ATLAS Beyond the Standard Model

Henri Bachacou CEA-Saclay / CERN

LBNL March 22nd 2012

The Large Hadron Collider (LHC)

- **pp collisions at** √s = 7 TeV (and PbPb at √s_{NN} = 2.76 TeV, not covered in this talk)
- LHC has performed extremely well in 2011:
 - → 3.65 10³³ /cm²/s peak luminosity
 - → 5.25 fb⁻¹ delivered
- 50 ns bunch spacing
- ~ 12 collisions / crossing during last months of data-taking

The ATLAS Detector

The ATLAS Detector Already close to nominal performance!

Muon Spectrometer	Toroids B.dl ~ 1-7 T.m RPC + TGC: triggers MDT + CSC: precision $\sigma/p_T = 2\%$ @ 50 GeV	0.0 0/2 0/4 0/6 0/8 1/0 EML 1 BOL Barrel Toroid
Hadronic Calorimeter	σ/p _T ~ 13% @ 1 TeV	BML
Hadronic Calorimeter	Fe+scint. or Cu/W+LAr $\sigma/E \sim 50\%/E^{1/2} \oplus 3\%$ Thickness ~ 10 λ	
EM Calorimeter	Lead+LAr $\sigma/E \sim 10\%/E^{1/2} \oplus 1.5\%$ Thickness ~ 24 X ₀	CSC TGC1 TGC2
Inner Detector	2 Tesla solenoid Si pixels + strips TRT $\sigma/p_T = 5 \times 10^{-4} p_T \oplus 0.01$	Persint

Outline (extended)

- → Jets + MET
- → Monojet + MET
- → Lepton(s) + MET
- → Tau's + MET
- → 3rd generation
- → Photon(s) + MET
- Heavy Resonances
 - → Dilepton, Dijet, top-antitop
 - → W', Diphoton, Photon-Jet
 - → Doubly-charged Higgs
 - → Heavy neutrinos
 - → Dibosons
 - → Excited leptons

<u>4th generation and</u> <u>heavy "quarks"</u>

- → **ť**'
- → **b'**

→ Leptoquarks

Long-lived particles

- → Displaced vertices
- → Disappearing track
- → Slow particles
- → Out-of-time decays
- TeV-gravity
 - → Black-holes
 - → monojets, monophotons

H. Bachacou, CEA-Saclay / CERN

LBNL, 22/03/2012

Outline

- → Dijet
- → Top-Antitop

Long-lived particles

→ Displaced vertices

→ Disappearing track

This is my own selection of some of the most recent topics.

Not enough time to show you everything.

For more: https://twiki.cern.ch/twiki/bin/view/AtlasPublic

Why look "beyond" the Standard Model?

- The Standard Model is a (very) effective theory that breaks down at a certain scale
 - → Hierarchy: quadratic divergence of the Higgs mass, extremely fine-tuned
 - → What is the underlying nature of EWSB?
- Dark Matter
 - → cannot be explained by SM
- Neutrinos have mass
 - → where are the right-handed neutrinos?
- BSM models attempt to solve the SM limitations

A very long list of models x signatures

A very long list of models x signatures

- Many extensions of the SM have been developed over the past decades:
- Supersymmetry^{*}
- Extra-Dimensions
- Technicolor(s)
- Little Higgs
- No Higgs
- GUT
- Hidden Valley
- Leptoquarks
- Compositeness
- 4th generation (t', b')⁴
- LRSM, heavy neutrino
- etc...

(for illustration only)

- 1 jet + MET jets + MET 1 lepton + MET Same-sign di-lepton **Dilepton resonance Diphoton resonance** Diphoton + MET Multileptons Lepton-jet resonance Lepton-photon resonance Gamma-jet resonance **Diboson resonance** Z+MET W/Z+Gamma resonance Top-antitop resonance Slow-moving particles Long-lived particles Top-antitop production
- Lepton-Jets
- Microscopic blackholes
 Dijet reconcepts
- Dijet resonance
- etc...

A complex 2D problem

Experimentally, a **signature standpoint** makes a lot of sense:

- → Practical
- → Less modeldependent
- → Important to cover every possible signature

Outline

- → Dijet
- → Top-Antitop

Long-lived particles

→ Displaced vertices

→ Disappearing track

Supersymmetry (with Missing Transverse Energy)

Cascade ending with LSP \rightarrow large MET

- 1 Jets+MET: Gluino and Squark production dominates
- 2 Leptons(+jets)+MET: lower branching ratio/cross-section but complementary
- 3 3rd generation (b or t)+MET:
 - → in cascade
 - → direct production requires > 1 fb⁻¹ several new results with 2 fb⁻¹
- 4 Photon(s)+MET: GMSB models

$$\begin{split} & \tilde{q}
ightarrow q \, \tilde{\chi}_1^0 \ & \tilde{g}
ightarrow q q \, \tilde{\chi}_1^0 \end{split}$$

- "Workhorse" analysis of SUSY+MET searches
- Select events with 2 to 6 jets
- Veto leptons and events with > 6 jets (left to dedicated highmultiplicity analysis)
- Trigger: Jet 75 + MET 55
 - $\epsilon > 98\%$ above turn-on
- Discriminant variables:
 - → H_T = sum of jet p_T (including jets with p_T > 40 GeV and $|\eta|$ < 2.8)
 - \rightarrow m_{eff} = H_T + Missing E_T

Optimize cut on m_{eff} and Missing ET for each jet multiplicity

$$\begin{split} & \tilde{q} \to q \, \tilde{\chi}_1^0 \ & \tilde{g} \to q q \, \tilde{\chi}_1^0 \end{split}$$

