Research Progress Meeting

The SuperB Project

Francesco Forti, INFN and University, Pisa December 6, 2007

Outline

- SuperB physics
- SuperB Accelerator
- SuperB Detector
- Conceptual Design Report
- The Tor Vergata site
- Perspectives

Why flavour physics

- . Explore the origin of CP violation
 - Key element for understanding the matter content of our present universe
 - Established in the B meson in 2001
 - Direct CPV established in B mesons in 2004
- 2. Precisely measure parameters of the standard model
 - For example the elements of the CKM quark ^B mixing matrix
 - Disentangle the complicated interplay between weak processes and strong interaction effects
- 3. Search for the effects of physics beyond the standard model in loop diagrams
 - Potentially large effects on rates of rare decays, time dependent asymmetries, lepton flavour violation, ...
 - Sensitive even to large New Physics scale, as well as to phases and size of NP coupling constants

B Factories Success

Both B-Factories exceeded expectations

PEP-II (BaBar): 477fb⁻¹ Peak: 1.2 x 10³⁴ cm⁻² s⁻¹ KEK-B (Belle): 754 fb⁻¹ Peak: 1.7 x 10³⁴ cm⁻² s⁻¹

The next step: New Physics @ SuperB

- - \Box The scale of the new physics Λ
 - The effective couplings C's
 - Different strengths (ie different interactions)
 - Different patterns (ie dictated by symmetries
 - With 5-10x10¹⁰ bb, cc, $\tau\tau$ pairs we can:

NP(Λ) found at LHC

- * determine the NP FV and CPV couplings
- * look for heavier states
- * study the flavour structure of NP

NP(\Lambda) not found at LHC * look for indirect NP signals

- * understand where they
 - come from
- * exclude regions in the parameter space

accessi

Paths to New Physics

Dozens of observables

F.Forti - SuperB Project

Test of CKM paradigm

SuperB Dec

Dec 6, 2007

New Physics in $\triangle F=1$ Penguins some of recent QCDF estimates $sin 2\beta_{eff}^{f} - sin 2\beta$ sin2b in b \rightarrow s penguin transitions differs from that measured in $b \rightarrow c\bar{cs}$ φKs Theory error on ΔS from penguin mode η'K golden modes. > $\pi^0 K_S$ $\sin(2\beta^{\text{eff}}) \equiv \sin(2\phi_1^{\text{eff}})$ QCDF: (Beneke, PLB620 (2005), ωKs 143-150, Cheng et al., PRD72 LP 2007 (2005) 094003 etc. PRELIMINAR' KKK_S SCET: (Williamson & Zupan, World Average 0.68 ± 0.03 b→ccs hep-ph/0601214) BaBar 3Ks $0.21 \pm 0.26 \pm 0.11$ **°**∠ Belle $0.50 \pm 0.21 \pm 0.08$ $sin2\beta$ experimental Averade 0.39 ± 0.17 uncertainty. BaBa $0.58 \pm 0.10 \pm 0.03$ ≌ Belle $0.64 \pm 0.10 \pm 0.04$ -0.1 0.2 0.1 0 Avera 0.61 ± 0.07 BaBa ∆sin2ß $\pm 0.24 \pm 0.04$ Belle $0.30 \pm 0.32 \pm 0.08$ Theory predicts a positive shift (sign Average gn. 0.58 ± 0.20 $0.40 \pm 0.23 \pm 0.03$ Ł prediction very solid) Belle $0.33 \pm 0.35 \pm 0.08$ °e Averade 0.38 ± 0.19 BaBar $\frac{10.22}{10.02} \pm 0.09 \pm 0.08$ Experiment shows a negative, albeit 0.61 *** ್ಲಿ Averade BaBar 0.62 188 ± 0.02 marginally significant shift Ľ Belle $0.11 \pm 0.46 \pm 0.07$ 8 Averad 0.48 ± 0.24 A discrepancy would be sign of NP phase 0.90 ± 0.07 °⊻ Belle $0.18 \pm 0.23 \pm 0.11$ ھے Averade 0.85 ± 0.07 $-0.72 \pm 0.71 \pm 0.08$ $\chi(\delta^{d}_{RR})_{23}$ $\phi, \eta', (KK)_{CP}$ $\mathbf{b}_{\mathbf{R}}$ Belle °e $-0.43 \pm 0.49 \pm 0.09$ ** ¥ Avera 0.52 ± 0.41 B^0 BaBar 0.76 ± 0.11 🖞 Belle .68 ± 0.15 ± 0.03 🖓 🖏 \leq K_{S}^{0} Average 0.73 ± 0.10 -2 0 2 -1 histics is nee o sort this out Dec 6, 2007 F.Forti - SuperB Project 10

N.P. sensitivity

An example: MSSM...

