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Goals of the HL-LHC

* A fundamental scalar boson has been found
o The study of the Higgs boson will continue to be a central element

o Precise measurements of the Higgs couplings, tensor structure, rare decays
o Role of the Higgs in EWK SB through W; W, scattering

 Possibly exploration of new physics found at LHC

o Or a significant extension of exclusion reach for various BSM scenarios

forward jets




Challenges at HL-LHC

« Large samples needed to fully exploit LHC, goal is to collect x10 more
o <PU> = 140 at HL-LHC =>» 50nb/sec, collect 3000 fb!

* Some key signatures at HL-LHC
o Higgs VBF and W, W, scattering with forward jets, vertex identification for H>vyy

o Searches in final states with MET from LSP
o Precision studies of new physics which may be discovered at LHC
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CMS calorimeters in HL-LHC

CMS preliminary
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« Extensive studies of radiation damage
o Both in test exposures and using the ~30fb™t of CMS data
o Compared with CMS simulations and radiation model

* Have to replace the CMS endcap (1.5<In1<3.0) calorimeters e,

o Barrel ECAL /HCAL and HF (3.0<In[<5.0) can survive 3000 fb-1
o Replace ECAL and HCAL endcaps before HL-LHC (i.e. after L=300-50




CMS calorimeters in HL-LHC

CMS protons 7TeV per beam
Dose at 3000.0 [fb™"]

CMS Preliminary Simulation
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Maintain performance at extreme PU
Sustain rates and radiation doses
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Endcap calorimeter options

* Studying two options:
o Maintain current geometry (EE Shashlik)

* Replace ECAL endcap, refurbish HCAL endcap with radiation
hard technologies

* + Rebuild HE with increased depth and rad hard technology

o High Granularity Calorimeter (HGCal)
* Finely segmented calorimeter
* Contains both electromagnetic and hadronic sections
o 600 m? silicon pads in W/Cu struture
o Readout as much information as possible

 + Rebuild HE with reduced depth, and rad hard technolo
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* W-absorber, LYSO (CeF;)scintillator

¢ Compact (~11cm long), small Moliere
radius (13.7mm), high granularity
(14mm?) to mitigate pileup

« High light yield for good e/y energy
resolution ~10%/VE

W (2.5 mm)

/ LYSO (1.5 mm)

10 mm

Upstream
WLS Reservoir |“~~__
Fill and Purge
Monitoring
Connector and Fiber

Downstream Optical
Mixer and WLS return

3 mm
Photosensors

Endcap Calonmeter EE Sashlik

* Readout with capillaries
filled with liquid WLS
* Readout options being

evaluated now, GalnP or
SiPM
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Endcap Calorimeter: HGCal
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= ECAL (E-HG): ~33 cm, 25 X, 1A:

= 30 layers of Si separated by 0.5/0.8/1.2 X,
of alternating W, lead/Cu

= HCAL (H-HG): ~60 cm, 3.5A:

= 12 planes of Si separated by 40 mm of
brass

(fMS//. CMS Experiment at LHC, CERN
S

Data recorded: Thu Jan 1 01:00:00 1970 CEST
Run/Event: 1/1
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The environment in HL-LHC

e Two main scenarios for HL-LHC: with and w/o crab-cavities
o (d<p>/dz),,,,~1.0 2> 1.3 event/mm = i.e. up to 1.4-> 1.8 event/mm

* Precision timing capability to improve event reconstruction in the HL-
LHC environment

max

o Timing provides an additional and independent means for PU identification

* Soft tracks & ~1/3 of jet not reconstructed even with extended tracker
o Neutral energy from PU contributes about ~100% to 50 GeV jet @140PU
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Precision timing calorimeters
* Target resolution of O (20-30 psec)

o Allows reconstruction of H>vyy vertex and ~x10 pileup suppression

 Possible physics applications of timing information:

o the object level (e.g. identify forward PU jets for VBF Higgs, WW scattering)
o the single hit level (e.g. timing-based ECAL cluster cleaning)
o
o

the event level (hard scatter vertex reconstruction, e.g. for H>vvy)

separate spatially overlapping vertices that originate at different times

t=t, t=t+10ps t=1,-10ps

Liill)l)
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Precision timing calorimeters
* Target resolution of O (20-30 psec)

o Allows reconstruction of H>vyy vertex and ~x5-10 pileup suppression

 Possible physics applications of timing information:

o the object level (e.g. identify forward PU jets for VBF Higgs, WW scattering)
o the single hit level (e.g. timing-based ECAL cluster cleaning)
o
o

the event level (hard scatter vertex reconstruction, e.g. for H>vvy), MET

separate spatially overlapping vertices that originate at different times
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Fast timing in calorimeters