- Low jet-multiplicity: sensitive to squark production
- High jet-multiplicity: sensitive to gluino production

$$\begin{split} \tilde{q} &\to q \tilde{\chi}_1^0 \\ \tilde{g} &\to q q \tilde{\chi}_1^0 \end{split}$$

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

- Low jet-multiplicity: sensitive to squark production
- High jet-multiplicity: sensitive to gluino production

$$\begin{split} \tilde{q} &\to q \, \tilde{\chi}_1^0 \\ \tilde{g} &\to q q \, \tilde{\chi}_1^0 \end{split}$$

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

- Low jet-multiplicity: sensitive to squark production
- High jet-multiplicity: sensitive to gluino production

$$\begin{split} \tilde{q} &\to q \tilde{\chi}_1^0 \\ \tilde{g} &\to q q \tilde{\chi}_1^0 \end{split}$$

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

- Low jet-multiplicity: sensitive to squark production
- High jet-multiplicity: sensitive to gluino production

$$\begin{split} \tilde{q} &\to q \tilde{\chi}_1^0 \\ \tilde{g} &\to q q \tilde{\chi}_1^0 \end{split}$$

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

- Low jet-multiplicity: sensitive to squark production
- High jet-multiplicity: sensitive to gluino production

$$\begin{split} \tilde{q} &\to q \, \tilde{\chi}_1^0 \\ \tilde{g} &\to q q \, \tilde{\chi}_1^0 \end{split}$$

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

- Simplified model: m(squark) > 1.4 TeV, m(gluino) > 940 GeV
 OMOONA: m(squark) = m(shine) > 4.4 TeV(shine)
- CMSSM: m(squark) = m(gluino) > 1.4 TeV

H. Bachacou, CEA-Saclay / CERN

LBNL, 22/03/2012

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

SUSY with MET: Summary

SUSY: a lighter 3rd generation?

LBNL, 22/03/2012

SUSY: a lighter 3rd generation?

SUSY: Direct Sbottom Production

2 b-jets + Missing ET Use "contransverse mass": $m_{\rm CT} = \sqrt{\left[E_T(b_1) + E_T(b_2)\right]^2 - \left[p_T(b_1) - p_T(b_2)\right]^2}$ $m_{\tilde{b}}^2 - m_{\tilde{\chi}_1^0}^2$ Endpoint at: for ttbar ~ 135 GeV, for sbottom: $m_{\tilde{b}}$ 50 ATLAS Entries / 25 GeV Data 2011 差 SM Total L dt ~ 2.05 fb⁻¹, \sqrt{s} = 7 TeV top, W+hf 2-jet exclusive Z+hf for (300,100): Others 30 ---- μ̃ 300, χ̃, 100 GeV endpoint ~ 266 GeV 20 10 400 100 100 300 300 E^{miss} [GeV] 200 200 500 400 m_{cr} [GeV]

H. Bachacou, CEA-Saclay / CERN

LBNL, 22/03/2012

SUSY: Direct Sbottom Production

- Four thresholds to be sensitive over the entire (m(sbottom); m(neutralino)) plane
- m(sbottom) > 400 GeV for light neutralino

LBNL, 22/03/2012

Supersymmetry: Summary

- SUSY CMSSM is starting to be fine-tuned
 - → Of course we will continue looking and increasing our reach
- With 5 fb⁻¹, more SUSY prod. mechanisms open up → exclusive chargino/neutralino and 3rd generation production
- Focusing more and more on non-CMSSM scenarii: "Split", "squashed", R-parity violation
 - More exotic signatures:
 - → SUSY with low Missing ET
 - → Multi-jet resonances
 - → Long-Lived Particles (R-hadrons, staus)

Outline

- → Dijet
- → Top-Antitop

Long-lived particles

→ Displaced vertices

→ Disappearing track

Search for Heavy Resonance

Predicted by numerous extensions of the Standard Model:

- → GUT-inspired theories, Little Higgs \rightarrow heavy gauge boson(s) Z' (W')
- → Technicolor → narrow technihadrons
- → Randall-Sundrum ED → Kaluza-Klein graviton
- Experimental challenge: understand detector performance (resolution, efficiency) for a signal with (almost) no control sample at very high momentum → confidence in alignment, simulation, etc...
- Electrons and muons: reaching pT ~ 1 TeV!

Search for Heavy Resonance: dilepton channel

- Dimuon channel
- Alignment critical
 - → Now close to nominal (30 µm) in most of the detector
 - → Resolution 13% at $p_T = 1 \text{ TeV}$
- Require 3-station tracks for good resolution → loss of acceptance
 - → Now also using 2-station tracks in well-understood regions
 - → This Winter: installation of 75% of missing EEL's completed

Run Number: 190975, Event Number: 26669226 Date: 2011-10-13, 23:34:58 CET

Muon: blue Electron:black Cells: Files, EMC

m(μμ) = 1.25 TeV missing ET = 67 GeV

Persint

Search for Heavy Resonance: dilepton channel

- Dielectron channel
- Excellent resolution: < 2% at high momentum
- Poor charge measurement → no charge requirement in the dielectron channel

Search for Heavy Resonance: dilepton channel

- No deviation from SM is observed
- Sequential SM: m(Z') > 2.21 TeV (exp. 2.26 TeV)
 RS graviton (k/M_{Pl} = 0.1): m(G^{*}) > 2.16 TeV

