008



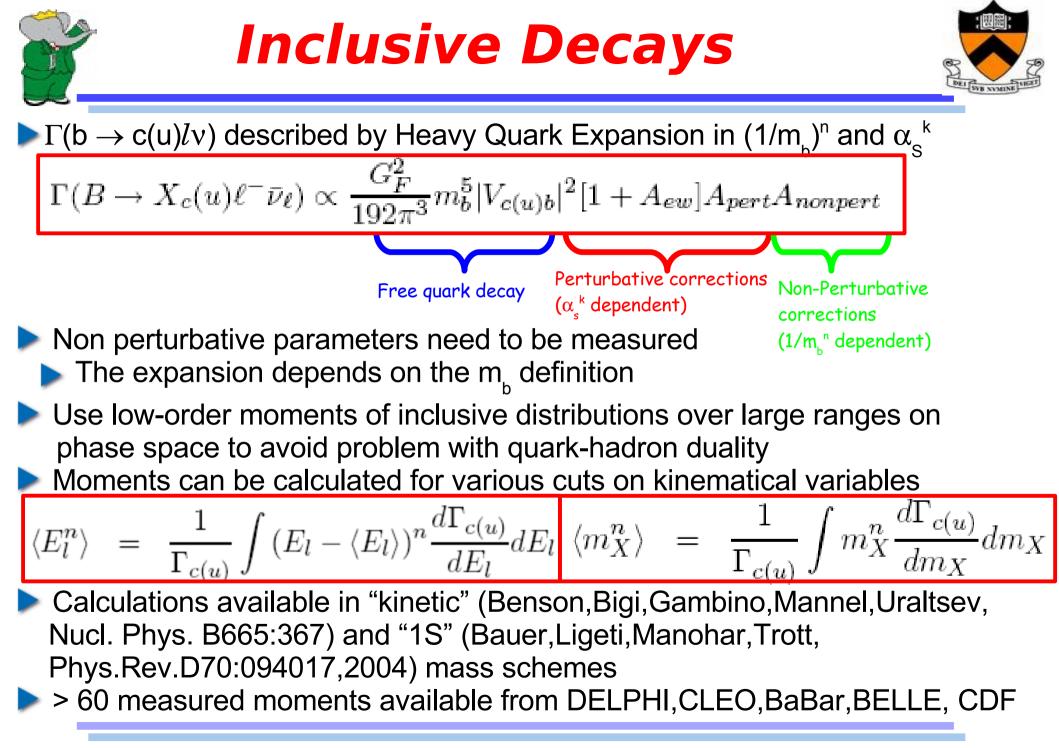
Framework: the CKM matrix

B decays allow detailed studies of the CKM matrix

- Precise determination of $|V_{\mu}/V_{ch}|$ necessary ingredient to further constraint the unitary triangle $\Delta m_{s} \& \Delta m_{s}$ Left side of the triangle is: > 0.95 0.6 $\Delta \mathbf{m}_{i}$ as CL 0.5 sin2B $\frac{V_{ud}V_{ub}^*}{V_{ud}V_{cb}^*} = \frac{V_{ub}}{V_{cb}} \frac{1}{\tan\theta_c}$ Right side: $\Delta m_a / \Delta m_s$ 0.3 α ε_κ 0.2 Left side: $|V_{ub}/V_{cb}|$ B 0 -0.4 Measurement of $|V_{\mu}/V_{ch}|$ -0.2 0.2 0.6 0.8 0.4 ρ Angles: CP violation complementary to sin 2β
- Current accuracy on $|V_{ub}|$ is 9%, on $|V_{cb}|$ 2%.
- > sin 2 β (all charmonium) = 0.680 \pm 0.025 ~ 3.7% accuracy (HFAG)
- Should we just focus on
- |V_{cb}| sector still puzzling for several aspects!



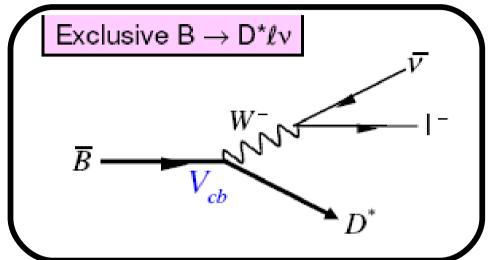
Semileptonic $B \rightarrow X_{c,u} l v$ decays offer clear view of the b quark in the B meson


▶ Decay rates
$$\Gamma_x = \Gamma(B \rightarrow X l \nu) \propto |V_{xb}|^2$$

Presence of a single hadronic current allows better control of theoretical uncertainties

Must understand them to extract $|V_{\mu}|$, $|V_{ch}|$

- Allows test of HQET predictions and OPE
- Test of non-perturbative QCD effects
- Spectroscopy of D** (orbitally excited D meson) states complementary to hadronic decays

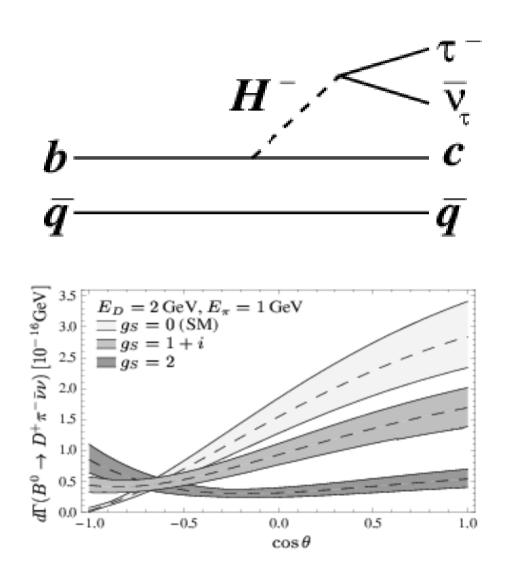

Exclusive Decays

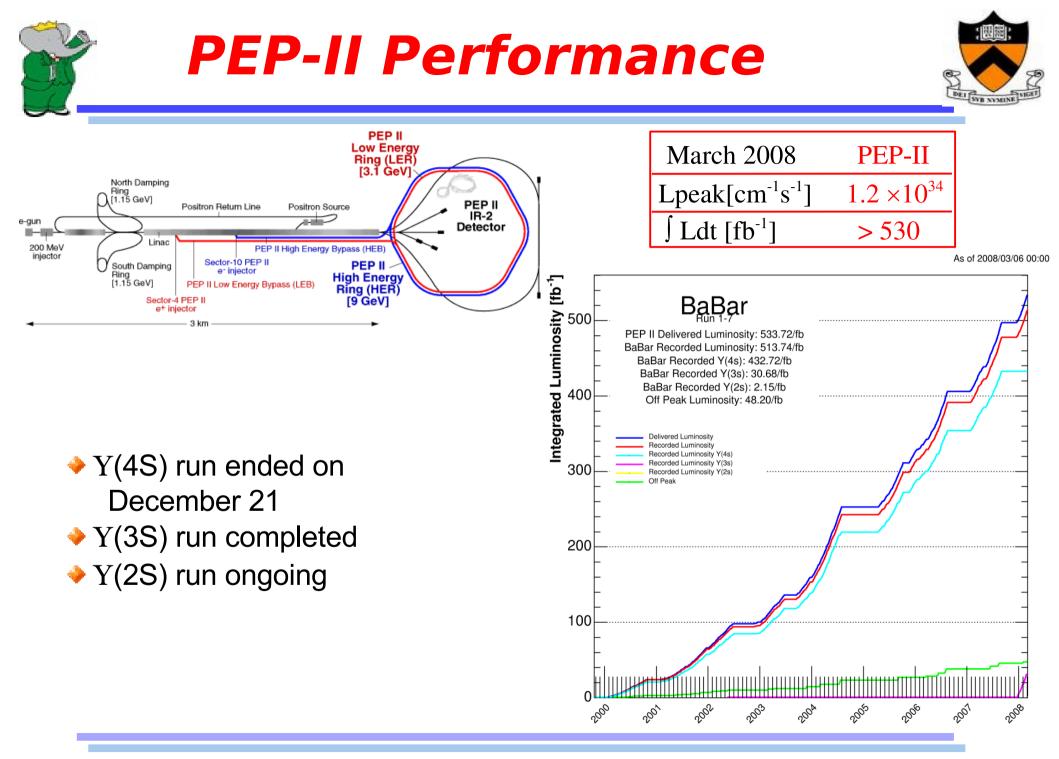
Matrix element for semileptonic decays:

$$\mathcal{M} = -i \frac{G_F}{\sqrt{2}} V_{q'Q} L^\mu H_\mu$$

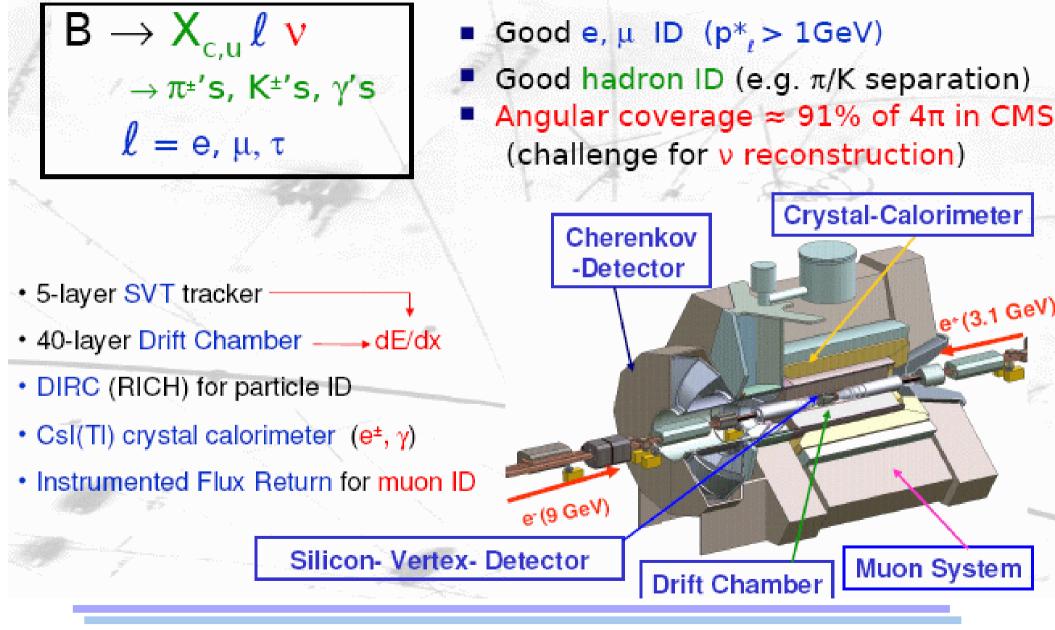
Hadronic current described by Form-Factors (FF):

$$\langle P'(p')|V^{\mu}|P(p)\rangle = f_{+}(q^{2})(p+p')^{\mu} + f_{-}(q^{2})(p-p')^{\mu}$$


