

The LUX and LZ Dark Matter Program: First Science and Upcoming Plans

Karen Gibson RPM Seminar LBNL February 19, 2014

In general the relation of the experimental sciences to the question of life can be expressed thus. Question: Why do I live? Answer: In infinite space, in infinite time, infinitely small particles change in infinite complexity, and when you understand the laws of these changes, then you will understand why you live. -Leo Tolstoy, *Confession*

Why search for dark matter?

Evidence for dark matter in spiral galaxy rotations

50

John Vickery & Jim Matthes/Adam Block/NOAO/AURA/NSF

$$v(r) = \sqrt{\frac{GM(r)}{r}} \propto \text{constant} \qquad \Rightarrow M(r) \propto r$$

Evidence for dark matter in spiral galaxy rotations

Assume isothermal dark matter halo (e.g. NFW profile)

$$O(r) = \frac{\rho_0}{\frac{r}{R_s} \left(1 + \frac{r}{R_s}\right)^2}$$

Evidence for dark matter in collisions of galaxies

Use gravitational lensing to determine mass of clusters, while x-rays show hot gas and optical images show stars

Evidence for dark matter in the CMB

Simulations of structure formation support cold dark matter

Many different ways to search for WIMP dark matter...

WIMP dark matter in the Milky Way

<u>Standard Halo Model</u> →smooth mass, velocity distributions

Model WIMP velocity with Maxwell-Boltzman distribution:

$$f(v) \propto e^{-v^2/v_0^2}$$

Assume: $\rho_0 = 0.3 \text{ GeV/c}^2/\text{cm}^3$ (3 WIMPS/L for m_X =100 GeV) $V_0 = 220 \text{ km/s}$ $V_e = 232 + 15 \sin (2\pi y) \text{ km/s}$ $V_{esc} = 544 \text{ km/s}$

Dark matter scattering - direct detection searches

Predicted WIMP scattering

$$\frac{dR}{dE_R} = N_T \frac{\rho_0}{m_{\chi}} \int_{v_{\min}}^{\infty} d^3 v \frac{d\sigma}{dE_R} \cdot vf(v, v_e)$$

Generic relation for WIMP scattering cross section

$$\frac{d\sigma}{dE_R} = \frac{m_A \sigma_{0,A}}{2\mu_A^2 v^2} F^2(E_R)$$

Spin-independent scattering

C. McCabe, Phys. Rev. D, 82, 023530 (2010)

13

Scattering rate for different targets

Total rates including detector threshold

Experiments search via light/charge/heat signals

Xenon scintillation

All recoils produce light and charge - use the ratio of charge to light to distinguish electronic and nuclear recoils

An applied electric field lowers the number of electrons available to recombine!

Self-shielding in liquid xenon

The Large Underground Xenon Experiment

The true adventurer goes forth aimless and uncalculating to meet and greet unknown fate. - O Henry

LUX collaboration

PI, Professor Research Associate

Graduate Student Graduate Student Graduate Student

Graduate Student

Graduate Student

Postdoc

DIOWII
Richard Gaitskell
Simon Fiorucci
Monica Pangilinan
Jeremy Chapman
David Malling
James Verbus
Samuel Chung Chan
Dongging Huang

Drown

Case Western

Thomas Shutt	PI, Professor
Dan Akerib	PI, Professor
Karen Gibson	Postdoc
Tomasz Biesiadzinski	Postdoc
Wing H To	Postdoc
Adam Bradley	Graduate Student
Patrick Phelps	Graduate Student
Chang Lee	Graduate Student
Kati Pech	Graduate Student

Imperial College London

Imperial College London Henrique Araujo PI, Reader Tim Sumner Professor Alastair Currie Postdoc Adam Bailey Graduate Student

Lawrence Berkeley + UC Berkeley

Wence and Low	,	
Bob Jacobsen	PI, Professor	
Murdock Gilchriese	Senior Scientist	
Kevin Lesko	Senior Scientist	
Carlos Hernandez Faham	Postdoc	
Victor Gehman	Scientist	
Mia Ihm	Graduate Student	

PI, Professor

Postdoc

Postdoc

Postdoc

Postdoc

Assistant Professor

Senior Researcher

Adam Bernstein	PI, Leader of Adv. Detectors Group
Dennis Carr	Mechanical Technician
Kareem Kazkaz	Staff Physicist
Peter Sorensen	Staff Physicist
John Bower	Engineer

	LIP Coimbra
COIMBRA	

Isabel Lopes Jose Pinto da Cunha Vladimir Solovov Luiz de Viveiros Alexander Lindote Francisco Neves Claudio Silva