H. Bachacou, CEA-Saclay / CERN

LBNL, 22/03/2012

Search for Heavy Resonance: Dijet Resonance

Search for Heavy Resonance: Dijet Resonance

"Search phase": frequentist approach

- → Binned likelihood (goodness of fit)
- → "BumpHunter" looking for an excess of any width over the entire spectrum
- "Limit phase": Bayesian approach (flat cross-section prior)
- Excited quark: m > 3.35 TeV at 95% CL

Search for Heavy Resonance: Dijet

m(jet-jet) = 4.0 TeV

Missing E_T = 100 GeV

Search for Heavy Resonance: Dijet Angular

- Most BSM signal are expected to be more central than QCD
- Study angular variable as a function of dijet mass
- Consider the two leading jets rapidity in their center of mass:

$$y^* = \pm \frac{1}{2}(y_1 - y_2)$$

Variable chi defined as: 0.15 $\chi \equiv \exp(|y_1 - y_2|) = \exp(2|y^*|)$ as a function of m(jet-jet)
Limit on Quantum Black Holes: 0
m(QBH) > 4.14 TeV (exp. 4.11) for h=6

Search for Heavy Resonance: Dijet Angular

- Most BSM signal are expected to be more central than QCD
- Study angular variable as a function of dijet mass
- Alternatively, look at:

$$F_{\chi} = \frac{N_{\text{central}}}{N_{\text{total}}}$$

where $N_{central}$ is $|y^*| < 0.6$

Limit on Contact Interaction:
 Λ > 7.6 TeV at 95% CL
 (expected: 8.2 TeV)

Search for Heavy Resonances: Top-antitop

- While SSM Z' has same BR than SM Z, many models give Top a special role
 - Top-color
 - RS KK gluon

favor a decay to top-antitop

- $tt \rightarrow WbWb$
- I+jets channel: lvb jjb
- Kinematic fit on W and top mass to find best jet combination

Top-antitop Resonance

RS model:

m(KK gluon) > 1025 GeV Leptophobic top-color Z': m(Z') > 860 GeV

Top-antitop Resonance

- For m(ttbar) > 1 TeV, specific boosted top reconstruction needed
- No public result yet

Outline

- → Dijet
- → Top-Antitop

Long-lived particles

→ Displaced vertices

→ Disappearing track

4th Generation Quarks

- Consistent with EW precision
- 4th generation would significantly enhance Higgs production cross section
 - → Stringent constraint from Higgs search
- Can provide enough CP violation to explain matter-dominated universe
- Loose constraints on CKM4 → decays to light quarks possible!
- t' or b' \rightarrow Wq: like top, but heavier
- $b' \rightarrow tW$: like top, but busier

Today focus on: t't' \rightarrow WbWb b'b' \rightarrow WtWt in e or μ + jets channels

$t't' \rightarrow WbWb \rightarrow Ivbbqq (I+jets channel)$

- Signature: I + ETmiss + ≥3 jets (I=e,µ) and b-tagging
- Main background: top
- Observable: reconstructed heavy quark mass
 3-jet events: m(jjj)
 4-jet events: kinematic fit
- Strategy:
 - → Combine 3-jet and 4-jet
 - → Constrain background systematics through *in situ* fit a.k.a. "profiling"
 - → Jet Energy Scale uncertainty improved by about factor 4 (!)

Constraining systematics in situ, a.k.a. "profiling"

	Powerful but requires				
	r owental bat requires	Source	Normalization	Shape	Fitted
careful understanding of syst. modelling!		$t\bar{t}$ cross section	YES	NO	YES
		$t\bar{t}$ fragmentation model	YES	YES	NO
		$t\bar{t}$ NLO MC generator	YES	YES	NO
		Top quark mass	YES	YES	NO
		Initial state QCD radiation	YES	YES	YES
		Final state QCD radiation	YES	YES	YES
		W+jets normalization	YES	NO	YES
	BEFORE:	Ratio of $W + \ge 4$ jets and $W + 3$ jets normalizations	YES	NO	YES
GeV]	-	W+jets matching/factorization scales	NO	YES	NO
	70 Before Fit e+≥4 jets	Z+jets cross section	YES	NO	NO
[1/(Data Data 	Single top cross section	YES	NO	NO
lreco		Diboson cross section	YES	NO	NO
l/dr	50 - F	QCD multi-jet normalization $(e+jets)$	YES	NO	YES
Ъ		QCD multi-jet normalization (μ +jets)	YES	NO	YES
	40 H Multi-jets	QCD multi-jet shape $(e+jets)$	NO	YES	NO
	$30\begin{bmatrix} - & - & - \\ - & - & - & - \\ - & - & - &$	QCD multi-jet shape (μ +jets)	NO	YES	NO
		Electron identification and trigger efficiency	YES	NO	YES
		Muon identification and trigger efficiency	YES	NO	YES
	is = 7 TeV	Jet reconstruction efficiency	YES	NO	NO
		Jet energy scale (inclusive jets)	YES	YES	YES
		b-quark jet energy scale	YES	NO	NO
ۍ د	50	Jet energy resolution	YES	NO	NO
Pir Bi		$E_{\rm T}^{\rm miss}$ modeling	YES	NO	NO
Data Evts		b- and c-quark tagging efficiency	YES	NO	YES
	100 150 200 250 300 350 400 450 500	Light-quark tagging efficiency	YES	NO	NO
	m _{reco} [Ge	V] Hardware problem modeling	YES	NO	NO
	- 1600	Luminosity	YES	NO	YES

Constraining systematics in situ, a.k.a. "profiling"

