

Evidence for $D^{o}-\overline{D}^{o}$ Mixing

(hep-ex/0703020, submitted to PRL)

Brian Aagaard Petersen Stanford University

for the BABAR collaboration

Research Progress Meeting, LBNL Tuesday, April 24, 2007

Outline

Neutral meson mixing
Charm meson mixing
The BABAR experiment
Mixing in $D^0 \rightarrow K\pi$ decays
Comparison with other results

Neutral Meson Mixing

Neutral Meson Mixing

 $\begin{array}{l} \underline{\text{Mixing can occur in four neutral mesons:}}\\ |K^{0}\rangle = |d\bar{s}\rangle, \quad |\overline{K}^{0}\rangle = |\bar{d}s\rangle & \text{Mass: ~0.5 GeV/c}^{2}\\ |D^{0}\rangle = |c\bar{u}\rangle, \quad |\overline{D}^{0}\rangle = |\bar{c}u\rangle & \text{Mass: ~1.9 GeV/c}^{2}\\ |B^{0}\rangle = |d\bar{b}\rangle, \quad |\overline{B}^{0}\rangle = |\bar{d}b\rangle & \text{Mass: ~5.3 GeV/c}^{2}\\ |B^{0}_{s}\rangle = |s\bar{b}\rangle, \quad |\overline{B}^{0}_{s}\rangle = |\bar{s}b\rangle & \text{Mass: ~5.4 GeV/c}^{2} \end{array}$

Neutral Meson Mixing

 $\begin{array}{l} \underline{\text{Mixing can occur in four neutral mesons:}}\\ |K^{0}\rangle = |d\bar{s}\rangle, \quad |\overline{K}^{0}\rangle = |\bar{d}s\rangle & \text{Mass: ~0.5 GeV/c^{2}}\\ \hline |D^{0}\rangle = |c\bar{u}\rangle, \quad |\overline{D}^{0}\rangle = |\bar{c}u\rangle & \text{Mass: ~1.9 GeV/c^{2}}\\ \hline |B^{0}\rangle = |d\bar{b}\rangle, \quad |\overline{B}^{0}\rangle = |\bar{d}b\rangle & \text{Mass: ~5.3 GeV/c^{2}}\\ \hline |B^{0}_{s}\rangle = |s\bar{b}\rangle, \quad |\overline{B}^{0}_{s}\rangle = |\bar{s}b\rangle & \text{Mass: ~5.4 GeV/c^{2}} \end{array}$

Will present mixing measurement for D^0 meson Note: D^0 meson first discovered at SLAC Mark-I, PRL 37, 255 (1976)

Neutral mesons have no conserved quantum number - can have mixing between $|M^{\,0}\rangle$ and $|\overline{M}^{\,0}\rangle$

$$K_{d}^{0} \xrightarrow{\bar{s}} \overline{K}_{s}^{0}$$

Neutral mesons have no conserved quantum number - can have mixing between $|M^0\rangle$ and $|\overline{M}^0\rangle$

$$K^0_{d} \xrightarrow{\bar{s}} \frac{\bar{d}}{\bar{k}^0}$$

Time evolution by $i \frac{\partial}{\partial t} \begin{pmatrix} |M^0(t)\rangle \\ |\overline{M}^0(t)\rangle \end{pmatrix} = \left(\mathsf{M} - \frac{i}{2} \Gamma \right) \begin{pmatrix} |M^0(t)\rangle \\ |\overline{M}^0(t)\rangle \end{pmatrix}$

