Observation of Structures in the $J/\Psi\phi$ from B⁺ $\rightarrow J/\psi\phi$ K⁺ Decay at CMS

Kai Yi University of Iowa

LBNL RPM, Dec 20, 2012

Outline

- Introduction to exotic mesons
- Motivation for $J/\Psi \phi$ structures
- Status of $J/\Psi \phi$ before CMS result
- CMS detector and trigger
- J/ $\Psi\phi$ Analysis strategy and event selection
- Results
- Summary

Quark Model

1st 2nd 3rd

Generations

 \mathcal{U}

h

- The birth of quark model (M. Gell-Mann & G. Zweig): M. Gell-Mann, Phys. Lett. 8, 214 (1964)
- Heavy top decays before forming bound states light quarks exist as bound states
 - Baryons: (qqq)
 - Mesons: (qq̄) quarkonia: (ss̄), (cc̄) (bb̄) (hidden)
- J/Ψ establishes the quark model, Y(1S) further confirms it
- Gell-Mann also suggested exotic states (qqqqq), (qqqqq) at the birth of quark model, but evidence has never been solidly established

Revitalized by recently discovered charmonium-like states despite almost a decade, still mysterious!

Heavy flavor quarkonium spectroscopy helped turn quarks into a reality! What we can learn from quarkonium-like spectroscopy?

Charmonium (cc̄) Potential Model (Cornell Model)

• simple QCD-inspired phenomenological potential :

$$V(r) = -\frac{\kappa}{r} + \frac{r}{a^2}, \ \kappa = 0.61, m_c = 1.84 \text{ GeV}, a = 2.38 \text{ GeV}^{-1}$$

non-relativistic (charm quark is "heavy" compared to binding energy)

- quark confinement (increases linearly with separation)
- extendable to include spin-dependent terms, relativistic corrections, etc.

• Lattice QCD provides calculation of the masses and widths

<u>Eichten et. al., PRD 17, 3090 (1978)</u> <u>Godfrey & Isgur, PRD 32, 189 (1985)</u> <u>Barnes et. al., PRD 72, 054026 (2005</u>

Charmonium States

at a low of the the	Quantum numbers			umbers	Name	Mass (MeV/c ²)	width(MeV)
<u>Notation</u> :	N	L	JPC	$N^{2S+1}L_J$	Par -	1 Fride - 4	File - A
^{2S+1} [L] _J	1	0	0-+	$1^{1}S_{0}$	η _c (1S)	2980.4±1.2	26.7±3
L= S,P,D (0,1,2) (No cand with	1	0	1-	1 ³ S ₁	J/ψ	3096.916±0.011	93.2±0.02 ×10 ⁻³
(100 candi ////// L>=3)	1	1	0++	1 ³ P ₀	χ_{c0} (1P)	3414.75±0.31	10.2±0.7
$\mathbf{J} = \mathbf{L} + \mathbf{S}$	1	1	1++	1 ³ P ₁	χ _{c1} (1P)	3510.66±0.07	0.89±0.05
$S(q\bar{q}) = 0 \text{ or } 1$	1	1	2++	1 ³ P ₂	$\chi_{c2}(1P)$	3556.20±0.09	2.03±0.12
Parity: $P = (-1)^{L+1}$	1	1	1+-	1 ¹ P ₁	h _c (1P)	3525.93±0.27	<1
Charge conjugation	1	2	17	1 ³ D ₁	ψ(3770)	3772.92±0.35	27.3±1.0
$C=(-1)^{L+S}$	2	0	0-+	$2^{1}S_{0}$	η _c (2S)	3637±4	14±7
N: Radial	2	0	1ª	$2^{3}S_{1}$	ψ(2S)	3686.09±0.04	317±9 ×10 ⁻³
Quantum	2	1	2++	2 ³ P ₂	$\chi_{c2}(2P)$	3929±5	29±10
Numbers	3	0	1-	3 ³ S ₁	ψ(4040)	4039±1	80±10
the second state	2	2	1-	2 ³ D ₁	ψ(4160)	4153±3	103±8
2 24 24	4	0	1-1-	4 ³ S ₁	ψ(4415)	4421±4	62±20

These states work well with charmonium model, until the appearance of X(3872)