- Needs FF to describe hadronization process and relate the rate to |V_{cb}| and |V_{ub}|
- Theoretically calculable at kinematical limits
- Lattice QCD works if hadron/meson is at rest relative to B
- Empirical extrapolation is necessary to extract |V_{cb}|, |V_{ub}|
- Measure differential rates to constrain the FF shape, then use normalization from theory



- Same Feynman diagrams as the light leptons, but the decays can also be mediated by a charged Higgs boson
- Clean probe of New Physics Effects:
- NP contributes at tree level
- Spin zero Higgs does not couple to all helicity states, affect D and D* differently, τ polarization
- Use of τ hadronic modes can give interesting information on charged Higgs couplings (arXiv:0801.4938)



10

The BaBar Detector

Tagging Techniques

 Untagged Initial 4-momentum known Missing 4-momentum = ν Reconstruct B → Xℓν using m_B (beam-constrained) and ΔE = E_B-E_{beam} 	 Pros High efficiency Cons v resolution problematic Rel. high backgrounds (relatively low purity) 	P-Y(4S)-
 Semileptonic (SL) Tag One B reconstructed in a selection of D^{ch}ℓv modes Two missing v in event Use kinematic constraints 	 Pros Lower backgrounds (higher purity) Cons Relatively low efficiency 	
 Full Recon Tag (Breco) One B reconstructed completely in known b → c mode. Many modes used. 	 Pros Very good v resolution Very low backgrounds Cons Very low efficiency 	$\frac{D}{\sqrt{\frac{1}{1}}} + \frac{V(4S)}{\pi^{-}} + \frac{D^{0}}{\pi^{-}}$

- Inclusive reconstruction in tagged events, subtract background with m_{FS}
- Require 1 lepton (e,μ) with energy
 >0.8 GeV/c in B rest frame
- Remaining charged and neutral particles form X_c system
- Improve resolution with kinematic fit
- Energy-momentum conservation
- E_{miss}, p_{miss} consistent with n
- No unfolding, but event-by-event calibration
- Dominant systematic uncertainty: efficiency on inclusive event reconstruction
- Mixed moments

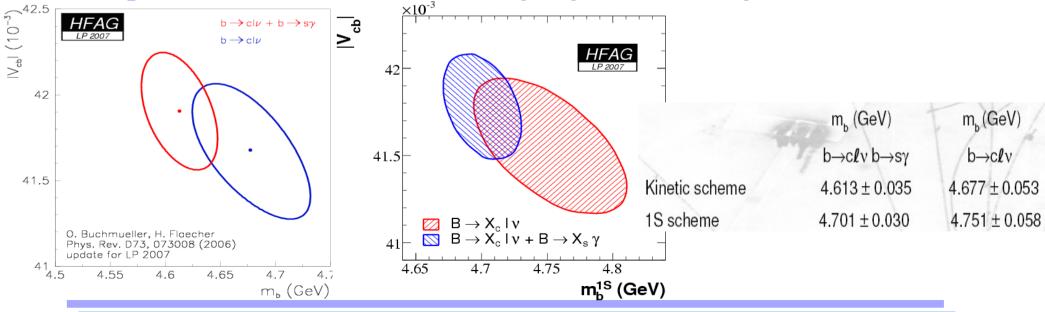
OPE Fit: Kinetic Scheme

4.8 All Moments 4.8m_b [GeV/c²] m_b [GeV/c²] BABAR preliminary Without $b \rightarrow s\gamma$ -4.74.727 input moments: 4.6 4.6 8 mass moments 4.54.5(this analysis) 13 E, moments 4.4₀ 4.4(Phys. Rev. D69 111104 (2004)) 41 42 0.50.6 $|V|| \times 10^{\circ}$ $\mu^2 [GeV^2]$ 6 E moments $\times 10^3$ GeV/c^2 GeV³ GeV/c^2 GeV GeV \mathcal{B} GeV^2 V_{cb} $m_{\rm b}$ ρ_{LS}^{a} m_c μ_G^{ℓ} 0D (Phys. Rev. D 72, 052004 (2005), Results 41.884.5521.07010.597 0.4710.3300.220-0.159Phys. Rev. Lett. 97 171803 (2006)) 0.440.038 0.0550.1710.0340.0420.0210.081 Δ_{exp} Further input: τ_{a} 0.350.040 0.0650.0530.0620.0430.0420.050 Δ_{theo} Δ_{Γ,g_L} 0.598 fit parameters: Δ_{tot} 0.810.055 0.1790.0600.0470.0850.0700.095 V_{cb} -0.42-0.270.75 0.42-0.280.250.101.00 $= |V_{cb}|, m_{b}m_{c}, B_{sl}$ 1.000.960.09 -0.56-0.07-0.38-0.24 m_b 4 HQE parameters -0.321.000.15-0.63-0.51-0.15 m_c В 1.000.09-0.100.02-0.04 $\mu^{2}_{\pi^{2}G^{3}D}$ $\mu^{2}_{G^{3}D}$ 1.000.40 0.870.101.000.41-0.051.00-0.21 ρ_{LS}^3 1.00

David Lopes Pegna

Global OPE Fits

Extraction of $|V_{cb}|$ and OPE parameters


BaBar kinetic scheme: arXiv:0707.2670 Belle 1S scheme and kinetic scheme: ICHEP 06, updated

- Global Fit use all available infos
 - Kinetic scheme:

Buchmuller-Flacher (PRD73,073008(2006)) + update

1S scheme:

http://www.slac.stanford.edu/xorg/fag/semi/LP07/gbl_fits/1S/

David Lopes Pegna

15

• Despite large BF, 20% of $B \rightarrow X_c l v$ affected by large uncertainties

	<u> </u>	_		
Decay Mode	Branching Fraction		Decay Mode	Branching Fraction
$B^0 \rightarrow \ell^- \bar{\nu}_\ell$ + anything	$10.33 \pm 0.28 ~\%$		$B^- \rightarrow \ell^- \bar{\nu}_{\ell}$ + anything	$10.99\pm0.28~\%$
$\bar{B}^0 \rightarrow D^+ \ell^- \bar{\nu}_{\ell}$	$2.08 \pm 0.18 \%$		$B^- \rightarrow D^0 \ell^- \bar{\nu}_\ell$	$2.15 \pm 0.22 \%$
$\bar{B}^0 \rightarrow D^{*+} \ell^- \bar{\nu}_{\ell}$	$5.29 \pm 0.19 \ \%$		$B^- \rightarrow D^{*0} \ell^- \bar{\nu}_{\ell}$	$6.5 \pm 0.5 \ \%$
$\bar{B}^0 \rightarrow D_1(2420)^+ \ell^- \bar{\nu}_\ell$??		$B^- \rightarrow D_1(2420)^0 \ell^- \bar{\nu}_{\ell}$	$0.56\pm0.16\%$
$\bar{B}^0 \rightarrow D_2(2460)^+ \ell^- \bar{\nu}_\ell$??		$B^- \rightarrow D_2(2460)^0 \ell^- \bar{\nu}_{\ell}$	< 0.8 % 90 CL
$\bar{B}^0 \rightarrow D^0 \pi^+ \ell^- \bar{\nu}_\ell$	$0.32\pm0.10\%$		$B^- \rightarrow D^+ \pi^- \ell^- \bar{\nu}_\ell$	$0.52 \pm 0.10 ~\%$
$\bar{B}^0 \rightarrow D^{*0}\pi^+ \ell^- \bar{\nu}_\ell$	$0.65~\pm~0.15~\%$		$B^- \rightarrow D^{*+} \pi^- \ell^- \bar{\nu}_{\ell}$	$0.63 \pm 0.15 ~\%$
$\bar{B}^0 \rightarrow D^{(*)}n\pi \ell^- \bar{\nu}_\ell$??		$B^- \rightarrow D^{(*)}n\pi \ell^- \bar{\nu}_\ell$??

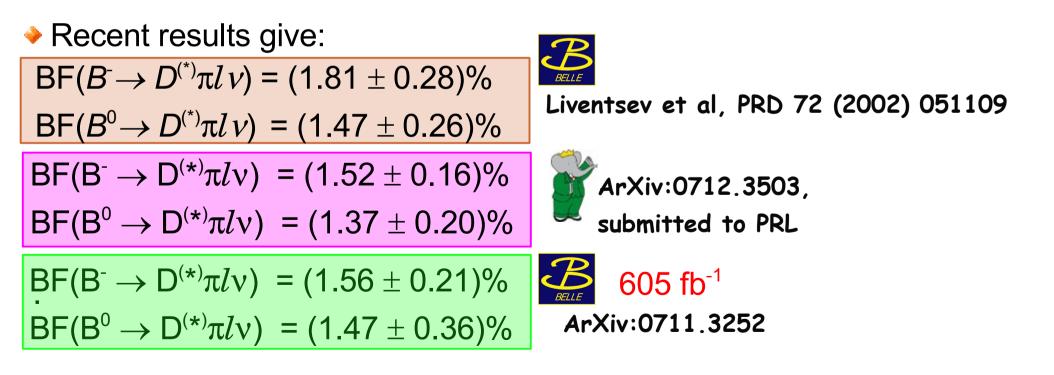
◆ Actual measurements somewhat puzzling!