	Powerful but requires				
	r owen an bat requires	Source	Normalization	Shape	Fitted
careful understanding		$t\bar{t}$ cross section	YES	NO	YES
		$t\bar{t}$ fragmentation model	YES	YES	NO
	of evet modelling	$t\bar{t}$ NLO MC generator	YES	YES	NO
or syst. modeling:		Top quark mass	YES	YES	NO
		Initial state QCD radiation	YES	YES	YES
		Final state QCD radiation	YES	YES	YES
		W+jets normalization	YES	NO	YES
	AFTER:	Ratio of $W + \ge 4$ jets and $W + 3$ jets normalizations	YES	NO	YES
[1/GeV]		W+jets matching/factorization scales	NO	YES	NO
	70 _ After Fit e+≥4 jets	Z+jets cross section	YES	NO	NO
	-← Data -← Data t [†] (400 GeV)	Single top cross section	YES	NO	NO
lreco		Diboson cross section	YES	NO	NO
/dm	50 Z+jets -	QCD multi-jet normalization $(e+jets)$	YES	NO	YES
Zp	□ Single top □ Dibosons	QCD multi-jet normalization (μ +jets)	YES	NO	YES
	$40 \qquad \qquad$	QCD multi-jet shape $(e+jets)$	NO	YES	NO
		QCD multi-jet shape $(\mu + jets)$	NO	YES	NO
		Electron identification and trigger efficiency	YES	NO	YES
		Muon identification and trigger efficiency	YES	NO	YES
	Vs = 7 TeV	Jet reconstruction efficiency	YES	NO	NO
		Jet energy scale (inclusive jets)	YES	YES	YES
		<i>b</i> -quark jet energy scale	YES	NO	NO
g_	50	Jet energy resolution	YES	NO	NO
ja Pi		$E_{\rm T}^{\rm miss}$ modeling	YES	NO	NO
ata Evts		b- and c-quark tagging efficiency	YES	NO	YES
Δш		Light-quark tagging efficiency	YES	NO	NO
	m[Ge	Hardware problem modeling	YES	NO	NO
	····reco ·	Luminosity	YES	NO	YES

t't' \rightarrow WbWb \rightarrow Ivbbqq (I+jets channel)

- Data in agreement with SM expectation
- Assuming BR(t' → Wb) = 100%, m(t') > 404 GeV at 95% CL (expected limit: 394 GeV)

$b'b' \rightarrow WtWt \rightarrow lvbbqq + qqqq (l+jets channel)$

$b'b' \rightarrow WtWt \rightarrow Ivbbqq + qqqq (I+jets channel)$

- Observables:
 - # jets
 - # identified hadronic W's
- Control region: # jets < 6 → dominated by top-antitop and W+jets
- # hadronic W's well-described by simulation

b'b' \rightarrow WtWt \rightarrow Ivbbqq + qqqq (I+jets channel)

- Observables:
 - # jets
 - # identified hadronic W's
- Control region: # jets < 6 dominated by top-antitop and W+jets
- # hadronic W's well-described by simulation
- Signal region: # jets ≥ 6
- Constrain background in low jet and W multliplicity bins

b'b' \rightarrow WtWt \rightarrow Ivbbqq + qqqq (I+jets channel)

m_{h'} [GeV]

$b'b' \rightarrow Zb + X$

- Search for a resonance decaying to Z(→ee) + b-jet
- Inclusive search: reconstruc only one b' (other can decay to anything)
- Esp. relevant for Vector-Like Quarks
- Assuming VLQ coupling only to 3rd gen: m(b') > 358 GeV (95% CL)

H. Bachacou, CEA-Saclay / CERN

LBNL, 22/03/2012

4th Generation and Vector-Like Quarks: Summary

No time to show other analyses:

- → t' and b' dilepton searches (without btagging): sensitive to light quark decays
- → Vector-Like Quark searches

Here limits assume 100% BR:

Analysis	Lower limit (95% CL)	
t't' \rightarrow WbWb (l+jets)	404 GeV	
t't' \rightarrow WqWq (dilepton)	350 GeV	
b'b' $ ightarrow$ Wq Wq (l+jets)	480 GeV	
b'b' \rightarrow WqWq (dilepton)	450 GeV	
$\mathbf{Q}\mathbf{Q} ightarrow \mathbf{Z}\mathbf{b}\mathbf{+}\mathbf{X}$	400 GeV	
Single $\mathbf{Q} \to \mathbf{W} \mathbf{q}$	900 GeV	
Signel $\mathbf{Q} \rightarrow \mathbf{Z} \mathbf{q}$	760 GeV	

Still a lot to do! Decays to Zt and involving Higgs not considered yet

H. Bachacou, CEA-Saclay / CERN

Outline

- → Dijet
- → Top-Antitop

Long-lived particles

→ Displaced vertices

→ Disappearing track

Long-Lived Particles

Predicted by:

- → SUSY (R-parity violating or split/compressed mass spectra): stau, or gluino/stop hadronized into R-hadrons
- → Hidden Valley

Experimentally very diverse:

- → Depends widely on particle's properties: life-time, charge, decay
- → highly displaced vertices
- → highly ionizing (dE/dx)
- → slow (time-of-flight)
- → kinked tracks
- → disappearing tracks
- → out-of-time (wrt collision) decay

Long-Lived Particles Triggers

	Typical decay length
 (b-tagging triggers) 	(1 mm - 5 cm)
Trackless jet trigger:	1 - 3 m
→ decays late in inner detector	
→ jet E T > 35 GeV	
→ no tracks with p T > 1 GeV near jet	
→ muon spectrometer activity	
Hadronic / EM (decays beyond the	2 - 3 m
EM calorimeter)	
→ jet ET > 35 GeV	
→ no tracks with p T > 1 GeV near jet	
$\rightarrow E_{had} / E_{EM} > 10$	
Muon spectrometer cluster trigger	4 - 7 m
\rightarrow 3 muon triggers close from each other	7
→ no jets, no tracks	