		$u\overline{d}, u\overline{u}, d\overline{d}$	$u\overline{u}, d\overline{d}, s\overline{s}$	eē
$N^{2S+1}L_J$	J^{PC}	I = 1	I = 0	I = 0
1 ¹ S ₀	0-+	π	η, η'	$\eta_c(1S)$
$1^{3}S_{1}$	1	ρ	ω, φ	$J/\psi(1S)$
1 ¹ P ₁	1+-	$b_1(1235)$	$h_1(1170), h_1(1380)$	$h_c(1P)$
$1^{3}P_{0}$	0++	a ₀ (1450)*	$f_0(1370)^*, f_0(1710)^*$	$\chi_{c0}(1P)$
$1^{3}P_{1}$	1++	a1(1260)	$f_1(1285), f_1(1420)$	$\chi_{c1}(1P)$
$1^{3}P_{2}$	2++	$a_2(1320)$	$f_2(1270), f_2'(1525)$	$\chi_{c2}(1P)$
$1^{1}D_{2}$	2-+	$\pi_2(1670)$	$\eta_2(1645), \eta_2(1870)$	
1 ³ D ₁	1	$\rho(1700)$	$\omega(1650)$	$\psi(3770)$
1 ³ D ₂	2			??
1 ³ D ₃	3	$ ho_{3}(1690)$	$\omega_3(1670), \phi_3(1850)$	
$1 {}^{3}F_{4}$	4++	$a_4(2040)$	$f_4(2050), f_4(2220)$	
2 ¹ S ₀	0-+	$\pi(1300)$	$\eta(1295), \eta(1440)$	$\eta_c(2S)$
2 ³ S ₁	1	$\rho(1450)$	$\omega(1420), \phi(1680)$	$\psi(2S)$
2 ³ P ₂	2++	a ₂ (1700)	$f_2(1950), f_2(2010)$	
3 ¹ S ₀	0-+	$\pi(1800)$	$\eta(1760)$	

X(3872)--2003 PRL 91, 262001 30 a) signal region X(3872)→J/ψπ⁺π⁻ M=3871 8±0.7±0.4 MeV

(Problematic) features mass ~70 MeV > $1^{3}D_{2}$ charmonium, $J^{PC} = 1^{++}$ or 2^{-+} $M(\pi^{+}\pi^{-})$ peaks as a ρ , C=+, isospin=1 (charmonium--0) Decays to $J/\Psi\gamma \& \Psi'\gamma$, suppressed for 2⁻⁺

Γ< 3.5 MeV @ 90% CL

Mass close to DD*, molecule is speculated No charged partners observed, tetra-quark? similar rate as charmoniums at hadron colliders. mixture of a DD* molecule and the $2^{3}P_{1}$ charmonium?

First particle challenging charmonium model, revitalized exotic meson study

15

Above $D\overline{D} \& DD^*$ threshold, *Tiny branching fraction expected New mass and width from BaBar:* $M \approx 3919.1^{+3.8}_{-3.4} \pm 2.0$, $\Gamma \approx 31^{+10}_{-8} \pm 5$ MeV *arXiv:1012.0074 [hep-ex] at the J/\u03c6\u03c*

Well above $D\overline{D} \& DD^{\overline{*}}$ threshold, *Tiny branching fraction expected* $J^{PC}=1^{--}$, plus Y(4350), Y(4660) *too many* 1⁻⁻ ?

$Z(4430)^+ \rightarrow \psi(2S)\pi^+ - 2008$

The first charged charmonium-like state, a smoking gun if confirmed

Babar disagrees with Belle

Many more new states... They do not fit into charmonium expectation Has been extended to bottomonium system

Beyond (qq) mesons: exotic mesons?

Exotic Models-I

 $D^{0}-\overline{D^{*0}}$ "molecule"

Diquark-diantiquark

Molecular Loosely bound state of a pair of mesons. The dominant

binding mechanism should be **pion exchange**. Being weakly bound the mesons tend to decay as if they were free

<u>Tetraquark</u>

Bound state of four quarks, i.e. $qq\bar{q}\bar{q}$ in which the quarks group into color triplet scalar or vector clusters

Strong decays proceed via rearrangement processes

Distinctive features of multi-quark picture with respect to charmonium:

- prediction of many new states

- possible existence of states with non-zero charge, strangeness or both

Exotic Models-II

Charmonium hybrids States with excited gluonic degrees of freedom; exotic $J^{PC}=0^{+-}$, 1^{-+} , 2^{+-} ... not allowed for charmonium. Smoking gun for exotic states.