2x2 hermitian matrices

Neutral mesons have no conserved quantum number - can have mixing between $|M^0\rangle$ and $|\overline{M}^0\rangle$

$$K_{d}^{0} \xrightarrow{\bar{s}} (M_{d}^{0}) \xrightarrow{\bar{s}} \bar{k}^{0}$$
Time evolution by $i \frac{\partial}{\partial t} \begin{pmatrix} |M^{0}(t)\rangle \\ |\overline{M}^{0}(t)\rangle \end{pmatrix} = \begin{pmatrix} \mathsf{M} - \frac{i}{2} \Gamma \end{pmatrix} \begin{pmatrix} |M^{0}(t)\rangle \\ |\overline{M}^{0}(t)\rangle \end{pmatrix}$
Schrödinger eq.: $i \frac{\partial}{\partial t} \begin{pmatrix} |M^{0}(t)\rangle \\ |\overline{M}^{0}(t)\rangle \end{pmatrix}$
Ex2 hermitian matrices Mesons decay

Neutral mesons have no conserved quantum number - can have mixing between $|M^{\,0}\rangle$ and $|\overline{M}^{\,0}\rangle$

$$K^0_{d}^{\bar{s}} \underbrace{??}_{s}^{\bar{d}} \bar{K}^0$$

Time evolution by $i \frac{\partial}{\partial t} \begin{pmatrix} |M^0(t)\rangle \\ |\overline{M}^0(t)\rangle \end{pmatrix} = \begin{pmatrix} \mathsf{M} - \frac{i}{2} \Gamma \\ |\overline{M}^0(t)\rangle \end{pmatrix} \begin{pmatrix} |M^0(t)\rangle \\ |\overline{M}^0(t)\rangle \end{pmatrix}$

2x2 hermitian matrices

Mesons decay!

Mass eigenstates:

$$|M_{1,2}\rangle = p|M^0\rangle \pm q|\overline{M}^0\rangle$$

Neutral mesons have no conserved quantum number - can have mixing between $|M^{\,0}\rangle$ and $|\overline{M}^{\,0}\rangle$

$$K^0_{d}^{\overline{s}} \underbrace{??}_{s}^{\overline{d}} \overline{K}^0$$

Time evolution by $i \frac{\partial}{\partial t} \begin{pmatrix} |M^0(t)\rangle \\ |\overline{M}^0(t)\rangle \end{pmatrix} = \begin{pmatrix} \mathsf{M} - \frac{i}{2} \Gamma \\ |\overline{M}^0(t)\rangle \end{pmatrix} \begin{pmatrix} |M^0(t)\rangle \\ |\overline{M}^0(t)\rangle \end{pmatrix}$

2x2 hermitian matrices

Mesons decay!

Mass eigenstates:

$$|M_{1,2}
angle = p|M^{\,0}
angle \pm q|\overline{M}^{\,0}
angle$$

Propagate with separate mass $m_{1,2}$ and width $\Gamma_{1,2}$: $|M_{1,2}(t)\rangle = e^{-i(m_{1,2}-i\Gamma_{1,2}/2)t}|M_{1,2}(t=0)\rangle$ Brian Petersen

Time evolution of $|M^0\rangle$ state is described by

$$\begin{cases} x = \frac{m_2 - m_1}{\Gamma} \\ y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma} \end{cases} \quad \Gamma = \frac{\Gamma_2 + \Gamma_1}{2} \end{cases}$$

 $\begin{aligned} \underline{\text{General time evolution equation:}} \\ |M^{0}(t)\rangle &= e^{-\bar{\gamma}t/2} \left(\cosh(\Delta\gamma t/2) |M^{0}\rangle - \frac{q}{p} \sinh(\Delta\gamma t/2) |\overline{M}^{0}\rangle \right) \\ \text{Where} \quad \Delta\gamma &= (y+ix)\Gamma \qquad \bar{\gamma} = (\Gamma_{1}+\Gamma_{2})/2 - i(m_{1}+m_{2}) \end{aligned}$

Time evolution of $|M^0\rangle$ state is described by

$$\begin{cases} x = \frac{m_2 - m_1}{\Gamma} \\ y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma} \end{cases} \quad \Gamma = \frac{\Gamma_2 + \Gamma_1}{2} \end{cases}$$

Time evolution of $|M^0\rangle$ state is described by

$$\begin{cases} x = \frac{m_2 - m_1}{\Gamma} \\ y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma} \end{cases} \quad \Gamma = \frac{\Gamma_2 + \Gamma_1}{2} \end{cases}$$