Long-Lived Particles Triggers

Long-Lived Particles Triggers

 Typical docay longth

•	(b-tagging triggers) Trackless jet trigger: → decays late in inner detector	1 ypical 0 (1 mm - 5 1 - 3 m	5 cm)	gui
•	 → jet E T > 35 GeV → no tracks with p T > 1 GeV near jet → muon spectrometer activity Hadronic / EM (decays beyond the EM calorimeter) → jet ET > 35 GeV → no tracks with p T > 1 GeV near jet → log(Ehad /E EM) > 1.0 	2 - 3 m		
•	 Muon spectrometer cluster trigger → 3 muon triggers close from each other → no jets, no tracks 	4 - 7 m		
•	Muon spectrometer cluster trigger → 3 muon triggers close from each other → no jets, no tracks	4 - 7 m		

Long-Lived Particles: Decay in the Muon Spectrometer

- Hidden-Valley theories predict a hidden sector coupled to the SM only through some heavy communicator → weakly coupled → long-lived particles
- Ex: $h \rightarrow h_v \rightarrow \pi_v \pi_v \rightarrow 4b$'s
- Life-time of π_v is unknown
- Look for 2 pairs of b-jets appearing outside the calorimeter.
- Sort of b-tagging with the Muon Spectrometer!

Long-Lived Particles: Vertex Reconstruction in the Muon Spectrometer

Long-Lived Particles: Decay in the Muon Spectrometer

H. Bachacou, CEA-Saclay / CERN

LBNL, 22/03/2012

Long-Lived Particles: Disappearing Track

H. Bachacou, CEA-Saclay / CERN

LBNL, 22/03/2012

Long-Lived Particles: Disappearing Track

- Look at events with at least 3 jets and large missing ET
- Discr. Variable: pT of tracks with less than 5 TRT hits

IICV

SUSY searches	ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 2012)
MSUGRA/CMSSM : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 1.40 TeV $\vec{q} = \tilde{g}$ mass [$I dt = (0.03 - 4.7) \text{ fb}^{-1}$
MSUGRA/CMSSM : 1-lep + j's + E _{T,miss}	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041] 1.20 TeV $\tilde{q} = \tilde{g}$ mass
$MSUGRA/CMSSM : multijets + E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037] 850 GeV \tilde{g} mass (large m_0)
Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 1.38 TeV \tilde{q} mass $(m(\tilde{g}) < 2$ TeV, light $\tilde{\chi}_{1}^{0}$) ATLAS
Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 940 GeV \tilde{g} mass $(m(\tilde{q}) < 2 \text{ TeV}, \text{ light } \tilde{\chi}_1^0)$ Preliminary
$ \underset{\mathcal{Z}}{\overset{\oplus}{\longrightarrow}} \qquad \text{Gluino med. } \widetilde{\chi}^{\pm} \left(\widetilde{g} \rightarrow q \overline{q} \widetilde{\chi}^{\pm} \right) : 1 \text{-lep } + j's + E_{T, \text{miss}} $	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041] 900 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = \frac{1}{2}(m(\tilde{\chi}^0) + m(\tilde{g}))$
$GMSB : 2-lep OS_{SF} + E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-156] 810 GeV \tilde{g} mass (tan β < 35)
$GMSB: 1-\tau + j's + E_{\tau,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-005] 920 GeV \tilde{g} mass (tan $\beta > 20$)
$GMSB: 2-\tau + j's + E_{\tau,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-002] 990 GeV g̃ mass (tanβ > 20)
GGM : γγ + E _{τ.miss}	L=1.1 fb ⁻¹ (2011) [1111.4116] 805 GeV \tilde{g} mass ($m(\tilde{\chi}_1^0) > 50$ GeV)
Gluino med. \tilde{b} ($\tilde{g} \rightarrow b \bar{b} \bar{\chi}_1^0$) : 0-lep + b-j's + $E_{\tau,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003] 900 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 300 \text{ GeV})$
Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_1^0$) : 1-lep + b-j's + $E_{\tau,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003] 710 GeV \tilde{g} mass ($m(\tilde{\chi}_1^0) < 150$ GeV)
$ \underbrace{\widetilde{\mathfrak{g}}}_{\mathbb{F}} \qquad $	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-004] 650 GeV \tilde{g} mass ($m(\tilde{\chi}_1^0) \le 210$ GeV)
$ \underset{\Sigma}{\overset{\mathfrak{G}}{\longrightarrow}} \qquad $	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037] 830 GeV g̃ mass (m(χ̃ ₁ ⁰) ≤ 200 GeV)
Direct $\tilde{b}\tilde{b}$ ($\tilde{b}_1 \rightarrow b\tilde{\chi}_1^0$): 2 b-jets + $E_{\tau,miss}$	L=2.1 fb ⁻¹ (2011) [1112.3832] 390 GeV \tilde{b} mass ($m(\tilde{\chi}_1^0) < 60$ GeV)
Direct $\tilde{t}\tilde{t}$ (GMSB) : Z(\rightarrow II) + b-jet + E	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-036] 310 GeV \tilde{t} mass (115 < $m(\tilde{\chi}_1^0)$ < 230 GeV)
Direct gaugino $(\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow 3I \tilde{\chi}_1^0)$: 2-lep SS + $E_{T,\text{miss}}$	$L=1.0 \text{ fb}^{-1}(2011) [1110.6189] \qquad 170 \text{ GeV} \bar{\chi}_{1}^{\pm} \text{ mass } ((m(\bar{\chi}_{1}^{0}) < 40 \text{ GeV}, \bar{\chi}_{1}^{0}, m(\bar{\chi}_{1}^{\pm}) = m(\bar{\chi}_{2}^{0}), m(\tilde{I}, \bar{v}) = \frac{1}{2}(m(\bar{\chi}_{1}^{0}) + m(\bar{\chi}_{2}^{0})))$
Direct gaugino $(\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow 3 \tilde{\chi}_{1}^{0})$: 3-lep + $E_{\tau, \text{miss}}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-023] 250 GeV $\tilde{\chi}_{1}^{\pm}$ mass $(m(\tilde{\chi}_{1}^{0}) < 170 \text{ GeV}, \text{ and as above})$
AMSB : long-lived $\tilde{\chi}_1^{\pm}$	$ \tilde{\chi}_{1}^{\pm} \max \left(1 < \tau(\tilde{\chi}_{1}^{\pm}) < 2 \text{ ns}, 90 \text{ GeV limit in } [0.2,90] \text{ ns} \right) $
Stable massive particles (SMP) : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 562 GeV g mass
SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 294 GeV b mass
SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 309 GeV t mass
SMP : R-hadrons (Pixel det. only)	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-022] 810 GeV g mass
GMSB : stable τ	L=37 pb ⁻¹ (2010) [1106.4495] 136 GeV τ mass
RPV : high-mass eµ	L=1.1 fb ⁻¹ (2011) [1109.3089] 1.32 TeV \tilde{v}_{τ} mass ($\lambda_{311} = 0.10, \lambda_{312} = 0.05$)
Bilinear RPV : 1-lep + j's + $E_{\tau,miss}$	L=1.0 fb ⁻¹ (2011) [1109.6606] 760 GeV q = g mass (cτ _{LSP} < 15 mm)
MSUGRA/CMSSM - BC1 RPV : 4-lepton + E _{T,miss}	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-035] 1.77 TeV g̃ mass
Hypercolour scalar gluons : 4 jets, $m_{ij} \approx m_{kl}$	L=34 pb ⁻¹ (2010) [1110.2693] 185 GeV sgluon mass (excl: $m_{sq} < 100 \text{ GeV}, m_{sq} \approx 140 \pm 3 \text{ GeV}$)
	10 ⁻¹ 1 10
*Only a calentian of the qualitable made limits or new states or a	Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena shown