Lattice QCD for 1⁻⁺: $m \sim 4.3 \pm 0.05$ GeV (C. Thomas)

Threshold, *cusp*, or coupled-channel effect giving a cross section enhancement which may not correspond to resonance production at all

12

Hadro-charmonium

Light hadrons bounded by van der Waal's force to a charmonium core in the case where the light hadron is a highly excited resonance.

We know something is going on even though we do not know exactly what! New kind(s) of spectroscopy with complex binding forces?

How about $J/\psi \phi$ system? (threshold @4.116 GeV, VV, C=+) (cc) with a mass above 4.116 GeV, expect tiny branching fraction to $J/\Psi \phi$.

Charmonium hybrid \rightarrow **J**/ $\psi \phi$?

J^{PC}	Open charm	Hidden charm	← PRD 57, 5653 (1998)
0+-	Quantum	$J/\psi \{f_{\{0,1,2\}},(\pi\pi)_S\}$	1. 01050 00 01
	numbers	$h_c \eta; \eta_c h_1$	En the Key
	forbid	$\chi_{c0}\omega$	at here was the
	$D^{(*)}D^{(*)}$	$\chi_{c\{1,2\}}\{\omega,h_1,\gamma\}$	and the Fair
0	D^*D	$h_c(\pi\pi)_S$	als That
		$J/\psi\{f_{\{1,2\}},\eta^{(\prime)}\}$	A Last
		$\chi_{c0}h_1; \ \eta_c\{\omega,\phi\}$	and the second second
		$\chi_{c \{1,2\}} \{ oldsymbol{\omega}, h_1, oldsymbol{\gamma} \}$	145 A 2 6 445
1-+	D^*D, D^*D^*	$\chi_{c[0,1,2]}(\pi\pi)_{S}$	the galle galle
		$\eta_c(f_{\{1,2\}},\eta^{(\prime)})$	and the second states of
		$\chi_{c\{1,2\}}\eta$	76 1 776
		$\{h_c, J/\psi\}\{\omega, h_1, \phi, \gamma\}$	Accessible at CMS
2+-	D^*D, D^*D^*	${h_c, J/\psi}{f_{\{0,1,2\}}, (\pi\pi)_s}$	The ser of the
		${h_c, J/\psi}\eta^{(\prime)}$	THE STAN THE
		$\{\eta_c,\chi_{c(0,1,2)}\}\{\omega,h_1,\phi,\gamma\}$	Last for Stars

Considered to be the ground exotic state, mass prediction from 3.9 to 5.3 GeV Most recent Lattice QCD calculation: 4.3 ± 0.05 GeV

Multi-quark states $\rightarrow J/\psi \phi$?

J^{PC}	M(MeV)	Decay Channel	← arXiv:0902.2803
0^{++}	3834	57	N. V. Drenska et al
0^{++}	3927	$J/\psi\omega$	the set of the set
0^{-+}	4277(+15)	$J/\psi \ \phi, J/\psi \ \omega, \ D_{s}^{*+}D_{s}^{*-}$	The state of the state
0^{-+}	4312(+30)	$J/\psi \ \phi, \ J/\psi \ \omega, \ D_{s}^{*+}D_{s}^{*-}$	
0	4297(-5)	$\psi \eta(\eta'), D_s^+ D_s^{*-}$	P 210 P 210
1^{++}	3890	$J/\psi\omega$	I / und is well motivated
1^{+-}	3870	$J/\psi \; \eta$	$J/\psi\psi$ is well motivated:
1^{+-}	3905	$J/\psi \eta$	and the second states the
1^{-+}	4321(+15)	$J/\psi \omega, J/\psi \phi$	How to search?
1^{-+}	4356 (+30)	$J/\psi\omega,J/\psi\phi$	
1	4330	$\psi \eta(\eta'), D_s^{(*)+} D_s^{(*)-}; J/\psi f_0(980)$	Inclusive? Challenge!
1	4341(-5)	$\psi \eta(\eta'), D_s^{(*)+} D_s^{(*)-}; J/\psi f_0(980)$	Through R decays!
1	4390(+40)	$\psi \eta(\eta'), D_s^{(*)+} D_s^{(*)-}; J/\psi f_0(980)$	in ough D accuyor
$1^{}$	4289(-41)	$\psi \eta(\eta'), D_s^{(*)+} D_s^{(*)-}; J/\psi f_0(980)$	and the state of the