Mixing Sources

In Standard Model, only charged weak interaction change quark flavor:

In SM, there are no tree-level flavor-changing neutral currents (FCNC)

GIM Suppression

Glashow, Iliopoulus and Maiani (1970): FCNC calculated from single quark loop still too large

Introduce additional loop with new c quark

In limit of degenerate quarks, loops will cancel each other - mass difference between quarks will give a small x

GIM predicted charm quark 4 years before observation

Long-distance Effects

Additional contribution from intermediate hadronic states common to K^0 and \overline{K}^0 :

Mainly gives lifetime difference y

Oscillations from New Physics

Differences between measured and predicted mixing rates would be signal for new physics

The good agreement in *K* and *B* systems with SM constrains any new physics model

Status of Neutral Meson Mixing

18

Mixing in Charm?

Charm Mixing

SM charm mixing box has down-type quarks in loop

Effective GIM suppression:

$$x \propto \frac{(m_s^2 - m_d^2)^2}{m_c^2}$$

 $\longrightarrow x \sim 10^{-5}$ Tiny!

Charm Mixing

SM charm mixing box has down-type quarks in loop

Expect hadronic intermediate states to dominate:

Makes it difficult to predict SM expectation Brian Petersen

Charm Mixing Predictions

New Physics in Charm Mixing

Charm mixing could have New Physics contribution

Charm mixing complements K⁰ and B⁰ mixing measurements
Sensitive to up-type quarks instead of down-type quarks

Some models avoid K^0 and B^0 mixing signals by having large charm mixing

PEP-II, a B-Factory (and Charm)

High-luminosity asymmetric energy e^+e^- collider at Υ (4S) resonance

B-Factory built for study of CP-violation and other CKMphysics in *B* meson decays

~10 Hz of $B\overline{B}$

The BaBar Experiment

The BaBar Experiment

BaBar is a large acceptance experiment with excellent particle reconstruction and identification capability

B-Factory: High Luminosity

High luminosity recorded efficiently

 $σ_{eff}(b\overline{b})=1.1 \text{ nb}$ $σ(c\overline{c})=1.3 \text{ nb}$

Recorded >400M $\rm B\overline{B}$ events, and >500M $\rm c\overline{c}$ events

Add ~1M $c\bar{c}$ each day

Excellent sample to search for charm mixing

Charm Mixing in $D^{o} \rightarrow K\pi$ Decay at BaBar

Principle of Mixing Measurement

Produce clean sample of D^0 and \overline{D}^0 Identify flavor (D^0 or \overline{D}^0 ?) at decay time
Measure rate of mixed decays as function of time

30

Production Flavor

Use D^{θ} from $D^{*+} \rightarrow D^{\theta} \pi^+$ decays:

Production Flavor

Use D^0 from $D^{*+} \rightarrow D^0 \pi^+$ decays:

Charge of pion "tags" initial flavor as D^{0} or \overline{D}^{0}

Additional benefit: small Q $Q = m(D^{*+}) - m(D^0) - m(\pi^+) \approx 6 \operatorname{MeV}/c^2$

Gives narrow mass peak

Excellent background suppression

Brian Petersen

32

Flavor at Decay

If opposite flavor: Wrong-sign (WS) event - mixing occurred If same flavor: Right-sign (RS) events - unmixed decay

Doubly-Cabibbo Suppressed Decays

Hadronic decays do not uniquely identify decay flavor Get unmixed wrong-sign decays from DCS decays

Time-Evolution of $D^0 \rightarrow K\pi$ Decays

Discriminate DCS and mixing by their different time evolution

Also have interference effect: *I*

Time-Evolution of $D^0 \rightarrow K\pi$ Decays

Event Selection

D⁰ selection:

★ Identified K and π
★ p*(D⁰) > 2.5 GeV/c
★ 1.81<m(Kπ)<1.92 GeV/c²
Slow π selection:
★ p*(π_s)< 0.45 GeV/c</p>
★ p_{tab}(π_s) > 0.1 GeV/c
★ 0.14<∆m<0.16 GeV/c²
∆m=m(Kππ_s)-m(Kπ)

Vertexing:

- \mathbf{O}^0 and π_s constrained to luminous region
- Fit probability > 0.1%
- Reconstructed decay time, t: -2<t<4 ps</p>
- ***** Estimated decay time error, $\delta t < 0.5$ ps

Selected Events

Separate signal from background using m(K π) and Δ m

Fit Procedure

Unbinned maximum likelihood fit in several steps (fitting 1+ million events takes a long time)

Fit to $m(K\pi)$ and Δm distribution:

RS and WS samples fit simultaneously
Signal and some background parameters shared
All parameters determined in fit to data, not MC

Fit RS decay time distribution:

• Determines D^{θ} lifetime and resolution function • Include event-by-event decay time error δt in resolution • Use m(K π) and Δm to separate signal/bkgd (fixed shapes)

Fit WS decay time distribution:

Use D⁰ lifetime and resolution function from RS fit
 Compare fit with and without mixing (and CP violation)

Fit Procedure

Unbinned maximum likelihood fit in several steps (fitting 1+ million events takes a long time)

Fit to m(Kπ) and Δm distribution:
 RS and WS samples fit simultaneously
 Signal and some background parameters shared
 All parameters determined in fit to data, not MC

Fit RS decay time distribution:

Determines D^θ lifetime and resolution function
 Include event-by-event decay time error δt in resolution
 Use m(Kπ) and Δm to separate signal/bkgd (fixed shapes)

Fit WS decay time distribution:

Use D⁰ lifetime and resolution function from RS fit
Compare fit with and without mixing (and CP violation)

Signal and Background Components

Signal: Correct $D^{*+} \rightarrow D^0 \pi^+$ Peaks in m($K\pi$) and Δ m

Random π_s :

♦ Correct D^0 , wrong π_s **♦** Peaks in m($K\pi$), not Δm

Misreconstructed D^{0} : ◆ Real $D^{*+} \rightarrow D^{0} \pi^{+}$ ◆ $D^{0} \rightarrow K^{-} \mu^{+} \nu$ ◆ Double misid $D^{0} \rightarrow K^{-} \pi^{+}$ (WS events only)

Combinatoric: Random tracks

m(K π)- Δ m Fit Results

Fit Procedure

Unbinned maximum likelihood fit in several steps (fitting 1+ million events takes a long time)

Fit to $m(K\pi)$ and Δm distribution:

- RS and WS samples fit simultaneously
- Signal and some background parameters shared
- All parameters determined in fit to data, not MC

Fit RS decay time distribution:

• Determines D^{θ} lifetime and resolution function • Include event-by-event decay time error δt in resolution • Use m(K π) and Δm to separate signal/bkgd (fixed shapes)

Fit WS decay time distribution:

Use D⁰ lifetime and resolution function from RS fit
 Compare fit with and without mixing (and CP violation)

Decay Time Resolution

Average D^0 flight length only twice average resolution

- Resolution function described by sum of 3 Gaussians
- **\diamond** Resolution widths scales with δ t
- Mean of core Gaussian allowed to be non-zero

For combinatorial background, use Gaussians and power-law "tail" for small long-lived component

RS Decay Time Fit

D^o lifetime and resolution function fitted in RS sample

- τ =(410.3±0.6(stat.)) fs
- Consistent with PDG (410.1±1.5 fs)
- Systematics dominated by resolution function

RS decay time, signal region

plot selection: 1.843<*m*<1.883 GeV/c² 0.1445<*∆m*< 0.1465 GeV/c²

Fit Procedure

Unbinned maximum likelihood fit in several steps (fitting 1+ million events takes a long time)

Fit to $m(K\pi)$ and Δm distribution:

RS and WS samples fit simultaneously
 Signal and some background parameters shared