* GEANT simulation studies: overlay H=2>vyy with 100
MinBias events

* To leverage the PU removal ability, need combined
measurement of energy and timing.
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Fast timing in calorimeters

 Investigating options of high precision timing detector
o Secondary emitter material as active element in calorimeter
o Crystal based calorimeter to directly extract timing

* Development of prototype detectors
o Measure the fundamental ingredients, understand limitations
o Tests of prototype detectors in the lab at Caltech and beams in FNAL
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Fast timing: secondary emitter

 Starting point in exploring precision timing in calorimeters
o Secondary emitter material as active element in a sandwich type calorimeter

o First proposed: “On possibility to make a new type of calorimeter: radiation
resistant and fast”, A. 1. Ronzhin et. al, preprint IFVE 90-99, 1990.

MCP detection efficiency from Hamamatsu catalog

Types of Radiation Energy or Wavelength | Detection Efficiency (%)
Electron 0.2keV to 2 keV 50 to 85
2keV to 50 keV 10 to 60
0.5keV to 2 keV 5t058
lon (H*, He*, Art) 2 keV to 50 keV 60 to 85
50 keV to 200 keV 41060
uv 300Ato 1100 A 5t0 15
1100 A to 1500 A 105
Soft X-ray 2At050A 5t015
Hard X-ray 0.12A1002A to1
High energy particle (p, z)| 1 GeV to 10 GeV to 95
Neutron 2.5 MeV to 14 MeV 0.14100.64

o Most of secondary particles are low energy - MCP very efficient
o MCP are intrinsically very fast - calorimeter with very fast timing
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* Secondary particles from EM shower are detected by MCP

o Signal is proportional to the number of secondaries = energy of parent
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electron beam
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Test beam, tungsten absorber thickness changed

electron
multiplier

MCP
schematics E

Radiation resistant and fast SM detector

1990.

1. A. A. Derevshchikov, V= :
A. I. Ronzhin, “On possibility to make a new type of calorimeter:

radiation resistant and fast”. Preprint IFVE 90-99, Protvino, Russia,
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Experimental setup

*  We performed an experiment in the FNAL MTest area with electron
and proton beams (Nov 2013 and Jan 2014):

o “Development of a new fast shower maximum detector based on micro channel plates photomultipliers
(MCP-PMT) as an active element”, A. Ronzhin, S. Los, E. Ramberg, M. Spiropulu, A. Apresyan,

S. Xie, H. Kim, A. Zatserklyaniy; NIM A 759 (2014) 65-73

Cherenkov  Two types of MCP-PMTs used
ch8 o 2 units of Photek 240 (PK A/B)

o 1 unit of Photonis (PH)

aa

¥4 © DAQ is composed of 2 DRS4 waveform

ché % digitizer units
o attenuated input signals from one DRS4
/“chs to cover the full dynamic range
o triggered on scintillator counters
t o Cherenkov radiator used to sele T
beam electron events 2 oy

o

=
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Test beam setup

Photek A an B ;

Photonis '
T \ ‘ DRS4 boards

. Primary proton beam: 120 GeV/c, beam of positrons: 12
and 32 GeV/c

* Vary several parameters of the setup
o Change lead thickness; Add quartz radiators in front of PH

CALIFORNIA INSTITUTE OF TECHNOLOGY



Photek 240 and Photonis MCP-PMT

10 ym pore size, 41mm aperture, PC-MCP distance

~5mm, rise time~60 ps, SPTR~40 ps

i Nop

rise time~300 ps, SPTR~120 ps,
much cheaper than Photek

25 um pore size, 6Ox60mm2 sensitive area,

kKStop |

u

50.0mvQ

F'M1.00ns A Ch1 \ -270m\
L i+~ 11.3000ns

C W50, omvo M4.00ns A Ch1 \ -270mv 4

\J

L 117720.4800ns



Event selection and analysis

* Assign a time stamp to each event
o Mean value of Gauss fit to the pulse at maximum