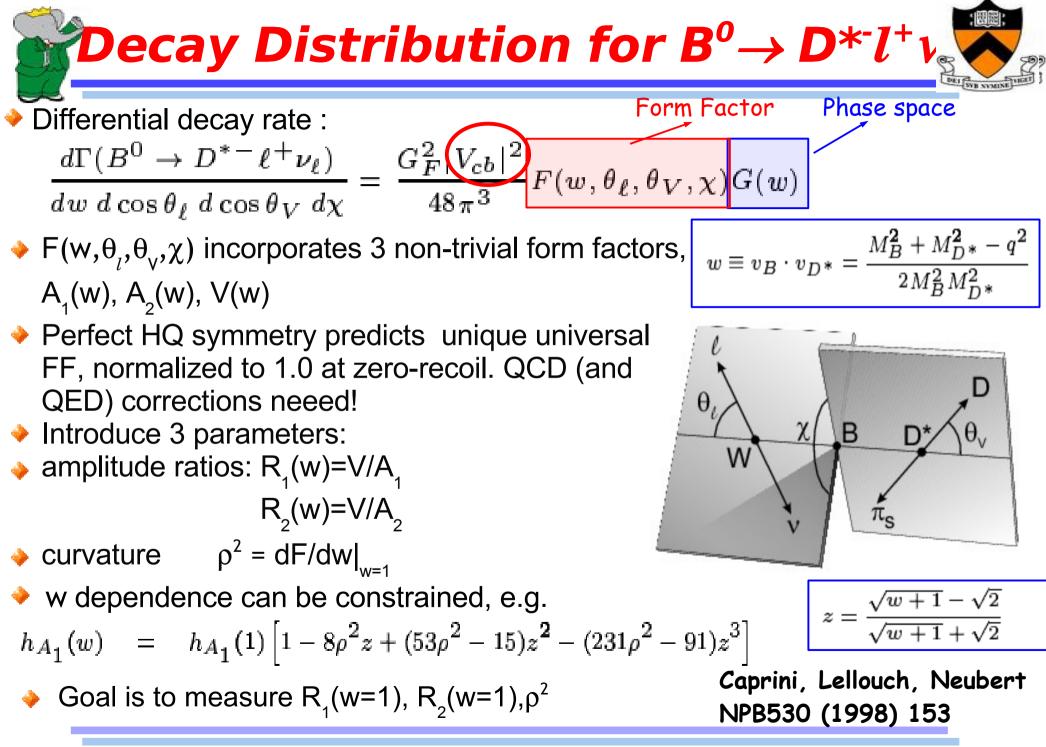
Puzzle 1: Inclusive - Exclusive disagreement

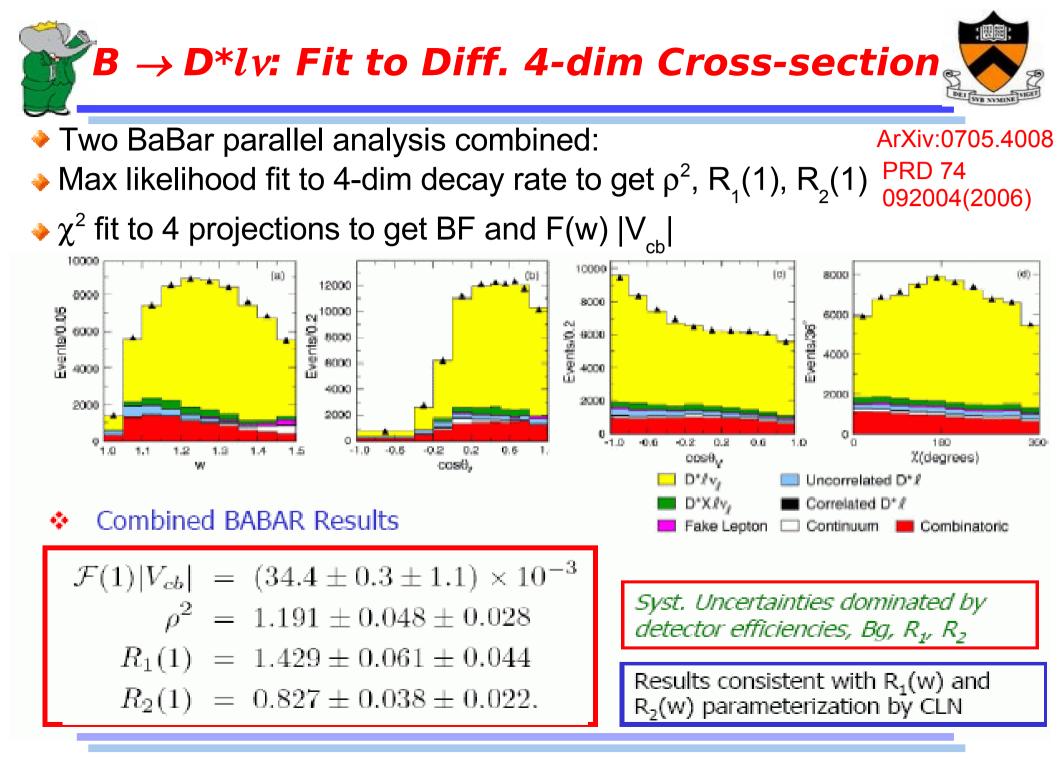
BF(B→ X_clv) ≠ BF(Dlv)+BF(D*lv)+BF(D**lv)

Puzzle 2: B → D*lv Branching Fractions

5(10)% of B→ X_clv missing for B⁻(B⁰)

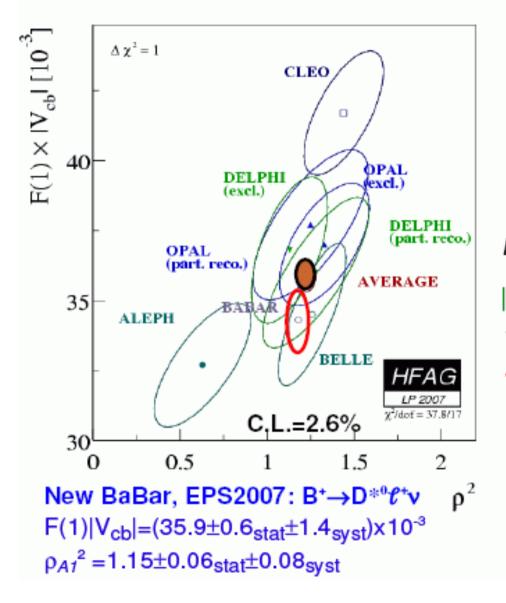

BF(B→ D^{*0}lv)/BF(B⁰→ D^{*-}lv)=1.23±0.10 ≠ 1.071 (isospin constrain)




Puzzle 3: Role of $B \rightarrow D^{**l}v$ Decays

• If $B \rightarrow D/D^*/D^{**l}v$ saturates $B \rightarrow X_lv$ rate, we should have:

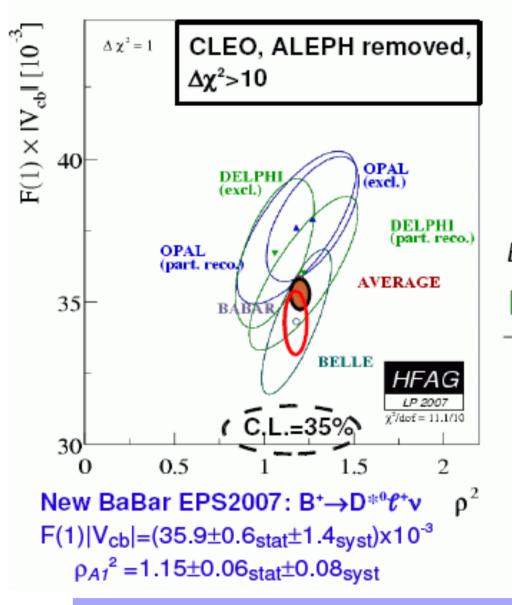
 $BF(B^{-} \to D^{**}lv)_{subt} = BF(B^{-} \to X_{c}lv) - BF(B^{-} \to D^{0}lv) - BF(B^{-} \to D^{*0}lv) = (2.26 \pm 0.58)\%$ $BF(B^{0} \to D^{**}lv)_{subt} = BF(B^{0} \to X_{c}lv) - BF(B^{0} \to D^{+}lv) - BF(B^{0} \to D^{*+}lv) = (2.80 \pm 0.31)\%$



 $\begin{array}{l} \textit{HFAG average:} \\ F(1)|V_{cb}|=(35.89\pm0.56)\times10^{-3} \\ \rho_{A1}{}^{2}=1.23\pm0.05 \\ F(1)=0.924\pm0.023 \ (J.Laiho, LAT07) \\ |V_{cb}|=(38.84\pm0.61_{exp}\pm0.96_{theo})\times10^{-3} \\ 1.6\% \qquad 2.5\% \end{array}$

Buchmuller, Fleacher, update for LP07:

|V_{cb}|=(41.91±0.19_{exp}±0.28_{HQE}±0.59_{LSL})x10⁻³


Δ=Incl-Excl=3.07±1.32 (2.3σ difference) (exp. and theo. errors assumed uncorrelated)

Loose internal consistency: χ^2 /ndof=37.8/17 Cons. not expected to improve in the future Scale exp.error according to PDG recipe?

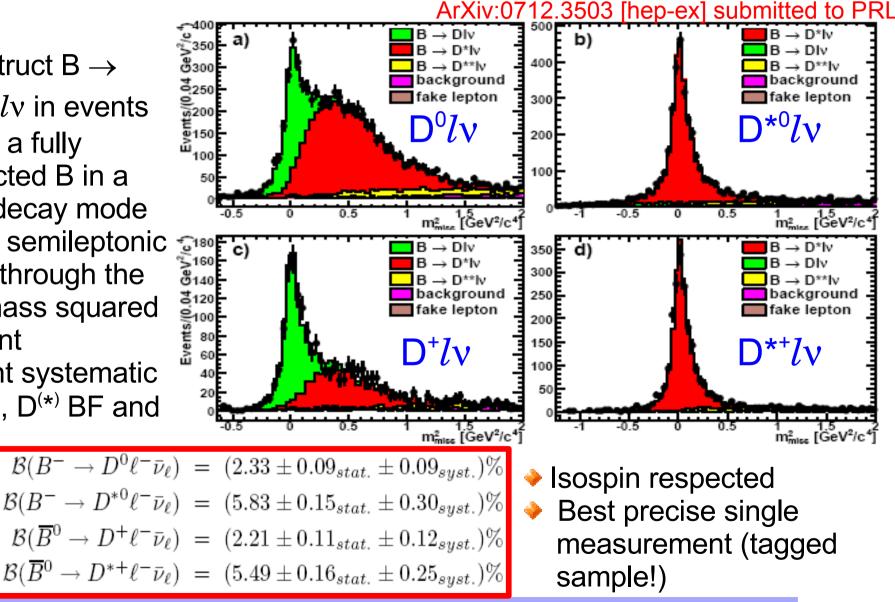
David Lopes Pegna

HFAG average: $F(1)|V_{cb}|=(35.28\pm0.61)x10^{-3}$ $\rho_{A1}^{2}=1.20\pm0.05$

F(1)=0.924±0.023 (J.Laiho, LAT07) |V_{cb}|=(38.18±0.66_{exp}±0.95_{theo})x10⁻³

Buchmuller, Fleacher, update for LP07:

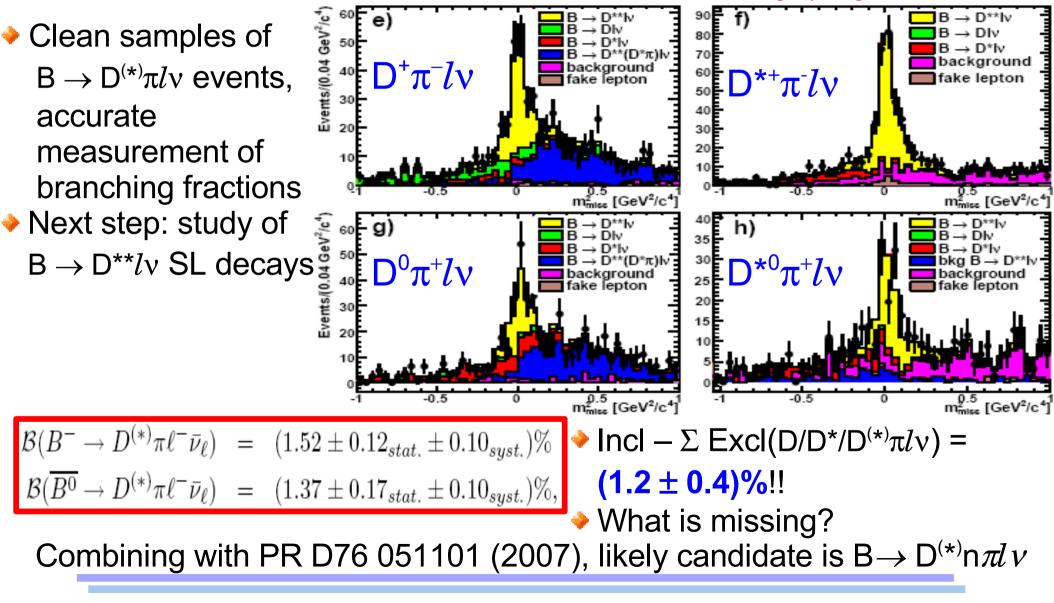
|V_{cb}|=(41.91±0.19_{exp}±0.28_{HQE}±0.59_{ΓSL})x10⁻³


Δ=Incl-Excl=3.73±1.35 (2.8σ difference) (exp. and theo. errors assumed uncorrelated)

$B \rightarrow D/D^*lv$ Branching Fractions

 \diamond Reconstruct B \rightarrow $D/D^*/D^{(*)}\pi l\nu$ in events tagged by a fully reconstructed B in a hadronic decay mode

Identify semileptonic B decays through the missing mass squared in the event


Dominant systematic due to tag, D^(*) BF and detector

David Lopes Pegna

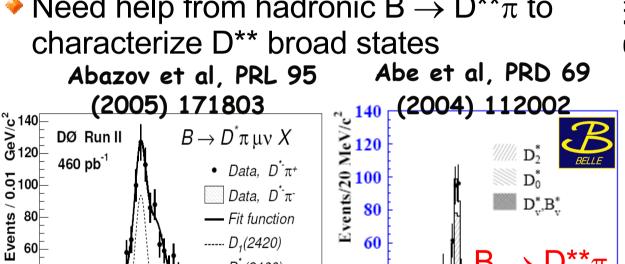
ArXiv:0712.3503 [hep-ex] submitted to PRL

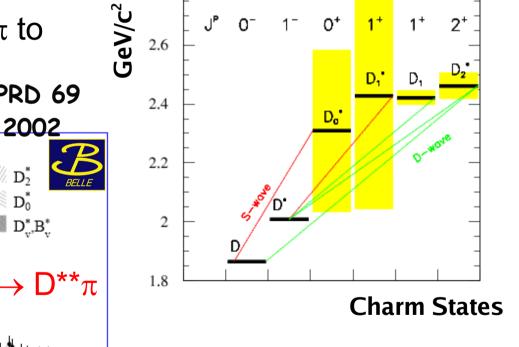
David Lopes Pegna

Spectroscopy of excited D mesons • Use D^{**} as nickname for states $D^{(*)}(n\pi)$ with n>0 including:

GeV

2.8


Narrow resonances D₁, D₂*


----- D1(2420)

---- D₂(2460)

2.6 * 2.7 M(D π) (GeV/c²)

- Broad resonances D^{*}, D⁺
- Non-resonant?
- Need help from hadronic $B \rightarrow D^{**}\pi$ to

 $1/2^{+}$

3/2-

 $1/2^{-}$

 $M_{D\pi \min}(GeV/c^2)$ Large uncertainties in $B \rightarrow D^{**l} v$ Branching Fractions

40

20

David Lopes Pegna

2.5

2.4

23

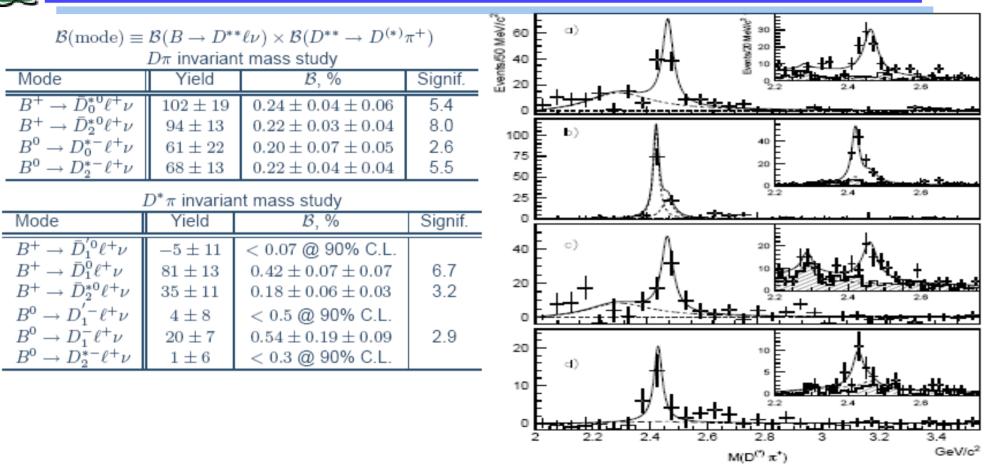
2.2

2.5

Experiment	$\mathcal{B}(B^- \to D_1^0 \ell^- \bar{\nu}_\ell) \ [\%]$	$\mathcal{B}(B^- \to D_2^0 \ell^- \bar{\nu}_\ell) \ [\%]$
CLEO	0.56 ± 0.16	< 0.8 @90 C.L.
Experiment	$\mathcal{B}(B \to D_1^0 \ell^- \bar{\nu}_\ell X)$ [%]	$\mathcal{B}(B \to D_2^0 \ell^- \bar{\nu}_\ell X)$ [%]
ALEPH	0.71 ± 0.15	< 0.2 @90 C.L.
OPAL	1.00 ± 0.33	< 1.76 @90 C.L.
D0	0.33 ± 0.06	0.44 ± 0.16

DELPHI: $\mathcal{B}(B \to D_1^* \ell \nu) = (1.25 \pm 0.37)\%$ $\mathcal{B}(B \to D_0 \ell \nu) = (0.42 \pm 0.40)\%$

Experiment: Rate for broad large! Theory: Γ (narrow) >> Γ (broad) !!!

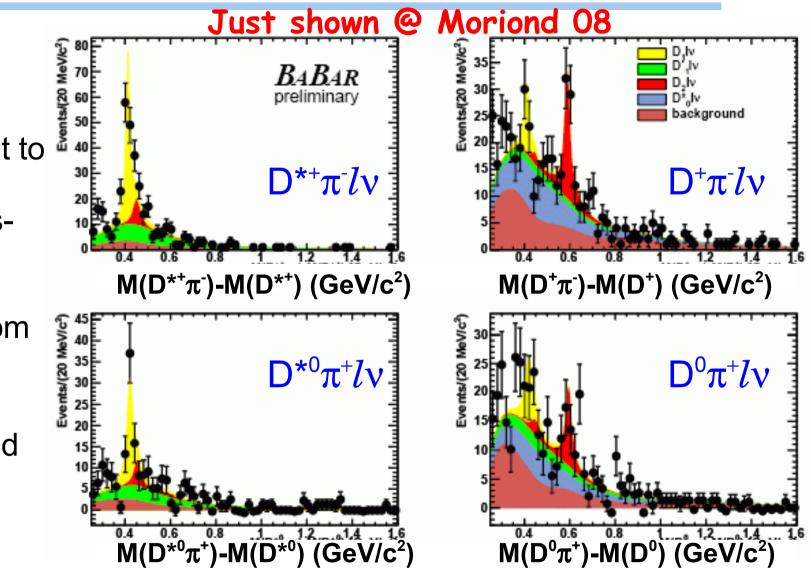

In the heavy quark limit (m_b and $m_e \rightarrow \infty$), only two independent form factors (generalised Isgur-Wise functions) $\tau_{1/2}$ and $\tau_{3/2}$ for $j_1 = 1/2, 3/2;$ $\Gamma(B \rightarrow D^*_2 | \mathbf{v}; D_1 | \mathbf{v}) \propto |\tau_{3/2}(\mathbf{w})|^2 \quad \mathbf{w} = (p_B{}^{\mu}.p_{D^{**}}{}^{\mu})/(m_B m_{D^{**}})$ $\Gamma(B \rightarrow D^*_0 | \mathbf{v}; D^*_1 | \mathbf{v}) \propto |\tau_{1/2}(\mathbf{w})|^2$ $\sum_n \epsilon^{(n)}_{3/2} |\tau^{(n)}_{3/2}(1)|^2 = 4 \sum_n \epsilon^{(n)}_{1/2} |\tau^{(n)}_{1/2}(1)|^2$

 $BF(B^{-} \rightarrow D_{1} l^{-} v) = (0.45 \pm 0.04)\%$ $BF(B^{0} \rightarrow D_{1} l^{+} v) = (0.36 \pm 0.06)\%$ $BF(B^{-} \rightarrow D_{2} l^{-} v) = (0.35 \pm 0.06)\%$ $BF(B^{0} \rightarrow D_{2} l^{+} v) = (0.27 \pm 0.06)\%$