All parameters determined in fit to data, not MC

Fit RS decay time distribution:

* Determines D^{θ} lifetime and resolution function * Include event-by-event decay time error δt in resolution * Use m(K π) and Δm to separate signal/bkgd (fixed shapes)

Fit WS decay time distribution:

Use D⁰ lifetime and resolution function from RS fit
Compare fit with and without mixing (and CP violation)

WS Fit with no Mixing

WS Fit with Mixing

Signal Significance

Significance calculated from change in log likelihood:

Signal Significance

Significance calculated from change in log likelihood:

Signal Significance

Signal Significance with Systematics

Including systematics decreases signal significance

Signal Significance with Systematics

Including systematics decreases signal significance

Validation Studies

Rate of WS events clearly increase with time:

Rate of WS events clearly increase with time:

Rate of WS events clearly increase with time:

Validation: Fit RS Data for Mixing

Validation: Coverage of $-2\Delta Log\mathcal{L}$

Significance of signal is calculated as change in log likelihood with respect to no-mixing hypothesis

Generated >100000 toys without mixing to test $-2\Delta \ln \mathcal{L}$ gives correct frequentist coverage

Systematic Uncertainties

Two types of systematic uncertainties considered:

Fit model variations:

Change signal and background models used in fit, to test assumptions made

Selection criteria:

Mainly decay time (error) ranges used in fit

Allowing for CP Violation

CP violation could introduce different time dependence for D^{0} (+) and \overline{D}^{0} (-):

$$\frac{T_{\rm WS}^{\pm}(t)}{e^{-\Gamma t}} = \sqrt{\frac{1 \pm A_{\rm D}}{1 \mp A_{\rm D}}} R_{\rm D} + \sqrt{R_{\rm D}} \sqrt[4]{\frac{(1 \pm A_{\rm D})(1 \pm A_{\rm M})}{(1 \mp A_{\rm D})(1 \mp A_{\rm M})}} (y' \cos \varphi \mp x' \sin \varphi) \Gamma t + \sqrt{\frac{1 \pm A_{\rm M}}{1 \mp A_{\rm M}}} \frac{{x'}^2 + {y'}^2}{4} (\Gamma t)^2$$

- Three possible types of CP violation:
- ♦ Direct CP violation in DCS decay $A_D \neq 0$
- **CP** violation in mixing $A_M \neq 0$
- **\odot** CP violation in interference between mixing and decay $\cos \, arphi
 eq 1$

Simpler to fit D^{0} (+) and \overline{D}^{0} (-) separately:

$$\Gamma_{WS}^{\pm}(t) = e^{-\Gamma t} \left(R_D^{\pm} + y'^{\pm} \sqrt{R_D^{\pm}} (\Gamma t) + \frac{(x'^{\pm})^2 + (y'^{\pm})^2}{4} (\Gamma t)^2 \right)$$

CP violation if one or more "±" parameters are different

CPV Allowed Contours

<u>Results of fitting D^0 and \overline{D}^0 separately:</u>

x'⁺²: (-0.24±0.43±0.30)x10⁻³ y'⁺: (9.8±6.4±4.5)x10⁻³ x'-²: (-0.20±0.41±0.29)x10⁻³ y'-: (9.6±6.1±4.3)x10⁻³

 $A_D = (-2.1 \pm 5.2 \pm 1.5)\%$

No evidence for CP violation found

Comparisons with other Charm Mixing Results

Previous BaBar K π Analysis

Fully consistent with previous BaBar analysis:

$K\pi$ Analysis from Belle

$K\pi$ Analysis from Belle

Average $K\pi$ Mixing Results

Heavy flavor averaging group (HFAG) working on providing official averages

Combine BaBar and Belle likelihoods in 3 dimensions (R_D, x'^2, y')

Brian Petersen

×2

Belle Dalitz Analysis of $D^0 \rightarrow K_S \pi \pi$

Belle Dalitz Analysis of $D^0 \rightarrow K_S \pi \pi$

Belle Lifetime Ratio Measurement

Belle measure lifetime difference directly using CP eigenstates:

$$au(D^0 \to f_{CP+}) = \frac{\tau(D^0 \to K^- \pi^+)}{1 + y_{CP}}$$

 $y_{CP} = y \cos \phi$ (=y, if no CP violation) (CP and mass eigenstates the same!)