Exotic Searches ATLAS Exotics Searches* - 95% CL Lower Limits (Status: March 2012)

	Large ED (ADD) : monojet	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-096] 3.2 TeV M_D (δ =2)
suo	Large ED (ADD) : diphoton	L=2.1 fb ⁻¹ (2011) [1112.2194] 3.0 TeV M _S (GRW cut-off)
	UED : $\gamma\gamma + E_{T}$	L=1.1 fb ⁻¹ (2011) [1111.4116] 1.23 TeV Compact. scale 1/R (SPS8) Preliminary
	RS with $k/M_{\rm Pl} = 0.1$: diphoton, $m_{\rm rec}$	L=2.1 fb ⁻¹ (2011) [1112.2194] 1.85 TeV Graviton mass
nsi	RS with $k/M_{\rm Pl} = 0.1$; dilepton, $m_{\rm l}$	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007] 2.16 TeV Graviton mass
me	RS with $k/M_{\rm Pl} = 0.1$: ZZ resonance, $m_{\rm pl}$	L=1.0 fb ⁻¹ (2011) (1203.0718) 845 GeV Graviton mass
a di	RS with $q /q = -0.20$: $t\bar{t} \rightarrow l+jets, m$	L=2.1 (b ⁻¹ (2011) (ATLAS-CONF-2012-029) 1.03 TeV KK gluon mass
Xtra	ADD BH $(M_{TH}^{gqgK}M_{D}^{s}=3)$: multijet, Σp_{T} , N_{iete}^{tt}	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068] 1.37 TeV M _D (δ=6)
Щ	ADD BH $(M_{TH}/M_{D}=3)$: SS dimuon, $N_{ch, part}$	$L=1.3$ fb ⁻¹ (2011) [1111.0080] 1.25 TeV M_{\odot} ($\delta=6$)
	ADD BH $(M_{TH}/M_{D}=3)$: leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-147] 1.5 TeV M _D (δ=6)
	Quantum black hole : dijet, $F_{u}(m_{i})$	$L=4.7$ (b ⁻¹ (2011) (ATLAS-CONF-2012-038) 4.11 TeV M_{\odot} ($\delta=6$)
	qqqq contact interaction : $\chi(m_{\perp})$	L=4.8 (b ⁻¹ (2011) [ATLAS-CONF-2012-038] 7.8 TeV Δ
0	qqll CI : ee, $\mu\mu$ combined, \vec{m}_{μ}	L=1.1-1.2 (b ⁻¹ (2011) [1112.4462] 10.2 TeV A (constructive int.)
	uutt CI : SS dilepton + jets + $E_{T miss}$	L=1.0 fb ⁻¹ (2011) [1202.5520] 1.7 TeV A
	SSM Z' : m	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007] 2.21 TeV Z' mass
\geq	SSM W': m _{Telu}	L=1.0 fb ⁻¹ (2011) [1108.1316] 2.15 TeV W' mass
a	Scalar LQ pairs (β=1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ (2011) [1112.4828] 660 GeV 1 st gen. LQ mass
Ľ	Scalar LQ pairs (β =1); kin, vars, in uuii, uvii	L=1.0 fb ⁻¹ (2011) (Preliminary) 685 GeV 2 nd gen. LQ mass
<u>сл</u>	4^{th} generation : Q $\overline{Q} \rightarrow WgWg$	L=1.0 fb ⁻¹ (2011) [1202.3389] 350 GeV Q, mass
ark	4th generation : u u → WbWb	L=1.0 fb ⁻¹ (2011) [1202.3076] 404 GeV U, mass
dn	4 th generation : d d,→ WtWt	L=1.0 fb ⁻¹ (2011) (Preliminary) 480 GeV d, mass
θW	New quark b' : b' $\overline{b}' \rightarrow Zb+X, m_{\perp}$	L=2.0 fb ⁻¹ (2011) (Preliminary) 400 GeV b' mass
\geq	$T\overline{T}_{ave} \rightarrow t\overline{t} + A_{e}A_{e} : 1 - lep + jets + E_{T}$	L=1.0 fb ⁻¹ (2011) [1109.4725] 420 GeV T mass ($m(A_{a}) < 140$ GeV)
m.	Excited quarks : γ-jet resonance, m	L=2.1 fb ⁻¹ (2011) [1112.3580] 2.46 TeV q* mass
fer	Excited quarks : dijet resonance, \ddot{m}_{ii}	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038] 3.35 TeV q ⁺ mass