* Event selection to eliminate abnormal pulses

o Pulses with an irregular peak profile were rejected
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Characterization of the setup

 Electronic time resolution

o Measure time difference of a split signal from one
Photek into same DRS4: ~5 psec

o New DRS54 calibration can achieve ~1-2 ps
S. Ritt: https://indico.cern.ch/event/306859/session/3/contribution/10

« TOF time resolution for protons
o Resolution for the two Photek 240 placed in line
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Measurements with et beam

* Observe increase in amplitude with increased quartz thickness
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Time resolution and secondary emission
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* Time resolution 15-30 ps achieved in beam for shower arrival

* No significant difference in TR at 12 GeV vs 32 GeV beamsyi,

o No big TR changes for different lead thickness in these measurer
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Measurements with et beam

« Shower particles are detected both through Cherenkov (in the entry
window) AND direct interaction with the MCP.

o Significant component from direct detection of the secondary emission

* ~70% of the MCP-PMT response is due to the secondary emission and
30% is due to Cherenkov light in the 2 mm thick input window.
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T-1058: Secondary Emission Calorimeter

 Similar setup as on previous slide, but using Photonis MCP
which allows reverse bias voltage on PC
o Turn off Photocathode, remove ambiguity Cher/Secondary emission

* Achieve 40 ps resolution, as expected from extrapolation of
data from previous page.

Photonis
CP-PMT

w
(1)

- =42 +/- 4 ps

Number of Events
w
=)
[

N
a
T T

lead
absorber




T-1058: Secondary Emission Calorimeter

« Tungsten / MCP sampling calorimeter in a vacuum vessel.
« PSEC4 or DRS4 readout, LAPPD MCP layer.

* First beam test 2 weeks ago with one MCP layer live.

* Option for a shower max timing layer in LHC detectors.
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Crvstal calorimeters
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ely

* Main ingredients can be factorized

* EM shower development (t-) shown ~20 psec;
NIM A 749 (2014) p 65-73

o In the same paper we studied the effects of t, and
tp: ~15psec and 6psec

« Test beam in August: focus on studies of £ and £
Photo Detector

Precision timing with crystals

/'

AN

Crystal

tTOF

)| I
! \

Conversion | Scintillation
Depth process

3) tp. ???
Transit time
jitter

4) tp: ~15 ps
Photo
detector
jitter




Precision timing with crystals

* With the secondary emission setup we showed that
o Timing resolution of the MCP-PMT (%,) is about 11 ps
o The electronic time resolution of the (f;) DAQ system is about 6 ps

o Time of arrival of the front of an electromagnetic shower can be determined
with a precision < 20 ps.

o =2 we conclude that the associated time scale £ does not contribute
significantly to the time resolution of our experimental setup.

* To complete the characterization of the TOF resolution

o Focus on contributions due to fluctuations in the scintillation process (;),
and in the optical transit (£;) to the photodetector.

CALIFORNIA INSTITUTE OF TECHNOLOGY




UL SCHERRER INSTI
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Precision timing with crystals

* Characterize the impact of 5 and #; we use two independent
setups which isolates the two components.

1. Effect of scintillation (f5): 2 measure TOF resolution with a sampling
calorimeter composed of a (1.7cm)3 LYSO cube as the active scintillating
element behind about 4.5X, of lead.

2. Optical transport effects (£;): 2 measuring TOF resolution with a LYSO/W
shashlik calorimeter, with light extracted through WLS fibers as well as
through direct optical coupling to the edges of a few LYSO layers.



Photon Traces in LYSO Crystal

> For high energy showers in high light yield crystals, number of

scintillation light yield is very large (>10° / GeV).
» Photon detection at one location in the crystal will be an averaged

transit time spectrum

R

- é.-\?.'p-‘ e
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Beam runs

* 120 GeV proton, and 4, §, 12, 16, 32 GeV runs with electrons

o Very fast rise time of scintillating crystal.
o No obvious pulse shape dependency on particle type.
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Reference detector

Time reconstruction

Measure the time of flight resolution between reference
MCP-PMT and scintillation light

o Signal in the reference are from Cherenkov light in the MCP-PMT window

Time stamps in the detectors are reconstructed with:

o Mean of a Gauss fit near the pulse maximum for the reference detector
o Constant fraction, fit on the rising edge for the LYSO detector
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xperimental setup:

Scintillation Time ¢,

2x2mm? trigger T ¢ e

Beam
Reference

r PPoozsos | MCP'PMT
2x2 mm? 8 . g i Detector

Scintillator Reference

Trigger Photodetector I..eaq
% WSure t, Shielding

absorber
.l:l 1.7x1.7x1.7cm?
¥——— LYSO Crystal

Scintillator
Scintillation Signal
Photodetector
Measure t .