SD School of Mines

Xinhua Bai	PI, Professor
Tyler Liebsch	Graduate Student
Doug Tiedt	Graduate Student
-	

David Taylor

Project Engineer Mark Hanhardt Support Scientist

ĀМ Texas A&M

PI, Professor James White † Robert Webb PI. Professor Rachel Mannino Graduate Student Clement Sofka Graduate Student

UC Davis

Constant of the second s	
Mani Tripathi	PI, Professor
Bob Svoboda	Professor
Richard Lander	Professor
Britt Holbrook	Senior Engineer
John Thomson	Senior Machinist
Ray Gerhard	Electronics Engineer
Aaron Manalaysay	Postdoc
Matthew Szydagis	Postdoc
Richard Ott	Postdoc
Jeremy Mock	Graduate Student
James Morad	Graduate Student
Nick Walsh	Graduate Student
Michael Woods	Graduate Student
Sergey Uvarov	Graduate Student
Brian Lenardo	Graduate Student

UC Santa Barbara

Chamkaur Ghag

Lea Reichhart

A CONTRACTOR OF THE OWNER OF THE	
Harry Nelson	PI, Professor
Mike Witherell	Professor
Dean White	Engineer
Susanne Kyre	Engineer
Carmen Carmona	Postdoc
Curt Nehrkorn	Graduate Student
Scott Haselschwardt	Graduate Student

PI, Lecturer Postdoc

University of Edinburgh

Alex Murphy PI, Reader Paolo Beltrame Research Fellow James Dobson Postdoc

University of Maryland

Carter Hall

Attila Dobi

Jon Balaithy

O

PI, Professor Graduate Student **Richard Knoche** Graduate Student Graduate Student

University of Rochester

Frank Wolfs PI, Professor Wojtek Skutski Senior Scientist Eryk Druszkiewicz Graduate Student Mongkol Moongweluwan Graduate Student

University of South Dakota **Dongming Mei** Chao Zhang

PI, Professor
Postdoc
Graduate Student
Graduate Student
*Now at SDSTA

'aa'	
	Yale

Angela Chiller

Chris Chiller Dana Byram

Daniel McKinsey PI, Professor Peter Parker Professor Sidney Cahn Lecturer/Research Scientist Ethan Bernard Postdoc Markus Horn Postdoc Blair Edwards Postdoc Scott Hertel Postdoc Kevin O'Sullivan Postdoc Nicole Larsen Graduate Student Graduate Student Evan Pease Brian Tennyson Graduate Student Ariana Hackenburg Graduate Student Elizabeth Boulton Graduate Student

LUX at SURF

Sanford Underground **Research Facility** (SURF), located in Lead, SD

Open January 2011

Muon flux at 4850' level reduced by 10⁷ relative to the surface $55.2 \text{ m}^{-2}\text{s}^{-1} \rightarrow 1 \times 10^{-5} \text{ m}^{-2}\text{s}^{-1}$

Davis campus was also the site of the Homestake solar neutrino experiment

The LUX detector

Detector deployment underground

Detector transported underground July 11-12, 2012, deployed in autumn of 2012

LUX - A TPC at heart

Read out light signals, corresponding to both initial scintillation (S1) and electroluminescence (S2)

Cryostat

Water Shield

300 tonnes ultrapure water shield (>18 MOhm-cm), 20' high, 25' diameter SS tank to reduce cavern & cosmogenic backgrounds

Instrumented with 20 Hamamatsu R7081 10" diameter PMTs for veto of coincident NR candidates

⁸⁵Kr internal background

- β decay with $t_{1/2} = 10.7$ y
- Noble gas \rightarrow non-reactive
- Not removed by self-shielding
- ~100 ppb in purchased Xe
 →20 ppt ~ 122 PMTs

LUX goal: < 5 ppt Kr

Use gas chromatography to remove ⁸⁵Kr

→ processed 400 kg LUX xenon from 130 ppb to 4 ppt (average of 50 kg/wk processed during production running)

First LUX WIMP Search

D.S Akerib et al, arXiv:1310.8214, accepted for publication in PRL

And I understood that all of these sciences were very interesting, very attractive, but that they are precise and clear in inverse proportion to their applications to the questions of life... -Leo Tolstoy, *Confession* 30

Underground operation since January, 2013

Operate with xenon gas in January 2013, liquify xenon mid-Feb 2013!

Week

WIMP search data for non-blind analysis collected April 21 - August 8, 2013

31

Noble Element Scintillation Technique (NEST)

Very conservative!