cit.	Excited electron : e-γ resonance, m	L=4.9 fb ⁻¹ (2011) [ATLAS-CONF-2012-023] 2.0 TeV e^* mass ($\Lambda = m(e^*)$)
Ě	Excited muon : μ-γ resonance, m	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-023] 1.9 TeV μ^* mass ($\Lambda = m(\mu^*)$)
	Techni-hadrons : dilepton, m _{ee/uu}	L=1.1-1.2 fb ⁻¹ (2011) [ATLAS-CONF-2011-125] 470 GeV ρ_{-}/ω_{T} mass $(m(\rho_{-}/\omega_{T}) - m(\pi_{T}) = 100 \text{ GeV})$
	Techni-hadrons : WZ resonance (vIII), m	L=1.0 fb ⁻¹ (2011) [Preliminary] 483 GeV ρ_{\pm} mass $(m(\rho_{\pm}) = m(\pi_{\pm}) + m_{W}, m(a_{\pm}) = 1.1 m(\rho_{\pm}))$
	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ (2011) [Preliminary] 1.5 TeV N mass (m(W _p) = 2 TeV)
ler	W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ (2011) [Preliminary] 2.4 TeV W _R mass (m(N) < 1.4 GeV)
0ŧ	$H_{L}^{\pm\pm}$ (DY prod., BR($H^{\pm\pm} \rightarrow \mu\mu$)=1) : SS dimuon, $m_{\mu\mu}$	L=1.6 fb ⁻¹ (2011) [1201.1091] 355 GeV H ^{±±} mass
	Color octet scalar : dijet resonance, m	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038] 1.94 TeV Scalar resonance mass
	Vector-like quark : CC, m	L=1.0 fb ⁻¹ (2011) [1112.5755] 900 GeV Q mass (coupling $\kappa_{nQ} = v/m_{Q}$)
	Vector-like quark : NC, milla	L=1.0 fb ⁻¹ (2011) [1112.5755] 760 GeV Q mass (coupling $\kappa_{\alpha O} = v/m_{O}$)
		10 ⁻¹ 1 10 10

*Only a selection of the available mass limits on new states or phenomena shown

A very short summary of the first two years

Unfortunately, still no hint of New Physics in the LHC data...

95% CL lower limits	1 fb⁻¹ (7/2011)	5 fb⁻¹ (2011)
CMSSM ($m_{\tilde{q}} = m_{\tilde{g}}$)	1 TeV	1.4 TeV
Z' (SSM)	1.8 TeV	2.2 TeV
Excited quark	2.9 TeV	3.4 TeV

Outlook

- Unfortunately, New Physics was not "around the corner"
- Experimental challenges as we enter further the Multi-TeV world:
 - → TeV leptons
 - → Boosted objects (W, top)
 - → Investigate less obvious signatures and pursue precision measurements
 - → Pile-up with \sim 30 interactions / crossing
- Expect 15-20 fb⁻¹ at 8 TeV by the end of 2012 followed by 300 fb⁻¹ at 14 TeV by the end of the decade (?)
- It's only the beginning!

Backup

Supersymmetry

- Extension of the Poincaré algebra
- Fermion ↔ Boson symmetry
- Solves many problems of the SM, esp. stabilizes Higgs sector '
- If R-parity (R = (-1)^{3(B-L)+2s}) is conserved, Lightest SUSY Particle (LSP) is an excellent Dark Matter candidate
- Phenomenology is **very** diverse

3. SUSY: b-Jets + lepton + Missing E_T

- What if gluinos decay preferentially to 3rd generation?
- Consider several pheno.
 scenarii, such as: Assume m(ğ) << m(t
 ₁) << m(q
 _{1,2}) ≈ m(b
 ₁)

Consider only gluino-gluino production followed by decay through off-shell stop:

 $\widetilde{g} \to \widetilde{t}_1^{\,*} t \ \to \ t t \widetilde{\chi}_1^{\,0}$

 Complex final states with lepton(s) and b-jets

Limit on gluino mass(m(χ₁⁰) < 80 GeV): 100 m(gluino) > 540 GeV at 95% C.L.