 Study the effect of scintillation (of LYSO) on time resolution

« Minimize the effect of optical transit by using a relatively small
LYSO crystal (1.7cm x 1.7cm x 1.7cm cube) $

4.5 Xo Lead
o Radiator

Downstream | T s e g ie
MCP-PMT ¢f ! "N (1.7cm)’LYSO

Detector | & " Crystal Cube

ZX\TUTE ON



An aside on light detection

* LYSO cube is small in size, capture small portion of shower
o ~20% resolution at 32 GeV e beam

I
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Resolution = 20 %
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An aside on light detection

Dedicated runs with no LYSO in the
beam

o Stray “shower-type” events with Photek > 80% __—
contamination: scintillation signal can’t be
reliably extracted

-
. —'\",,, — —

o Same setup with Hamamatsu has < 10%
contamination: negligible effect on the
scintillation signal.

< Use Hamamatsu MCP in the following
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Time Resolution [ps]
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Time resolution

« Note: energy
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energy
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xperimental setup:

Beam
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Scintillation Signal
Photodetector

Optical Transit ifL

Scintillation Signal
Photodetector

Measure t1

Trigger \f
"~

1.2x1.2 cm? area
24.5 X(J length

Reference
Photodetector

Measure t0

Beam

2x2mm? trigger

4 x DSB1 / \

WLS Fibers

Hamamatsu .
MCP-PMT

Downstream
Fiber Readout

Hamamatsu
MCP-PMT

Upstream Fiber
Readout

tungsten
hlik Cell

Reference

| Photek 240

* MCP Detector

1. Maximize optical transit time jitter: read Shashlik cell fibers
o WLS fiber readout further modulates the pulse: study the effect

single LYSO tile
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|:| Photosensor directly on LYSO tile
|:| Shashlik with Y11 fibers
\:| Shashlik with DSB1 fibers

%ﬁq
0 100 200 300 400 500 600 700 800
time [200 psec/bin]

Number of Events

N w B (9] (2] ~ ® ©
o o o (=] [=] o (=] (=]

-
o

o
'

16 GeV electrons

Impact of the WLS material

" 6=311 +/- 11 ps Y11

- :

C w

E 5 30
- 8 F
: ol
= = 251
= 20
[ h C
05 05 5 2 2

« Compare pulse shapes of different WLS materials : Y11 vs

F 6=139 +/- 9 ps

DSB1

9

4

-3.2

-3

-2.8

-2.6

DSB fibers provided by Randy Ruchti

o Significantly faster rise time with DSB (~2.4 ns) compared to Y11 (~7.1 ns).

« Timing resolution expected to scale accordingly
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Simulation of pulses

Photosensor directly on LYSO tile

2
lll

............................................................................

Shashlik with Y11 fibers

Shashlik with DSB1 fibers
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Energy measurement

(o}
o

;_Resolution =45%

N
o
TT T T1

Number of Events

(o2}
o
T 11

a
o
TT [ TT11

40}

30F
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10 X&LL
O_I 1 | 1 1 | 1 1 | I I I | I I | I 1

80 100 120 140 160 180 200
Pulse Integral [V]

Histogram of the pulse integral for events recorded using the LYSO-
tungsten shashlik calorimeter using the DSB1 fibers for a 32 GeVbeam
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N
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TOF Resolution [ps]

400

300

200

100

—&— Shashlik cell w/DSB1 Fibers
—&— LYSO Cube

Shashlik Fiber TOF resolution

is about 2 times worse than

LYSO cube at the same amplitude.
Note: Rise time for DSB1 Fibers is

also 2 times slower.