Search structures →J/ψφ through B decays

• Experimentally attractive to search through clean $B \rightarrow J/\psi \phi K$ channel -- taking advantage of B lifetime and narrow B mass window

-- $B \rightarrow J/\psi \phi K$ is OZI suppressed, so low rate from phase space decays

The status before Original CDF Report

• The status through $B \rightarrow J/\psi\phi K$:

16

 $J/\psi \rightarrow \mu\mu$ and ee, 10 B⁺ and B⁰

• statistically limited, no structures reported

First Report by CDF w/ 2.7 fb⁻¹ (2009)

PRL 102:242002, 2009

Purity ~80% in B⁺ region

Nice ϕ shape

Near threshold peak, called Y(4140)Significance: $\sim 4\sigma$ Yield =14±5 $M = 4143.0 \pm 2.9 (stat) \pm 1.2 (syst)$ $K = 11.7 + 8.3 - 5.0 (stat) \pm 3.7 (syst)$ Not likely to be charonium:High mass w/ narrow width17

Update from CDF w/ 6.0 fb⁻¹ (2010)

arXiv:1101.6058 [hep-ex] *Yield*₁ =19±6; >5σ Yield₂ =22±8; 3.10 $M_1 = 4143.4^{+2.9}_{-3.0}$ (stat) ± 0.6 (syst) MeV $M_2 = 4277.4^{+8.4}_{-6.7} (stat) \pm 1.9 (syst)$ MeV $\Gamma_1 = 15.3^{+10.4}_{-6.1} (stat) \pm 2.5 (syst)$ MeV $\Gamma_2 = 32.3.7^{+21.9}_{-15.3} (stat) \pm 7.6 (syst)$ MeV χ^2 /dof between old and new Δm is 7.2/3, p-value=6.5% w/ four regions $\frac{\mathcal{B}(B^+ \to Y(4140)K^+, Y(4140) \to J/\psi\phi)}{\mathcal{B}(B^+ \to J/\psi\phi K^+)} = 0.149 \pm 0.039(\text{stat}) \pm 0.034(\text{syst})$

Belle: Confirm or Refute? (2009, 2010)

Note: CDF and Belle do not

In Belle, B meson at rest on ↑(4S)

rest frame, Kaon momentum from

→ lower reconstruction efficiency.

decay is low, especially just

contradict each other.

above J/ψφ threshold

Summary –B factories suffer from low pt track efficiency –Belle cannot confirm or deny the existence of Y(4140)

-Tevatron edge over B factories: Low p_T kaons are boosted from B momentum

no verdict from Babar

Kenkichi Miyabayashi (Nara Women's Univ.) 2010 May QWG7

have been able to fit 39+-9+-6 events. The Y(4140) is on very shaky ground at the moment, and the

new PDG will likely change its status in the particle zoo... This is punch number 1.

LHC_b: Contests CDF Report (2011)

LHCb is specifically designed to select Bottom/charm/exotic-quarkonium particles and the products of their decays

Excellent lepton and hadron Identification

Excellent mass resolution ~2.5 MeV for X(3872) decays

BUT LHCb did not confirm the existence of Y(4140). A serious challenge!

A result from a 3rd experiment is important!

For instance, CMS?