BaBar Preliminary, shown @DPF 2006

David Lopes Pegna

more to the puzzle from Belle


Hadronic tag analysis from Belle, 605 fb⁻¹, arXiv:0712.3252
 Confirm signals for narrow D₁ and D₂, sees only broad D₀*, no D₁'
 Against theoretical predictions and previous results (DELPHI)

$\mathcal{B} \to D^{**}lv$ Branching Fractions

Simultaneous unbinned ML fit to four channels, including crossfeed

Background
 constrained from
 fit to m_{ES}
 distributions

See large broad components

27

Decay Mode	$\mathcal{B} \ (\bar{B} \to D^{**} \ell^- \bar{\nu}_{\ell}) \times \mathcal{B} \ (D^{**} \to D^{(*)} \pi) \ \% (\text{BELLE})$	BABAR Branching Fraction
$B^- \rightarrow D_0^{*0} \ell^- \bar{\nu}_\ell$	$0.24 \pm 0.04 \pm 0.06$	$0.28 \pm 0.05 \pm 0.04$
$B^- \rightarrow D_2^{*0} \ell^- \bar{\nu}_\ell$	$0.22 \pm 0.03 \pm 0.04$	$0.16 \pm 0.03 \pm 0.01$
$\bar{B}^0 \to D_0^{*+} \ell^- \bar{\nu}_\ell$	$0.20 \pm 0.07 \pm 0.05$	$0.47 \pm 0.09 \pm 0.07$
$\bar{B}^0 \to D_2^{*+} \ell^- \bar{\nu}_\ell$	$0.22 \pm 0.04 \pm 0.04$	$0.08 \pm 0.04 \pm 0.02$
$B^- \rightarrow D_1^{\prime 0} \ell^- \bar{\nu}_\ell$	$< 0.07 @ 90 \mathrm{CL}$	$0.27 \pm 0.05 \pm 0.05$
$B^- \rightarrow D_1^0 \ell^- \bar{\nu}_\ell$	$0.42 \pm 0.07 \pm 0.07$	$0.29 \pm 0.03 \pm 0.03$
$B^- \rightarrow D_2^{*0} \ell^- \bar{\nu}_\ell$	$0.18 \pm 0.06 \pm 0.03$	$0.07 \pm 0.01 \pm 0.01$
$\bar{B}^0 \to D_1^{\prime +} \ell^- \bar{\nu}_\ell$	< 0.5 @ 90 CL	$0.37 \pm 0.07 \pm 0.05$
$\bar{B}^0 \rightarrow D_1^+ \ell^- \bar{\nu}_\ell$	$0.54 \pm 0.19 \pm 0.09$	$0.25 \pm 0.05 \pm 0.03$
$\bar{B}^0 \to D_2^{*+} \ell^- \bar{\nu}_\ell$	< 0.3 @ 90 CL	$0.04 \pm 0.02 \pm 0.01$

First simultaneous observation of the four D** predicted by HQET

- Result for the D^{*} broad state consistent between BaBar and BELLE
- BaBar observes the D¹, not present in the BELLE data
- Large rate for the broad states, 1/2 vs 3/2 puzzle lingers

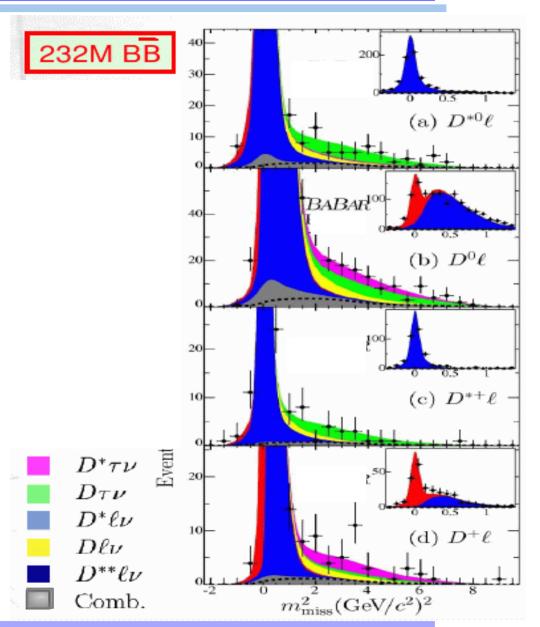
My personal averages

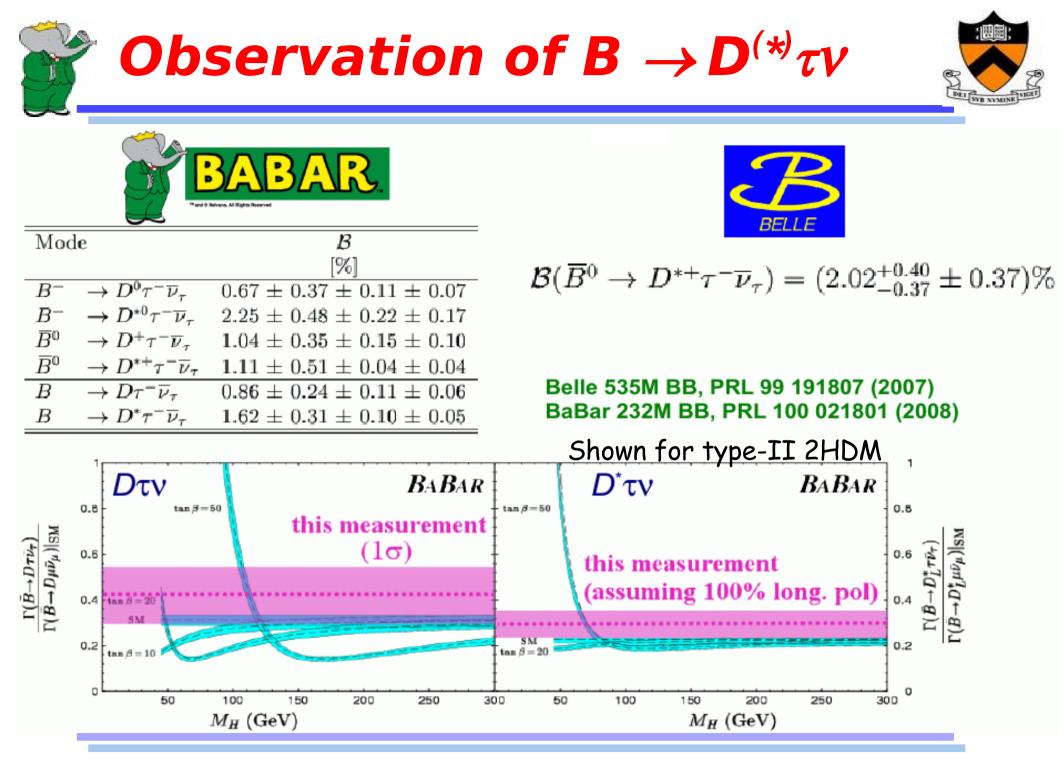
Decay Mode	Branching Fraction	Decay Mode	Branching Fraction
$\bar{B}^0 \rightarrow \ell^- \bar{\nu}_\ell + \text{anything}$	$10.33 \pm 0.28 ~\%$	$B^- \rightarrow \ell^- \bar{\nu}_\ell$ + anything	$10.99\pm0.28~\%$
$B^0 \rightarrow D^+ \ell^- \bar{\nu}_{\ell}$	$2.15 \pm 0.12 \%$	$B^- \rightarrow D^0 \ell^- \bar{\nu}_\ell$	$2.28 \pm 0.11 \%$
$\bar{B}^0 \rightarrow D^{*+} \ell^- \bar{\nu}_{\ell}$	$5.29 \pm 0.14 \%$	$B^- \rightarrow D^{*0} \ell^- \bar{\nu}_{\ell}$	$5.89 \pm 0.24 \%$
$\bar{B}^0 \rightarrow D_1(2420)^+ \ell^- \bar{\nu}_{\ell}$	$\simeq 0.38 \pm 0.05 \%$	$B^- \rightarrow D_1 (2420)^0 \ell^- \bar{\nu}_{\ell}$	$\simeq 0.45 \pm 0.04 ~\%$
$\bar{B}^0 \rightarrow D_2(2460)^+ \ell^- \bar{\nu}_{\ell}$	$\simeq 0.26 \pm 0.04 \%$	$B^- \rightarrow D_2(2460)^0 \ell^- \bar{\nu}_{\ell}$	$\simeq 0.35 \pm 0.04 \%$
$\bar{B}^0 \rightarrow D_1^{\prime +} \ell^- \bar{\nu}_\ell$	$\simeq 0.44 \pm 0.09 \%$	$B^- \rightarrow D_1^{\prime 0} \ell^- \bar{\nu}_\ell$	$\simeq 0.47 \pm 0.09 \%$
$\bar{B}^0 \rightarrow D_0^{*+} \ell^- \bar{\nu}_\ell$	$\simeq 0.48 \pm 0.09 \%$	$B^- \rightarrow D_0^{0*} \ell^- \bar{\nu}_\ell$	$\simeq 0.52 \pm 0.09 \%$
$\bar{B}^0 \rightarrow D^0 \pi^+ \ell^- \bar{\nu}_\ell$	$0.38 \pm 0.07 \%$	$B^- \rightarrow D^+ \pi^- \ell^- \bar{\nu}_\ell$	$0.45 \pm 0.06 \%$
$\bar{B}^0 \rightarrow D^{*0} \pi^+ \ell^- \bar{\nu}_\ell$	$0.53 \pm 0.08 \%$	$B^- \rightarrow D^{*+} \pi^- \ell^- \bar{\nu}_\ell$	$0.60\pm0.08~\%$
$\bar{B}^0 \rightarrow D^{(*)}n\pi \ell^- \bar{\nu}_\ell$	\simeq 1.2 \pm 0.4 $\%$	$B^- \rightarrow D^{(*)} n \pi \ell^- \bar{\nu}_\ell$	\simeq 1.2 \pm 0.4 $\%$

Several improvements, in particular due to new BaBar measurements:

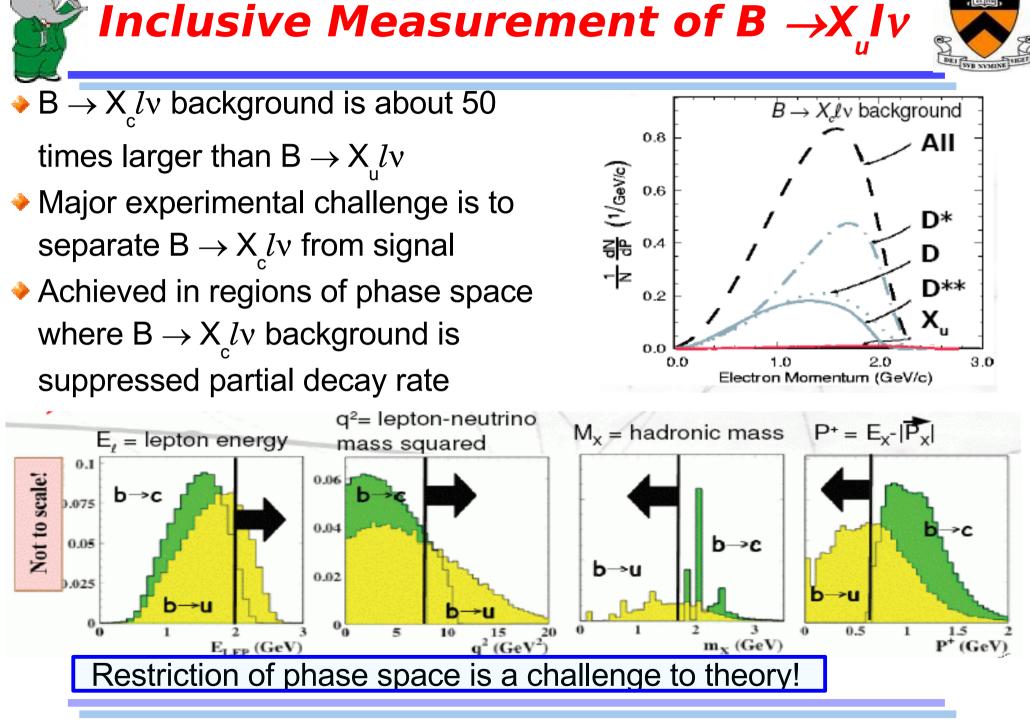
ArXiv:0712.3503 (B \rightarrow D/D*/D* $\pi l\nu$) PR D76 051101 (2007) (B \rightarrow D/D*/D** $l\nu$)

ArXiv:0707.2655 (B \rightarrow D^{*0} $l\nu$)


and many more still to come.. and 1 puzzle (almost) resolved!

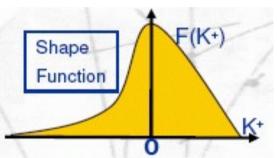

 $BF(B^{-} \rightarrow D^{*0} l\nu)/BF(B^{0} \rightarrow D^{*-} l\nu)=1.11\pm0.05 \parallel \text{ (isospin constrain}=1.071)$

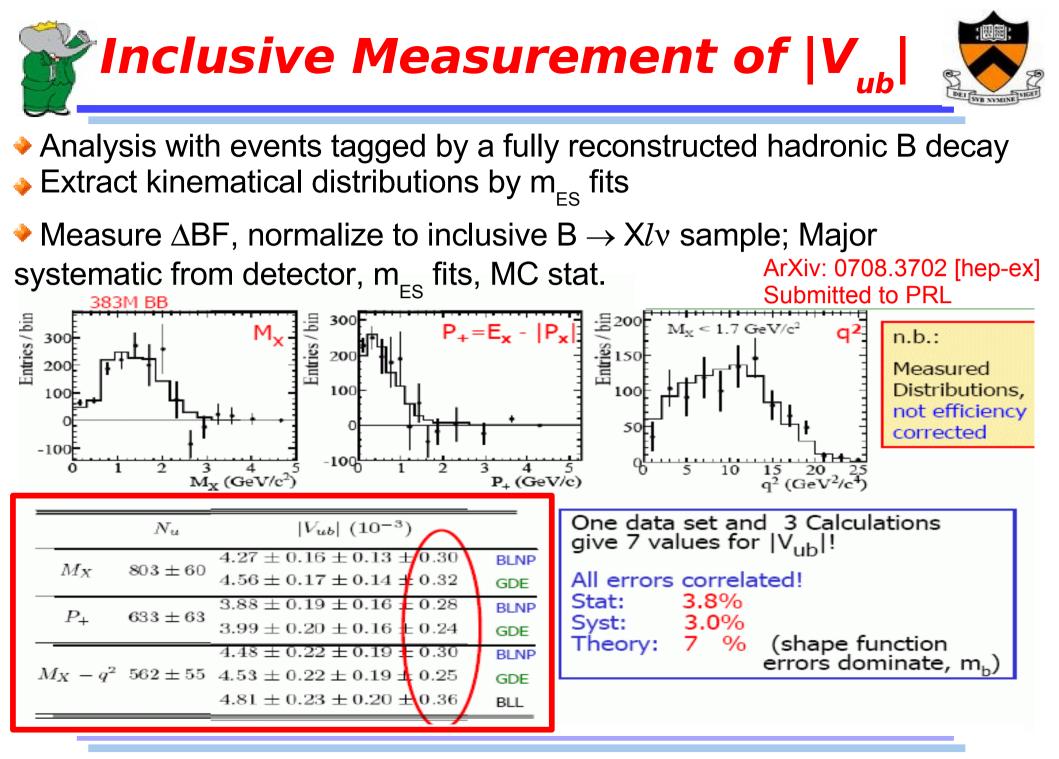
Observation of B \rightarrow **D**^(*) τv



- ♦ Very challenging: τ → ev_ev_τ,
 - $\tau \rightarrow \mu v_{\mu} v_{\tau}$ produce tow additional neutrinos
- Select hadronic B events.
 identify D^(*) plus lepton in the recoil
- Maximum likelihood fit with:
 - Missing mass Squared and lepton energy
 - 8 channels: 4 signal (D⁰τν,D^{*0}τν,D⁺τν,D^{*+}τν), simultaneous fit to D**(D^(*)π⁰)lν to constrain D** feeddown

31


OPE predicts total rate


$$\Gamma(B \to X_u \ell \nu) \propto m_b^5 |V_{ub}|^2 (1 + A_{EW}) A_{pert} A_{non-pert}$$

- Restrict kinematic to suppress background from : OPE convergence compromised!
- Detailed information on b-quark bound in B meson is needed: light cone distribution (shape function)
 - Four QCD calculations:
 - BLNP(2005): Bosch, Lange, Neubert, Paz: 3-scale OPE based on HQET, SCET
 - GGOU(2007): Gambino, Giordano, Ossalo, Uraltsev: OPE in Kinetic mass scheme
 - BLL(2001): Bauer, Ligeti, Luke, Reduce SF dependence by restricting mx-q2
 - LNP(2005): Lange, Neubert, Paz, relate $b \pm u \ell v$ to $b \rightarrow s \gamma$, same leading SF

Two Parton Models:

- GDE(2006): Anderson, Gardi; Dressed gluon exponentiation
- AC(2006): Aglietti, Ferrara, Riccardi: Analytic coupling

HFAG

LP 2007

 $|V_{ub}| [\times 10^{-3}]$

SF w/o B \rightarrow Xs γ BLNP - HFAG m_b=4.71±0.05 GeV, $m_{\rm b}$ =4.63±0.06 GeV, μ_p²=0.18±0.06 GeV² μ_π²=0.22±0.04 GeV² $|V_{ub}| = (3.98 \pm 0.15_{exp} \pm 0.30_{th}) \times 10-3$ $|V_{ub}| = (4.31 \pm 0.17_{exp} \pm 0.35_{th}) \times 10-3$ Several different theoretical BLNP CLEO (E.) $3.52 \pm 0.41 \pm 0.35$ approaches, different $|V_{\mu}|$ values for BELLE sim. ann. (m_y, q²) $3.97 \pm 0.42 \pm 0.31$ each analysis BELLE (E.) $4.35 \pm 0.40 \pm 0.33$ BABAR (E.) $3.89 \pm 0.22 \pm 0.33$ • Ongoing discussion on use of $B \rightarrow X_{s}\gamma$ BABAR (E, start) $3.94 \pm 0.27 \pm 0.39$ BELLE (m_v) moments $3.66 \pm 0.24 \pm 0.27$ BABAR (m_x) • Subleading SF in $B \rightarrow X_{s}\gamma$ introduce $3.74 \pm 0.18 \pm 0.31$ Average +/- exp +/- (mb,theory) theoretical uncertainties not under $3.98 \pm 0.15 \pm 0.30$ v^{2} (dof = 6.3/ 6 (CL = 39 %) OPE-HQET-SCET (BLNP) control? Phys.Rev.D72:073006.2005

4

 m_b input from $b \rightarrow c l y$ moments

2

1 FF for small m,

Vector:

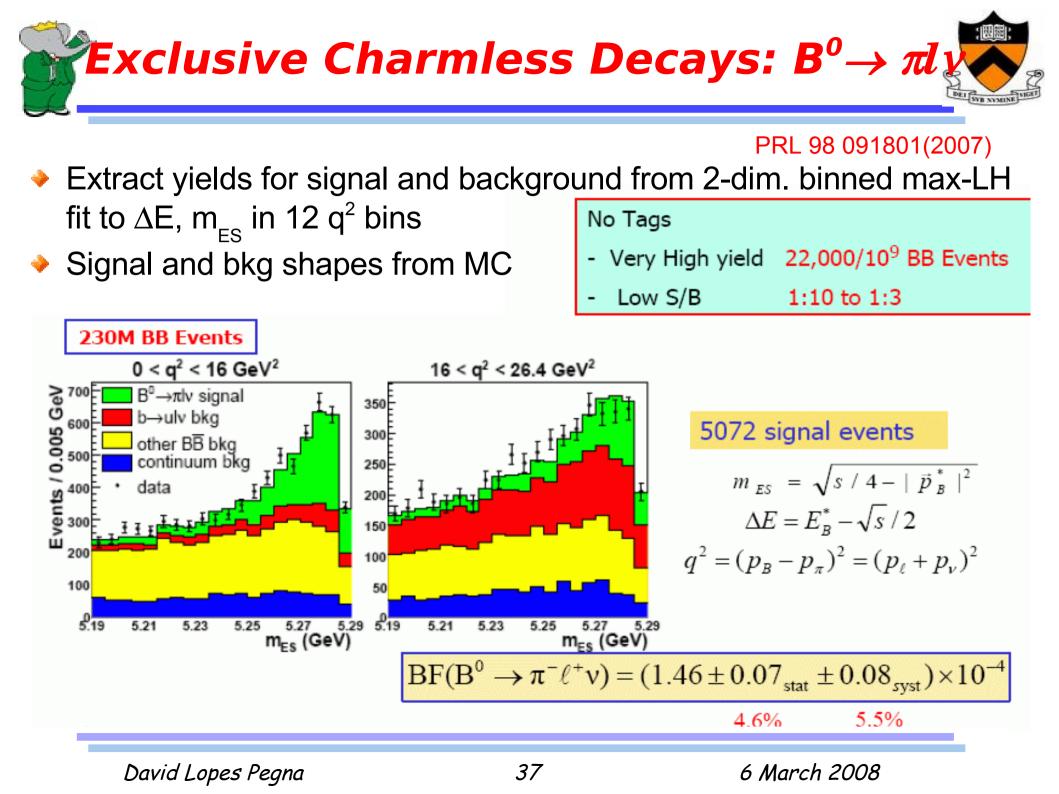
1

• Absolute decay rates are proportional to $|V_{\mu\nu}|^2 F^2(q^2)$:

 $d^4\Gamma$

 $dq^2 d\chi d \cos \theta_i d \cos \theta_k$

 $\cdot \left(V_{ub} \right)^2 G(q^2) f_+^2(q^2)$


Determination of |V_{ub}| requires knowledge of FF shape and normalization

As measurements improved QCD calculation available Small BF, i.e. Very large background – Strong reliance on MC

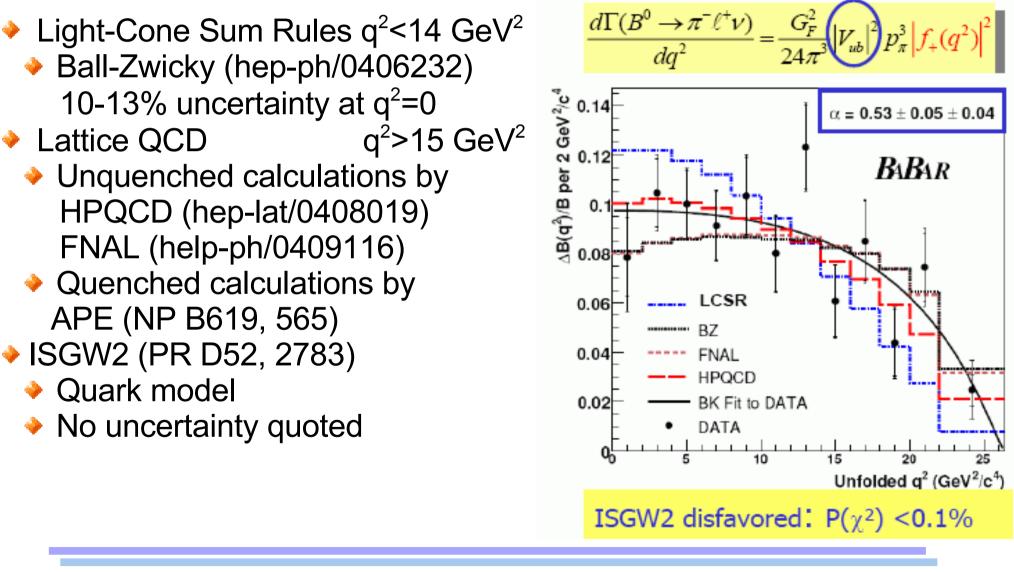
- ◆ B → D/D*/D**lv and combinatorics reduced by BB tag
- Continuum signal events are more jet-like reduced by BB tag
- Combinatorics from $B \rightarrow X_{\mu} l v$

Missing neutrino- reliance on full event reco — much improved by BB tag Untagged: yield 22000/10° BB SL tag: yield 600/10° BB Hadr tag: yield 100/10° BB S/B 1/3-1/10 S/B 3/1 S/B 10/1

 $\propto V_{ub} |^2 G(q^2) F(q^2, \chi, \cos \theta_{\ell}, \cos \theta_h) = 3 \text{ FF for small m},$

FNAL (help-ph/0409116)

APE (NP B619, 565)

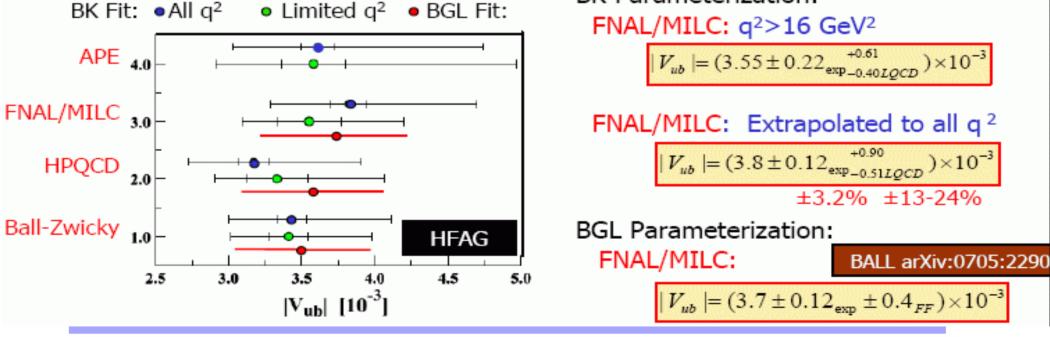

ISGW2 (PR D52, 2783)

No uncertainty quoted

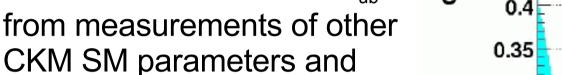
Quark model

Lattice QCD

6 March 2008



- Extraction of |V_{ub}| relies on FF normalization, available in distinct q² ranges:
- LCSR: $q^2 < 16$ GeV², LQCD: $q^2 > 16$ GeV², Hill/Becher z expansion
- either restricted or whole q² range

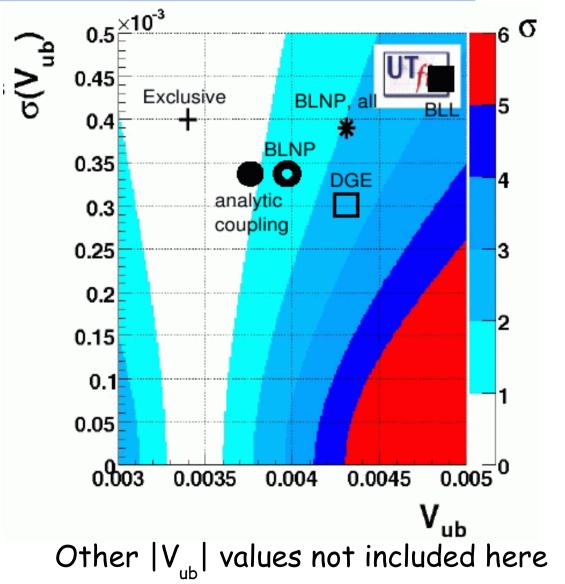

$$V_{ub} = \sqrt{\frac{\Delta B}{\tau_B \Gamma_{thy}}}$$

$$\tilde{\Gamma}_{thy} = \frac{G_F^2}{24\pi^3} \int_{q_{min}^2}^{q_{max}^2} |f_+(q^2)|^2 p_\pi^3 dq^2$$
BK Parameterization:
$$H q^2 \quad \bullet \text{ Limited } q^2 \quad \bullet \text{ BGL Fit:}$$

David Lopes Pegna

6 March 2008

|V_{ub}| :CKM Consistency


exclusive states favours a value ~ $3.5*10^{-3}$

Most probable value of |V_{ub}|

- Steady work in the inclusive decays to improve |V_{ub}| calculations
- "Tension" with exclusive decays: is it really there?
 Still a lot of work to be done!

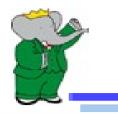
Conclusions

$\begin{array}{ll} & \text{Inclusive Decays:} \\ & V_{ub} = (4.31 \pm 0.17_{exp} \pm 0.35_{thy}) \ 10^{-3} \\ & V_{cb} = (41.9 \pm 0.2_{exp} \pm 0.2_{HQE} \pm 0.6_{thy}) \end{array}$	10-3
Exclusive Decays: $ V_{ub} = (3.8 \pm 0.1_{exp} \pm 0.9_{thy}) \ 10^{-3}$ $ V_{cb} = (37.8 \pm 0.7_{exp} \pm 0.8_{thy}) \ 10^{-3}$	
GLOBAL FIT of CKM Parameters – CKM Fitter $ V_{ub} _{Pred} = (3.57 \pm 0.17) \ 10^{-3}$ $ V_{cb} _{pred} = (41.43 \pm 0.87) \ 10^{-3}$	
\triangleright Our knowledge of b \rightarrow c(u) lv transitions is drastically improved in t	he
last 5 years	
BaBar has released (and continues to) an impressive amount of	
results on b \rightarrow c(u) l v decays	
Most precise determination of $B^0 \rightarrow D^* l \nu$ FF and $B \rightarrow D/D^*/D^* \nu \pi l^*$	v BF
Evidence/observation for $B \rightarrow D^{(*)}\tau v$	
New inclusive V _{ub} result	
Discrepancy between inclusive and exclusive V _{cb} determinations	s may
hide underestimated problems	
Assuming that the inclusive approach is well understood, focus is of the exclusive decays: D** spectroscopy interesting for several reas	

Backup Slides

latest measurements O Belle E_{ℓ} — 152 M $B\overline{B}$, PRD75, 032001 (2007) ● Belle m_X — 152M BB, PRD75,032005 (2007) \bigcirc BaBar $m_X - 232MB\overline{B}$, arXiv:0707.2670 (2007) \bigcirc DELPHI E_{ℓ} and $m_X - 3.3M$ Z, EPJC45,35 (2006) older measurements • BaBar E_{ℓ} — 52M $B\overline{B}$, PRD69,111104(R) (2004) ○ (BaBar m_X — 89M <u>BB</u>, PRD69,111103(R) (2004)) \bigcirc CLEO m_X —9.4 fb⁻¹, PRD70,032002 (2004) \bigcirc CDF $m_X - 180 \text{ pb}^{-1}$, PRD71,051103(R) (2005)

Different Schemes (I)


Kinetic scheme

Gambino-Uraltsev, EPJC34,181(2004) Benson-Bigi-Uraltsev, NPB710,371(2005)

• HQ expansion to $1/m_b^3$ with $m_b(\mu)$ and $m_c(\mu)$ at $\mu = 1 \text{ GeV}$ HQ parameters: μ_π^2 and μ_G^2 at $1/m_b^2$, ρ_{LS}^3 and ρ_D^3 at $1/m_b^3$ $\Gamma_{c\ell\nu} = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 (1 + A_{ew}) A_{pert}(r, \mu)$ $\times \left[z_0(r) \left(1 - \frac{\mu_\pi^2 - \mu_G^2 + \frac{\rho_D^3 + \rho_{LS}^3}{m_b}}{2m_b^2} \right) - 2(1 - r)^4 \frac{\mu_G^2 + \frac{\rho_D^3 + \rho_{LS}^3}{m_b^2}}{m_b^2} + d(r) \frac{\rho_D^3}{m_b^3} + O(1/m_b^4) \right].$

and similar analytical expansions for all other moments.