Amplitude [mV]

Time resolution

Observe 1/VE dependence of
time resolution

Contributions from reference
time measurement etc.:~20 ps

Few 10 psec resolutions
shown to be achievable with
Shashlik setup

Effects of optical transit
time jitter seem to become
sub-dominant at high photo-
statistics

TUT
e(,“\ EO,-
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Algorithm developments

@ -32 GeV Electron Bea
S 4532 GeV Electron Beam 30 5=87 psec
@ [ 0=104+/-5ps u
S a0f o5l
s F S
E 35+ -
=z C -
30F 20—
25f E
C 15—
20F -
15F 10—
10F n
0I_2_4IIII2_5IIII2_6IIII2_7IIII2_3IIII2_9II‘I3IIII3_1I :||||||||||||| cva b b b b b Py iy
At[ns] -%.5 -04 -03 -02 -01 0 01 02 03 04 0F
Rising Edge Fit Full pulse fit

 Indications that the results will improve with better
extraction of the time stamp from the events



Future plans

* Optimize light output onto photo detector:
o Shorter WLS fibers, thicker fibers (currently 1 mm-> go to 1.2 mm)
o Test capillaries with fast WLS as soon as available

* Optimize pulse reconstruction.

o Current results use rising edge only: pulse shape should gain performance.

 Better time reference:
o Need order few ps tag on the incoming particle

* Reduce noise of the DAQ: PSEC4 vs DRS4

 Use full matrix to ensure shower containment:
o Relative time resolution among adjacent channels.

» SiPM/GalnP photosensors
o Optimization of the PCB board in collaboration with FNAL experts <y

/3
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Summary

Timing can be a solution for PU mitigation @HL-LHC
o Is part of CMS Phase 2 upgrade Technical Proposal
o Prototype detectors that achieve time resolution of ~20 psec

o Ongoing work towards developing a technology applicable
to the CMS endcap calorimeter upgrade

New type of calorimeter (SEC) under development at
FNAL, in collaboration with UChicago and FNAL

CALIFORNIA INSTITUTE OF TECHNOLOGY







Photo-detector timing performance

* Typical timing performance parameters of photo detectors
o rise time, single photon timing jitter, n-photon timing jitter.

* We measure signals with many photons there may be

additional factors typically not quoted by manufactures, e.g.
the 100000-photon timing jitter.

o Part of our program is to characterize the timing performance of various
photo detectors, such as PMTs, SiPM, GaInP, MCP

Hamamatsu MCP-PMT

4 E OF TECHNOLOGY



Pulse shape and rising edge

 Solid crystal directly coupled to MCP: rise time ~0.7 ns

o WLS and solid LYSO rise times are 1 order of magnitude faster than current
ECAL

* Plan to do these studies with PbWQO; improved timing for EB
electronics upgrade

LN I S A B R

£ I

Solid LYSO crystal pulse I/

4 shape with MCP and DRS4 i
08

Average Shashlik pulse
shape with MCP and DRS4

Current ECAL pulse shape
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Scintillation and shower properties

« Timing information is extracted from the leading edge of the signal — the
rise time of the light output is important.

o LYSO: Scintillation light rise time t; = 75 ps*, ~30K photons/MeV
* From simulation: shower fluctuations in high P; photon showers cause

fluctuation of the mean shower time of O(10) psec, dominated by the
conversion depth.
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LLocal tile readout
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* Directly mount MCP on LYSO tiles
» Also observe 1/VE dependence on time resolution
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» Need to improve light collection efficiency, similar to/f

AT
0 <
1891 S
S,
6:) \f)




kT

Simulation of the full chain
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Figure 1.1: Observed and projected precision on Higgs boson couplings as function of boson or
fermion masses.




All Particles

1e+09
1e+08
1e+07 :ﬁ
1e+06 5
x
: 100000
/ﬁﬁmm ‘.-._.-‘IF-iI- 10000
—({] [ |”m|m|= — . yi=
— 1000

0 200 400 600 800 1000 1200 1400

CMS FLUKA geometry v.3.7.0.0 Z [cm]

Figure 1.5: Flux of all particles in the CMS cavern at an instantaneous luminosity of 5 X
103 cm 2571
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Dose, 3000 fb™
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Figure 1.6: Absorbed Dose in the CMS cavern after an accumulation of 3000 fb ™" delivered
luminosity.
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Neutrons, 3000 fb'
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Figure 1.7: Neutron Fluence in the CMS cavern after and accumulation of 3000 fb™" delivered
luminosity.
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Optical transit time jitter

« Simulate time of arrival of scintillation photons inside a LYSO crystal.

* Optical transit time jitter small along the evolution of the shower, even
in large crystals
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