The CMS Detector

CMS Detector Performance

Excellent muon/silicon detectors for quarkonium:

- Muon system
 - High-purity muon identification
 - Good dimuon mass resolution ($\Delta m / m \sim 0.6\%$ for J/ Ψ)
- Silicon Tracking detector
 - excellent track momentum resolution $(\Delta p_T/p_T \sim 1\%)$
 - excellent vertex reconstruction and impact parameter resolution

LHC luminosity and CMS trigger:

- collect data at increasing instantaneous luminosity
 - about 5fb⁻¹ from 2011 data at √s=7 TeV (used for this analysis)
- Triggers are essential ingredients
 - Special trigger for different analysis
 For this analysis:
 displaced dimuon vertex &

minimum (di)muon transverse momentum

Analysis strategy (CMS 2012)

• I) Reconstruct B⁺ as:

 $\begin{array}{c} B^+ \to J/\psi\phi \ K^+ \\ J/\psi \to \mu^+\mu^- \\ \phi \to K^+K^- \end{array}$

• II) Search for structure in $J/\psi\phi$ mass spectrum inside B^+ mass window

primary secondary µ vertex L_{xy} vertex K⁺

 R^+

Search?

Vertex separation No Particle Identification Large B sample https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH11026 24 CMS: BPH-11-026

K-

Event Selections (CMS 2012)

-- $|\eta|$ for all tracks <=2.4

--probability(χ^2) for J/ ψ vertex fit>10%, probability(χ^2) for B⁺ vertex fit>1%

--p_T(kaon track)>1 GeV

&

--J/ ψ vertex flight length significance >=3

Dataset A: $p_T(J/\psi) > 7 \text{ GeV}$ Dataset B: $p_T(J/\psi) > 7 \text{ GeV} \& p_T(\mu^+/\mu^-) > 4 \text{ GeV}$

--mass window:

 J/ψ (±150 MeV) and ϕ in [1.008, 1.035] GeV (Breit-Wigner shape) constraint $\mu^+\mu^-$ to J/ψ PDG mass value

Requirements are not optimized to be unbiased, confirm trigger requirements

The B Signal (CMS 2012)

 $B^+ \rightarrow J/\psi \phi K^+ decay$

Signal PDF: Gaussian

Background PDF: 2nd-order Chebyshev polynomial

Mass: consistent with PDG value

Width: consistent with simulation

Largest $B^+ \rightarrow J/\psi \phi K^+$ sample collected in the world up to date ~20 times of CDF statistics (115±12); ~7.2 of LHCb statistics (346±20)

 J/Ψ and ϕ Signal (CMS 2012)

- A clear and clean J/Ψ signal
- Nice ϕ lineshape, consistent with PDG parameters
- $B(J/\Psi\phi K^+)$ dominates after ϕ mass restriction

J/ψφ Invariant Mass Spectrum(CMS 2012)

• The mass difference $\Delta m = m(\mu^+\mu^-K^+K^-) - m(\mu^+\mu^-)$ is used

Extracting the Δm spectrum

- Divide the dataset into the 20 MeV Δm bins
- Extract the number of B events for each Δm by \mathbf{b} fitting the $J/\psi\phi K$ spectrum

Plot the B yield as a function of Δm $p_{\tau}(J/\psi) > 7GeV$

 $p_{\tau}(J/\psi) > 7 GeV \& p_{\tau}(\mu) > 4 GeV$

DatasetB

1.4

1.5

correct the spectrum by efficiency before fitting

Means fixed to the PDG B mass

RMS fixed to the signal MC values

Relative efficiency over Δm : approx. flat

28

Also imply relative flat efficiency

Does it effect Δm ?

Background Shape Studies(CMS 2012)

Event mixing to study the Δm shape

--J/Ψ, ϕ , K⁺ from different event

-- ϕ , K^+ from the same event, J/Ψ from different event. This is to get the impact on Δm from possible ϕK^+ resonances

Require the $J/\Psi \phi K^+$ mass around B mass

Event-mixing Δm shapes are slightly distorted compared to three-body phase space

However, the possible effect is on high Δm region and the three-body phase space shape is more conservative at low Δm region where the two structures are observed.

Preliminary \$\$\phi K^+\$ Resonances Studies (CMS 2012)

- Generated simple Dalitz plot for known $K^*(\phi K^+)$. No similar structures seen in $m(J/\Psi\phi)$ from reflections of these known K^* .
- No evidence of structures or deviation from phase space background shape found in $m(\phi K^{+})$ mass distribution after removing the two structures in $m(J/\Psi\phi)$ in the data
- Possible structure(s) in m(J/ΨK⁺)? No evidence so far
- Possible interference ? Could affect lineshape parameters, do not expect much since no evident big signal(s)
- A full amplitude analysis is more suitable, but limited by statistics and high non-B combinatoric background w/ current dataset

In progress...