Charge yield: 26 phe/e⁻

Event selection

Requirements for WIMP search candidate eventsS2 trigger (at least 2 trigger ch. \geq 8 phe within 2 µs)2 phe (2-fold coincidence) \leq S1 \leq 30 phe200 phe (8 e-) \leq S2 \leq 3300 phe

total area of other pulses in the event < 100 phe

all selection reqs applied

Separation of electronic and nuclear recoils with charge to light ratio

Electronic and nuclear recoil calibrations

WIMP search data, charge to light ratio

Efficiency of pulse finding and selection

Several independent estimates of total efficiency

We find good agreement between the data and simulation-estimated efficiencies.

D.S. Akerib et al., Nucl. Instr. Meth. A 675, 63 (2012)

Use an extended likelihood in WIMP search

$$\mathcal{L}_{WS} = \frac{e^{-N_s - N_{Compt} - N_{Xe-127} - N_{Rn222}}}{\mathcal{N}!} \prod_{i=1}^{\mathcal{N}} N_s P_s(\boldsymbol{x}; \boldsymbol{\sigma}, \boldsymbol{\theta_s}) + N_{Compt} P_{ER}(\boldsymbol{x}; \boldsymbol{\theta_{Compt}}) + N_{Xe-127} P_{ER}(\boldsymbol{x}; \boldsymbol{\theta_{Xe-127}}) + N_{Rn} P_{ER}(\boldsymbol{x}; \boldsymbol{\theta_{Rn}})$$

Parameter of interest: Ns

Nuisance parameters: N_{Compt}, N_{Xe-127}, N_{Rn/Kr-85}

Gaussian constrain to within 30% of the predicted rates

Backgrounds

1) Internal radioactivity, predicted by simulation/screening \rightarrow 129 events

2) Cosmogenically-activated 127 Xe (t_{1/2} = 36.5d) \rightarrow 15 events

3) ²¹⁴Pb (observe 18 mHz steady rate of ²²²Rn in detector) and residual ⁸⁵Kr $(4 \text{ ppt}) \rightarrow 10 \text{ events}$

²¹⁰Po rate reflects ²¹⁰Pb plate-out on surfaces prior to underground deployment 41

Use simulation in final model of WIMP signal

Radioactive materials model

Predict 129 events in WIMP search data

¹²⁷Xe model

44

²¹⁴Pb/⁸⁵Kr model

Predict 10 events in WIMP search region

Fit projections

Estimated background rates

Background Component	Source	10 ⁻³ [evts/keVee/kg/day]
Gamma-rays	Internal Components including PMTS (80%), Cryostat, Teflon	1.8±0.2 _{stat} ±0.3 _{sys}
¹²⁷ Xe (36.4 day half-life)	Cosmogenic 0.87 -> 0.28 during run	$0.5 \pm 0.02_{stat} \pm 0.1_{sys}$
²¹⁴ Pb	222Rn	0.11-0.22 _(90% CL)
⁸⁵ Kr	Reduced from 130 ppb to 3.5±1 ppt	0.13±0.07 _{sys}
Predicted	Total	$2.6\pm0.2_{stat}\pm0.4_{sys}$
Observed	Total	3.1±0.2 _{stat}

First WIMP search results

Low mass WIMP limit

Low mass WIMP limit

High mass WIMP limit

High mass - a few SUSY models

MasterCode project, O. Buchmüller, et al.

300 day WIMP search

Additional background studies would be a benefit

55

Reblind the data and reanalyze...

The LUX-ZEPLIN Experiment

I do the impossible, because the possible anyone can do.

- Pablo Picasso

US Groups

Brookhaven National Laboratory Brown University Case Western Reserve University LLNL SLAC South Dakota School of Mines and Technology South Dakota Science and Technology Authority Texas A&M University University Of Alabama University of California, Berkeley/LBNL University of California, Davis University of California, Santa Barbara University of Maryland University of Rochester University of South Dakota University of Wisconsin Physical Sciences Laboratory, Wisconsin Washington University Yale University

Non-US Groups

Imperial College, London LIP – University of Coimbra Moscow Engineering Physics Institute Oxford University STFC Daresbury Laboratory STFC Rutherford Appleton Laboratory University College, London University of Edinburgh University of Sheffield

LZ Collaboration currently 28 institutions!

The LZ detector

Scale up the detector, scale down the backgrounds...

Learn from LUX/ZEPLIN experiences...

<u>LUX</u>

Water tank deployment Ti vessels Thermosyphon cryogenics Dual-phase heat exchanger system Xe purity analytical systems Kr removal to very low levels Low background PMTs In-situ calibrations **Electronics** Davis campus infrastructure ZEPLIN III

background rejection at high field

LZ can have sensitivity to solar neutrinos

Want sensitivity to pp solar v signal if possible need to be much more careful with backgrounds!