ATL-CONF-2011-130

m_∞ [GeV]

Supersymmetry without MET: an example

Extended SUSY models

- → Scalar gluon (not gluino!) has same R-parity as gluon → decay to pair of gluons
- Look for 2 back-to-back pairs of jets in 4-jet events

4. SUSY: diphoton + jet + Missing E_T

H. Bachacou, CEA-Saclay / CERN

LBNL, 22/03/2012

Search for Heavy Resonance: eµ

Total Bkg WW/WZ s = 7 TeVTop ••••• ν̃ (650 GeV) Z'(700 GeV) $Ldt = 0.87 \text{ fb}^{-1}$ $Z/\gamma \rightarrow \tau \tau$ 500 600 700 800 900 300 400 1000 m_{eμ} [GeV]

Data 201

Search for Heavy Resonance: dilepton channel

- Neutral heavy gauge boson
- Randall-Sundrum KK graviton excitation
- Technihadron

Sequential SM: m(Z') > 1.8 TeV at 95% C.L. RS graviton (k/M_{Pl} = 0.1): m(G) > 1.6 TeV at 95% C.L.

H. Bachacou, CEA-Saclay / CERN
Search for Heavy Resonance: W' \rightarrow Iv

- Heavy charged gauge boson
- Technirho, Little Higgs
- 1 lepton + Missing E_T
- Look for Jacobian peak

$$m_T = \sqrt{2p_T \not\!\!\!E_T (1 - \cos\Delta\phi_{\ell, \not\!\!\!E_T})}$$

Sequential SM: m(W') > 2.15 TeV at 95% C.L.

H. Bachacou, CEA-Saclay / CERN

Inclusive search Search for Heavy Resonance: Same-Sign Dilepton

40

Search for Heavy Resonance: Same-Sign Dilepton

Doubly-charged Higgs search

- → based on same analysis as inclusive search
- → window 10% around Higgs mass

Assuming $BR(\mu^{\pm}\mu^{\pm}) = 100\%$: m(H_L) > ??? GeV (exp. ??? GeV) m(H_R) > ??? GeV (exp. ??? GeV)

ATL-CONF-2011-127

Search for Heavy Resonance: Dijet

Wjj

Search for Monojets

Number of Extra Dimensions

Large Extra-D (ADD):

- → Brings the Plank scale down to the TeV scale: $M_{Pl}^2 \sim M_D^{2+n} R^n$
- → Graviton escapes detector
- Also Split SUSY
- Look for a jet and
 nothing else
- Challenge:
 - → Instrumental background
 - → Understanding $Z(\rightarrow vv)$ + jets

Strong Gravity at TeV-scale, Microscopic Black Holes

Large Extra-D (ADD):

→ Brings the Plank scale down to the TeV scale:

 $M_{Pl}^2 \sim M_D^{2+n} R^n$

- → Gravity becomes strong at TeV
- Microscopic black-holes decaying through Hawking radiation
- Large uncertainty on models due to our ignorance of quantum gravity

- Semi-classical models only for m(B.H.) >> m(threshold)
- A safe bet: decay is democratic and isotropic
- Look for (many) jets and leptons at high mass

Black Holes: Multi-Jets, Lepton+Jets, Same-Sign

H. Bachacou, CEA-Saclay / CERN

Black Holes: Multi-Jets, Lepton+Jets, Same-Sign

H. Bachacou, CEA-Saclay / CERN

t't' \rightarrow WbWb \rightarrow Ivbbqq (I+jets channel)

- Signature: I + ETmiss + ≥3 jets (I=e,µ) and b-tagging
- Main background: top
- Observable: reconstructed heavy quark mass
 - 3-jet events: m(jjj)
 - 4-jet events: kinematic fit
- Strategy:
 - → Combine 3-jet and 4-jet
 - → Constrain background systematics through *in situ* fit a.k.a. "profiling"
 - → Jet Energy Scale uncertainty improved by about factor 4 (!)

- Event selection:
- Exactly 1 e or µ with pT(e)>25 GeV, pT(µ)>20 GeV
- e (µ) +jets: ETmiss>35(20)
 GeV
- ETmiss+MT(W)>60 GeV
- At least 3 jets with pT>25 GeV, |η|<2.5 Leading jet pT > 60 GeV
- At least one b-tagged jets

Vector-like Quarks

- Chiral fermions are seriously constrained, but room for vector-like quarks
- Look for Wq or Zq resonance

W*/Z*

Q

v/l

W/Z

H. Bachacou, CEA-Saclay / CERN

1st Generation Leptoquarks

H. Bachacou, CEA-Saclay / CERN

1st Generation Leptoquarks

 $\beta = 1$: m > 660 GeV $\beta = 0.5$: m > 607 GeV New limits clearly surpass TeVatron Now working on 2nd and 3nd generation... 100% to eejj (pa ↓ 0.9 ATLAS Preliminary B(LQ 0.8 0.7 LQ<u>LQ</u> → eejj+evjj III ∞ 0.6 $\int Ldt = 1.03 \text{ fb}^{-1}$ 0.5 $\sqrt{s}=7 \text{ TeV}$ 0.4 0.3 eejj+evjj (Exp.) 0.2 eejj+ev jj (Obs.) 0.1 D0 (5.4 fb⁻¹) 100% to vv 300 500 400 600 700 800 900 1000 1100 M_{LQ} [GeV] Channel not included here

Top-antitop + Missing Energy

• Look for topology: $T T \rightarrow tt A_{n} A_{n}$

T can be:

- → Spin ¹⁄₂: 4th generation top partner
- → Scalar: stop, 3rd generation leptoquark

T Mass [GeV]

H. Bachacou, CEA-Saclay / CERN

arXiv:1109.4725

Long-Lived Particles: Decay in the Inner Detector

- R-hadrons (hadronized squarks or gluinos)
- Vertex outside the beampipe, in association with a high-pT muon
- Requires good understanding of tracking, detector passive material