Null- and Signal-hypothesis Fits

	Mass (MeV)	Signal Yield
First Peak	1051.5 ± 2.0	355 ± 46
Second Peak	1220.0 ± 3.0	445 ± 83

Background: 3-body phase space Signal: S-wave relativistic Breit-Wigner functions convolved with a Gaussian resolution function

Significance: >50 for 1st peak evidence for 2nd peak

background + 1 signal

Robust Checks

Many checks to investigate the robustness of the two structures

Variations on selection cuts, different background and signal shapes, different ∆m binning...

Different Background-subtraction technique: sPlot

sPlot is a technique of background-subtraction by weighting each event based on observed signal to background ratio.

33

Robust Checks

All main requirements are varied step by step to investigate possible bias

Each sideband-subtracted Δm distribution is compared to the default one

No indication of bias was found

one example with tighter cuts and purer B sample is shown below:

Result

• The efficiency-corrected $\Delta m = m(\mu^+\mu^-K^+K^-) - m(\mu^+\mu^-)$

	Mass (MeV)	Signal Yield
First Peak	1051.5 ± 2.0	355 ± 46
Second Peak	1220.0 ± 3.0	445 ± 83

 m_1 = 4148.2±2.0(stat.)±4.6 (syst.) MeV m_2 = 4316.7±3.0(stat.)±7.3 (syst.) MeV

observed a J/ψφ structure at 4148MeV with a significance greater than 5σ confirms the existence of Y(4140) for the first time from another experiment CDF Y(4140): m=4143.4^{+2.9}-3.0 (stat) ± 0.6 (syst)
 evidence for a second structure at ~4317MeV in the same mass spectrum

Possible Interpretation of the Structures?

http://indico.ifj.edu.pl/MaKaC/materialDisplay.py?contribId=832&sessionId=19&materialId=slides&confld=11 (last page)

 Possible J^{PC}: S-wave: 0⁺⁺, 1⁺⁺, 2⁺⁺ P-wave: 0⁻⁺, 1⁻⁺, 2⁻⁺, 3⁺⁺
 Lattice QCD for 1⁻⁺ (ccg): 4.3± 0.05 GeV
 M= 4316.7 ± 3.0(stat) ± 7.3(syst) MeV (CMS 2nd structure)
 Can the 2nd structure be 1⁻⁺ hybrid? expect to see it in J/Ψω if so

What is the 1st structure? The same kind or it can be a different kind compared to the 2nd one?
 Similar to Y(3940), both close to VV threshold? Same kind?
 A topic to be investigated & more in B⁺ → J/Ψ φK⁺

Search Possible Charged Exotics in J/ΨK⁺ Spectrum

Summary

• CMS observed two structures in the J/ $\psi\phi$ spectrum at 4148 MeV and 4317MeV using 5.2 fb⁻¹ of data at 7 TeV collision energy

 $m_1 = 4148.2 \pm 2.0 \text{ (stat.)} \pm 4.6 \text{ (syst.)} MeV$ (>5sigma) $m_2 = 4316.7 \pm 3.0 \text{ (stat.)} \pm 7.3 \text{ (syst.)} MeV$ (>3sigma)

- Confirm the existence of the Y(4140), consistent with CDF result & find evidence for a second structure
- Preliminary investigation find no evidence of reflection from K*
- More to be expected with the large data sample (4X) from 2012

Stay tuned!

(double) OZI suppressed process

Skip complicated $\omega\omega$, $\rho\rho$

Observed near V(I=0)V(I=0) threshold enhancement. Strong decay. Above (qq'+q'q)threshold. What are they?

Exotic J^{PC}

- For qq meson system, let L to be the orbital angular momentum. The meson spin J is given by |L-S|<J<|L+S|, where S=0 (antiparallel quark spin) or 1 (parallel quark spin)
- The parity P and charge parity C of the meson system can be expressed as: P=(-1)^{L+1} C=(-1)^{L+S}
- In the configuration of P=(-1)^J, S=1, CP=+1, ⇒
 Exotic J^{PC} (not allowed for qq meson):
 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻,...

But exotic mesons can have these JPC due to additional degree of freedom.

• Identify **exotic J^{PC}** is helpful to identify **exotic mesons**