"Ultimate" WIMP sensitivity limited by coherent ν 's

Rn screening program

Need significant reduction in internal backgrounds:

 Reduce ⁸⁵Kr to 0.01 ppt
Require much more stringent screening for ²²²Rn daughters
→ keep ²¹⁴Pb β decay to 10% of pp solar v rate, require 0.6 mBq of ²²²Rn

Desire screening sensitivity to O(1 µBq) level, limit each major component to ~10-30 µBq

Potential backgrounds in DM search region

a posteriori estimate of 8.3 mBq ²¹⁴Pb in LUX!

The "big picture" in direct detection experiments

A race to the bottom...

LUX/LZ will be the experiments to beat for the next decade!

Back-up

Thomas Schwetz-Mangold, ISAPP 2011

Thermal freezeout of dark matter

New stable states are produces in early universe when $H > \Gamma$ where $\Gamma \sim n < \sigma v >$

$$n \propto e^{-m_{WIMP}/T}$$
$$\Omega_{WIMP} \approx \frac{10^{-26} \text{ cm}^3 \text{s}^{-1}}{\langle \sigma v \rangle}$$

For $\Omega_{WIMP} \approx 1$, interaction rate at electroweak scale $(\sigma \sim 1/\text{few TeV}^2)$ gives correct relic abundance

 T_{FO} ~m/20 \rightarrow non-relativistic

Supersymmetry has long been favored to provide a WIMP candidate...

The known world of Standard Model particles

The hypothetical world of SUSY particles

Accurate measurement of pp solar $\boldsymbol{\nu}$ flux would constrain solar model

Projected LZ background rates

LZ R&D report

Table 1.3.2 Projected counts from uniform ER and NR backgrounds above ~5 keVnr in a 5.6-ton fiducial mass and 1,000 days, with ER discrimination predictions from NEST for different HV and light collection efficiency values, and assuming 50% NR acceptance after discrimination.

	Raw	99.5 % discrimination 100 kV HV, 10% LCE	99.8% discrimination 200 kV HV, 10% LCE	99.9% discrimination 200 kV HV, 15% LCE
ER: pp solar v	230	1.15	0.46	0.24
ER: Kr or Rn	46	0.23	0.09	0.05
NR: atmospheric v	0.50	0.25	0.25	0.25
NR: DSNB V	0.10	0.05	0.05	0.05
Total (5:30 keVnr)		1.7	0.8	0.6

Electron lifetime during first WIMP search

In-situ low-energy nuclear recoil calibration

- Mono-energetic neutron beam (DD generator), water collimated
- x-y imaging determines kinematics
- Separate S2 signals, combined S1 signal
- Results anticipated @ Lake Louise

Position reconstruction

Use ^{83m}Kr source data to calibrate light response

Internal source with 1.8 hr half-life Two internal conversion electrons: 32 keV followed by 9 keV

Define fiducial volume r < 18 cm, 7 < z < 47 cm, corresponding to 118±6 kg fiducial mass

¹²⁷Xe Background

Electron capture from S-wave orbital, $p+e^- \rightarrow n+v_e$

Set frequentist one-sided upper limit

Use profile likelihood ratio as test statistic

Generate pseudo-experiments for σ_{test} , compare the value of test statistic in data with the value of $q_{\sigma,i}$ from each pseudo-experiment

Set one-sided limit, so if $(\sigma-hat)_i > \sigma_{test}$, $q_{\sigma,i} = 0$

Hypothesis tests

Null hypothesis test

Observe null p-value of 34% at 33 GeV/c², corresponding to 0.4σ significance

LUX Kr removal

LZ deployment

Spin-independent contributions to WIMP scattering from quarks and gluons

Spin-dependent scattering

Dark matter production - collider searches

In the most generic dark matter searches, look for initial state radiation + missing energy

Collider sensitivity

For comparison with direct detection experiments, convert to scattering off nucleon

$$\sigma_{SI}^{UL} = 9 \frac{\mu^2 \sigma_{\chi\chi}^{UL}}{\pi M^4 \sigma_{\chi\chi}^{calc}} \text{ where } \mu = \frac{m_{\chi} m_p}{m_{\chi} + m_p}$$