Belle use two CP-even eigenstates:

 $D^0 \rightarrow K^+ K^-$ and $D^0 \rightarrow \pi^+ \pi^-$

Decay time distributions:

Belle Lifetime Ratio Measurement

Belle measure lifetime difference directly using CP eigenstates:

$$\tau(D^0 \to f_{CP+}) = \frac{\tau(D^0 \to K^- \pi^+)}{1 + y_{CP}}$$

 $y_{CP} = y \cos \phi$ (=y, if no CP violation) (CP and mass eigenstates the same!)

Belle use two CP-even eigenstates: $D^0 \rightarrow K^+ K^-$ and $D^0 \rightarrow \pi^+ \pi^-$

Belle result:

y_{CP}: (13.1±3.2±2.5)x10⁻³

> 3σ above zero (4.1 σ stat. only) Also evidence of D^0 mixing!

Brian Petersen

Decay time distributions:

More BaBar-Belle Comparisons

Belle measurement is consistent with old BaBar lifetime ratio measurement

<u>Comparison to BaBar K π analysis:</u>

Assume $y=y_{CP}$ Use $x=8x10^{-3}$ from Belle's K_s $\pi\pi$ analysis

Results consistent within 1σ for certain values of phase δ

Combining Mixing Results

HFAG has first preliminary averages for some measurements:

Combining all D^o Mixing Results

Next step for HFAG: combine all measurements:

 $D^0 \rightarrow KK/\pi\pi y_{CP} = (11.2 \pm 3.2) \times 10^{-3}$

 $D^0 \rightarrow K^{(*)} e v R_M = (0.50 \pm 0.45) \times 10^{-3}$

HFAG will provide average for x, y and δ (available soon)

We plan to also provide averages allowing for CP violation

Implications of Charm Mixing

BaBar and Belle mixing results first presented at Moriond electroweak conference on March 17

8 new hep-ph preprints on charm mixing since then

Five use D⁰ mixing results to evaluate limits on:
Certain SUSY models (flavor suppression by "alignment")
Several little Higgs models
Non-universal Z' model

hep-ph/0703204 hep-ph/0703235

Models are further constrained, Light non-degenerate but constraints are limited by lack of precise SM value

Currently only observation of CP violation would be a clear sign of New Physics

Summary and Outlook

Evidence for mixing (3.2σ)
Measurement of x and y
No sign of CP violation

Next steps

Combine measurements (HFAG)
Try to pin-down x, y and δ
More searches for CP violation

Belle $D^{o} \rightarrow K_{s}\pi\pi$ Analysis

◆ 3-body decay modes: amplitudes $A(D^0 \rightarrow f)$ and $\bar{A}(\bar{D^0} \rightarrow \bar{f})$ depend on Dalitz variables.

Dalitz space dependent matrix element is for negligible CPV

$$M(m_{-}^{2}, m_{+}^{2}, t) = A(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) + e_{2}(t)}{2} + A(m_{+}^{2}, m_{-}^{2}) \frac{e_{1}(t) - e_{2}(t)}{2}$$

where m_{\pm} is defined with the D^* tag

$$m_{\pm} = \begin{cases} m(K_s, \pi^{\pm}) & D^{*+} \to D^0 \pi^+ \\ m(K_s, \pi^{\mp}) & D^{*-} \to \bar{D}^0 \pi^- \end{cases}$$

and time dependent functions with

$$e_{1,2}(t) = e^{-i(m_{1,2} - i\Gamma_{1,2}/2)t}$$

• $|M(m_{-}^2, m_{+}^2, t)|^2$ thus includes x and y

The only measurement sensitive directly to x

Belle $D^{o} \rightarrow K_{S}\pi\pi$ Analysis

Dalitz fit

- Dalitz model: 13 different (BW) resonances and a non-resonant contribution
- Results with this refined model consistent with the analysis performed for the Belle φ₃ measurement, PRD73, 112009 (2006)
- B \bullet To test the scalar $\pi\pi$ contributions, K-matrix formalism is also used