- External constraints (Gaussian term in χ^2) $\mu_G^2 = 0.35 \pm 0.07 \text{ GeV}^2$, $\rho_{LS}^3 = -0.15 \pm 0.10 \text{ GeV}^3$
- Theoretical errors and correlations
 - non-HQ errors and $O(1/m_b^4)$ errors: 1.4% overall
 - HQ correlation matrix from "uncorrelated" errors: 20% for μ_{π}^2 , μ_G^2 , 30% for ρ_D^3 , ρ_{LS}^3 , ±20 MeV for m_b , m_c
 - 100% correlation between different $E_{\rm cut}$

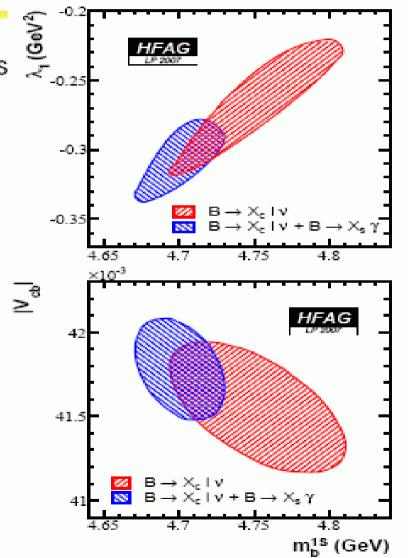
Different Schemes (II)

1S scheme

Bauer-Ligeti-Luke-Manohar PRD67,054012(2003) Bauer-Ligeti-Luke-Manohar-Trott PRD70,094017(2004)

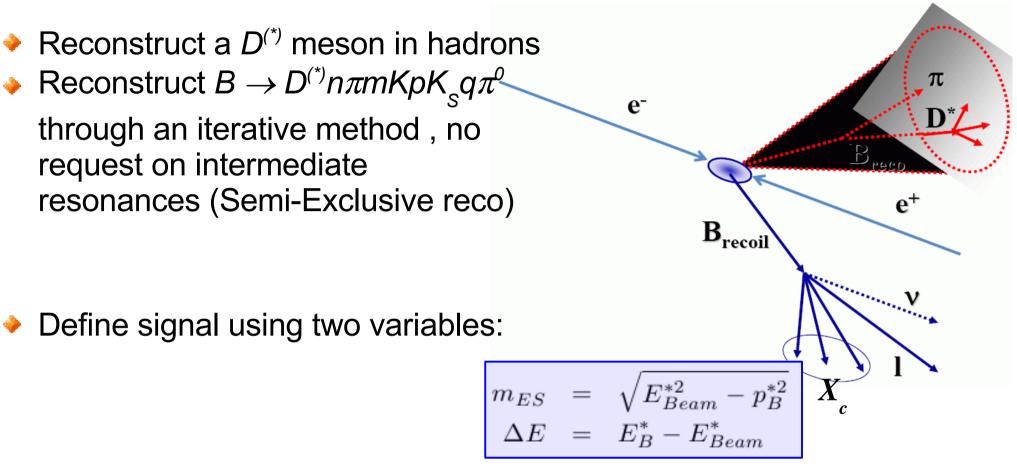
- HQ expansions to $1/m_b^3$ with $\Lambda = m_{\Upsilon(15)}/2 m_b^{15}$ HQ parameters: λ_1 , λ_2 at $O(1/m_b^2)$, τ_1 , τ_2 , τ_3 , τ_4 , ρ_1 , ρ_2 at $O(1/m_b^3)$
- B^*-B , D^*-D , B-D mass differences eliminate $m_b m_c$, λ_2 , $\rho_2 = (\lambda_2 = 0.1227 0.0145\lambda_1, \rho_2 = 0.1361 + \tau_2)$
- Linearized expressions for moments $\langle X \rangle = M_n^{\ell}$, M_n^H or M_n^{γ} with 17 coefficients $X^{(n)}$
- $$\begin{split} \langle X \rangle &= X^{(1)} + X^{(2)}\Lambda + X^{(3)}\Lambda^2 + X^{(4)}\Lambda^3 + X^{(5)}\lambda_1 + X^{(6)}\Lambda\lambda_1 + X^{(7)}\lambda_2 + X^{(8)}\Lambda\lambda_2 + X^{(9)}\rho_1 \\ &+ X^{(10)}\rho_2 + X^{(11)}\tau_1 + X^{(12)}\tau_2 + X^{(13)}\tau_3 + X^{(14)}\tau_4 + X^{(15)}\varepsilon + X^{(16)}\varepsilon_{\text{BLM}}^2 + X^{(17)}\varepsilon\Lambda \end{split}$$
- Constraints / Theory errors
 - $O(1/m_b^3)$ parameters not to exceed 0.5 GeV
 - Extra $(Af_n(m_B/2)^n \oplus B_i/2)$ term added to σ_i^{exp} No error like 1.4% in kinetic fit?
 - Same correlation matrix as experiments

9 January 2008


with/without $B \rightarrow X_{s\gamma}$ $|V_{cb}| = (41.78 \pm 0.30 \pm 0.08) \times 10^{-3}$ $(41.56 \pm 0.39 \pm 0.08) \times 10^{-3}$ $m_b^{1S} = 4.701 \pm 0.030 \text{ GeV}$ $4.751 \pm 0.058 \text{ GeV}$ $\lambda_1 = -0.313 \pm 0.025 \text{ GeV}^2$ $-0.274 \pm 0.047 \text{ GeV}^2$

 Similar set of inputs, except BaBar's new results

Inclusive V


cb

HFAG LP07

The Hadronic Tag

- Finally ~1100 modes \rightarrow ordered by purity
- Often multiple candidates, standard best one selection by:
 - Looking at the best ΔE within the same mode
 - Looking at the best purity if different modes

Experiment: Rate for broad large?

Exp.	Pub.	Enviroment	$\mathcal{B}(B \to D_1 \ell \nu)$	$\mathcal{B}(B \to D_2^* \ell \nu)$
ARGUS	1993	e^+e^- at $\Upsilon(4S)$	$\mathcal{B}(B \to D^{**} \ell \nu$	$) = 2.7 \pm 0.7^{\dagger \ddagger}$
ALEPH	1996	e^+e^- at Z	0.74 ± 0.16	< 0.2
CLEO	1997	e^+e^- at $\Upsilon(4S)$	0.56 ± 0.16	< 0.8
OPAL	2002	e^+e^- at Z	1.05 ± 0.35	< 1.85
DELPHI	2005	e^+e^- at Z	0.33 ± 0.17	0.37 ± 0.17
DØ	2005	$p \bar{p}$ at 1.96 GeV	0.33 ± 0.06	0.44 ± 0.16

DELPHI: $\mathcal{B}(B \to D_1^* \ell \nu) = (1.25 \pm 0.37)\%$ $\mathcal{B}(B \to D_0 \ell \nu) = (0.42 \pm 0.40)\%$

Theory: Γ (narrow) >> Γ (broad) !!!

 In the heavy quark limit (m_b and m_c → ∞), only two independent form factors (generalised Isgur-Wise functions) τ _{1/2} and τ _{3/2} for

j_I= 1/2, 3/2:

 $\mathbf{o} \quad \Gamma(\mathsf{B} \rightarrow \mathsf{D}^*_{\ 2} \mid \nu \ ; \ \mathsf{D}_1 \mid \nu \) \propto |\tau |_{3/2} \ (\mathsf{w}) \mid^2 \quad \mathsf{w} = (\mathsf{p}_\mathsf{B}{}^\mu.\mathsf{p}_{\ \mathsf{D}^{**}}{}^\mu)/(\mathsf{m}_\mathsf{B}\mathsf{m}_{\ \mathsf{D}^{**}})$

We need more data!!

 $\mathbf{O} \quad \boldsymbol{\Gamma}(\boldsymbol{B} \rightarrow \boldsymbol{D^{*}}_{0} \mid \boldsymbol{\nu} ; \boldsymbol{D^{*}}_{1} \mid \boldsymbol{\nu}) \propto |\boldsymbol{\tau}|_{1/2} (\boldsymbol{w})|^{2}$

Some Sum rules which are rigorously derived from QCD:

- Uraltsev sum rule: Σ_n |τ⁽ⁿ⁾_{3/2} (1) |² |τ⁽ⁿ⁾_{1/2} (1) |² = 1/4 N. Uraltsev, Phys. Lett. B501 (2001) 8
- Orsay sum rule: $4\sum_{n} \epsilon^{(n)}_{3/2} |\tau^{(n)}_{3/2}(1)|^2 \epsilon^{(n)}_{1/2} |\tau^{(n)}_{1/2}(1)|^2 = -a_+^{(1)} > 0$ nep-ph/0003087 where $\epsilon^{(n)}_{3/2} = m_- D^{(n)}_{3/2} m_- D$, $\epsilon^{(n)}_{1/2} = m_- D^{(n)}_{1/2} m_- D$. Combined with results from « QCD sum rule phenomenology » it gives

 $\sum_{n} \varepsilon_{n/3/2}^{(n)} |\tau_{3/2}^{(n)}(1)|^2 = 4 \sum_{n} \varepsilon_{n/3/2}^{(n)} |\tau_{1/2}^{(n)}(1)|^2 \qquad \text{M. Neubert, Phys. Rev. D46 (1992) 3914;}$

6 March 2008