Zhou et al, axxiv:1307.5327

Dark matter annihilation - indirect searches

Indirect search limits

Rn screening program

- Rn screening for LZ experiment
 - Broadly useful capability with applications in many experiments
 - Ονββ
 - Dark matter
 - Low background physics in general
 - As L3 manager, LZ project has built in funds based on my cost estimates for Rn system at Case/UMD
 - Would like to have multiple systems, one at home lab, another developed underground near detector
- To meet LZ goal of observing pp solar ν, need to limit ²¹⁴Pb β decay background from ²²²Rn emanation → require ≤ 0.67 mBq of ²²²Rn decays in active region (0.01 dru/(mBq/kg))
 - Require that each item is limited to 0.035mBq emanation
 - Assuming 10 major detector components (e.g., cables, PMTs, feed-throughs, etc.) and a margin of error of 100% in meeting target rate
 - Desire screening sensitivity to O(1 µBq) level (may want/ need to screen only a fraction of total item)

Background to solar v signal, potential background to DM search

82

LZ background studies

- Develop small test Xe chamber for background studies
 - ²⁰⁶Pb recoils are a major background in WIMP search, can significantly affect energy threshold → study backgrounds in ²¹⁰Pb plated on samples of PTFE
 - Excellent research experience for students, postdocs to learn to operate Xe chamber- can play vital role in LZ commissioning, operations
 - Opportunity to contribute expertise to large test chambers developed at SLAC/LBNL

²¹⁰Pb will plate onto the walls, half of the time see the α decay in detector, half the time see the ²⁰⁶Pb recoil

The Uranium-238 Decay Chain

Radon-related backgrounds

Potential backgrounds in DM search region

Estimating Rn-related backgrounds in data

Where are the Rn daughters located?

See radon progeny distributed throughout detector, except ²¹⁰Po which is expected to occur on surfaces due to plate-out of ²¹⁰Pb

Top-down view of Rn progeny

Measured rates of α recoils from Rn chain

LUX Preliminary

Decay Chain	Isotope	Half-life	Event Rate (mHz)	General Position
$^{238}\mathrm{U}$	222 Rn	3.82 dy	$18.6\pm0.2_{\rm stat}\pm4.2_{\rm sys}$	Uniform throughout bulk
	²¹⁸ Po	3.05 min	$15.7\pm0.2_{\rm stat}\pm3.5_{\rm sys}$	Uniform throughout bulk
	²¹⁴ Po	$162.30 \ \mu s$	$4.0\pm0.1_{\rm stat}\pm0.6_{\rm sys}\dagger$	Sparse throughout bulk
	²¹⁰ Po	138.38 dy	> 21.8*	Walls
			> 10.4*	Cathode
²³² Th	220 Rn	55.80 sec	$2.5\pm0.1_{\rm stat}\pm0.7_{\rm sys}$	Quadrant I, sparse throughout bulk
	²¹⁶ Po	0.15 sec	$3.0\pm0.1_{stat}\pm0.9_{sys}$	Quadrant I, sparse throughout bulk
	²¹² Bi	$60.54 \min$	$15.7\pm0.2_{\mathrm{stat}}\pm3.5_{\mathrm{sys}}$ ‡	Uniform throughout bulk
	²¹² Po	$0.30 \ \mu s$	not measured	not observed

† Adjusted for a 52% event reconstruction efficiency from measured value.

* These populations are suppressed due to S2 loss.

[‡] Undifferentiated from ²¹⁸Po rate.

Observe ~20 mHz ²²²Rn rate, approximately stable during underground operation Also observe 3 mHz ²²⁰Rn rate \Rightarrow ²³²Th contamination in detector

²¹⁰Po rate reflects ²¹⁰Pb plate-out on surfaces prior to underground deployment

Implications

LUX Preliminary

Background	Rate	Comparison/Context	
$F(\alpha, n)$ from ²¹⁰ Po α on PTFE	21.8 mHz = 0.017 n/day	PMT neutrons: 1.2 n/day all tubes	
²⁰⁶ Pb 102 keV recoils	$32.2 \mathrm{~mHz}$	Fiducialization removes these	
$\Gamma_{218Po_{\alpha}} > \Gamma_{214Pb_{\beta}} > \Gamma_{214Po_{\alpha}}$		PMT ER BG: 0.5 mDRU _{ee}	
^{214}Pb untagged β	0.11 - 0.44 mDRU_{ee}	100 kg unoptimized fiducial	
260 kg total active region	1	[D. Malling APS 2013]	

Range bounded by measured ²¹⁸Po and ²¹⁴Po α recoil rates

See approximately steady rate of radon progeny during underground running, the sources of which are under investigation. However,

contributions to our WIMP search background are within previous background estimations.

Extensions in theoretical ideas about DM

Self-interacting dark matter Dark mediated dark matter Flavor-changing dark matter

What as experimentalists can we do to think about ways that we could be missing possible DM signals?