Belle $D^{o} \rightarrow K_{S}\pi\pi$ Analysis

Systematics

Time fit (in projection)

Results (preliminary)

$$\begin{aligned} x &= 0.80 \pm 0.29 \pm 0.17 \ \% \\ y &= 0.33 \pm 0.24 \pm 0.15 \ \% \end{aligned}$$

most stringent limits on x up to now Cleo, PRD 72, 012001 (2005): $x = 1.8 \pm 3.4 \pm 0.6\%$ $y = -1.4 \pm 2.5 \pm 0.9\%$

Largest contributions ($\times 10^{-4}$) Х y +7.8 - 8.8+14.6Model dependence -13.6+8.5 +6.6 -6.8 -11.6Time fit Total ($\times 10^{-4}$) X y +16.9+10.2-15.2-14.60.02 У **Belle preliminary** Ksππ 0.01 0.01 0.005 -0.005 95% C.L -0.01 inner: stat. only -0.015 -0.01 -0.005 0 0.005 0.01 0.015

Br

2

Belle $D^{O} \rightarrow KK/\pi\pi$ Analysis

Simultaneous $KK/\pi\pi/K\pi$ binned likelihood fit

quality of fit: $\tilde{\chi^2} = 1.084$ (289)

Belle $D^{o} \rightarrow KK/\pi\pi$ Analysis

Results (preliminary)

	y _{CP} (%)	A _Γ (%)
$\frac{KK}{\pi\pi}$	$1.25 \pm 0.39 \pm 0.28$ $1.44 \pm 0.57 \pm 0.42$	0.15±0.34±0.16 -0.28±0.52±0.30
$KK + \pi\pi$	$1.31 \pm 0.32 \pm 0.25$	$0.01{\pm}0.30{\pm}0.15$

Belle preliminary (540 fb⁻¹)

 $y_{CP} = 1.31 \pm 0.32 \pm 0.25$ %

 $> 3\sigma$ above zero (4.1 σ stat. only) first evidence for $D^0 - \overline{D}^0$ mixing

$$A_{\Gamma} = 0.01 \pm 0.30 \pm 0.15$$
 %

no evidence for CP violation

Toy MC Tests

Test for unbiasedness:

average fitted value of mixing parameter versus generated value. Error bars: RMS of fitted values: expected parameter errors Straight line has unit slope, 0 intercept.

Results indicate no bias in estimating mixing parameters

Other Charm Experiments

Older charm experiments:CLEO $(e^+e^- \text{ collisions at Cornell})$ FOCUS, E791(fixed target at Fermilab)

K^o Mixing

Neutral meson mixing first observed in $K^0 - \overline{K}^0$ system Short-lived " K_s " seen in 1947: τ =89 ps Long-lived " K_L " seen in 1956: τ =51 ns

87

B^o Mixing

 B^0 mixing first observed by ARGUS experiment in 1987 Large mixing frequency implied t quark was heavy ($m_t > 50 \text{ GeV}/c^2$)

B_{s}^{0} Mixing

Systematic: Combinatorial Decay Time

Decay time in combinatorial bkgd not independent of $m(K\pi)$ Fix PDF parameters to fits in different background sidebands:

Systematic: Decay Time Resolution

Decay time resolution function in data has non-zero mean

Core Gaussian shifted 3.6±0.6fs

Effect is not seen in MC - probably due to misalignment

For systematics set mean to 0: Variation: $\begin{array}{c} y' & 0.3\sigma \\ x'^2 & -0.3\sigma \end{array}$

No reason why resolution should be different for RS and WS decays