... MSSM with non diagonal mass insertion

Constraint from Δm_d Constraint from $\sin 2\beta \& \cos 2\beta$ Constraint from $sin 2\beta$ All constraints

★ S.M.

Let us now consider a MSSM with generic soft SUSY-breaking terms, but dominant gluino contributions only

 $\Lambda = 1 \text{ TeV}$

A clear evidence of new physics!!!

Assuming natural couplings in SUSY-MI SB probes scales larger than 20 TeV (and up to ~300 TeV)

B_d mixing processes can get contribution from NP They are parametrized by an effective amplitude ratio

NP for $\Delta F=2$ processes

Huge improvement on limits possible at SuperB.

Minimal Flavour Violation

Suppose that there are no new physics flavour couplings(MFV). CP violation comes from SM Yukawa couplings. $SM Scale ~2.4 TeV = Y_t \sin^2 \theta_w M_w / \alpha$ The top quark contribution dominates the SM. $\delta S_0 = 4a \left(\frac{\Lambda_0}{\Lambda} \right)$ □ NP contribution is: Real Wilson coefficient O(1)New Physics Scale □ MFV Includes many NP scenarios i.e. 1HDM/2HDM, MSSM, ADD, RS. What is the energy scale that we are sensitive to? $B \rightarrow \tau \nu$ Higgs (Ver (TeV) [™] (TeV) [™] 3² 3² MH (TeV $\int 1-\tan^2\beta \frac{m_B^2}{1-\tan^2\beta}$ $\tan^2 \beta$ mediated **2HDM-II** $r_{H} =$ 75ab-1 transitions $\varepsilon_{0} = 0.01$ 2ab⁻¹ $\mathcal{B}_{\underline{SM+NP}}$ LEP m_H>79.3 Ge 22 1.5 b 1.5 B-factories exclude B-factories exclude 1 $(H^{+}.W^{+})$ 0.5 0.5 tan^β tanß F.Forti - SuperB Project 13 Dec 6, 2007

Lepton Flavour Violation

SUSY breaking at low energies should result in LFV : $\tau \rightarrow \mu\gamma$, $\mu \rightarrow e\gamma$

- τ are an incredibly rich laboratory
- SuperB will produce as many τ's as B's
- Beam polarization possible
- τ magnetic moment measurement

SuperB Sensitivity (75 ab⁻¹)

Process	Sensitivity
$\mathcal{B}(\tau \to \mu \gamma)$	2×10^{-9}
$\mathcal{B}(\tau \to e \gamma)$	2×10^{-9}
$\mathcal{B}(\tau \to \mu \mu \mu)$	2×10^{-10}
$\mathcal{B}(\tau \to eee)$	2×10^{-10}
$\mathcal{B}(au o \mu \eta)$	4×10^{-10}
$\mathcal{B}(\tau \to e\eta)$	6×10^{-10}
$\mathcal{B}(\tau \to \ell K_s^0)$	2×10^{-10}

SuperB physics in tables

Observable	B factories (2 ab^{-1})	$\operatorname{Super} B$ (75 ab^{-1})
$sin(2\beta) (J/\psi K^0)$	0.018	0.005 (†)
$cos(2\beta) (J/\psi K^{*0})$	0.30	0.05
$sin(2\beta)$ (Dh ⁰)	0.10	0.02
$cos(2\beta)$ (Dh ⁰)	0.20	0.04
$S(J/\psi \pi^0)$	0.10	0.02
$S(D^{+}D^{-})$	0.20	0.03
$S(\phi K^0)$	0.13	0.02 (*)
$S(\eta' K^0)$	0.05	0.01 (*)
$S(K_{S}^{0}K_{S}^{0}K_{S}^{0})$	0.15	0.02 (*)
$S(K_{S}^{0}\pi^{0})$	0.15	0.02 (*)
$S(\omega K_{S}^{0})$	0.17	0.03 (*)
$S(f_0 K_S^0)$	0.12	0.02 (*)
$\gamma (B \rightarrow DK, D \rightarrow CP \text{ eigenstat})$	es) $\sim 15^{\circ}$	2.5°
$\gamma (B \rightarrow DK, D \rightarrow \text{suppressed st})$	ates) $\sim 12^{\circ}$	2.0°
$\gamma (B \rightarrow DK, D \rightarrow \text{multibody sta})$	ates) $\sim 9^{\circ}$	1.5°
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°
$\alpha (B \rightarrow \pi \pi)$	$\sim 16^{\circ}$	3°
$\alpha (B \rightarrow \rho \rho)$	$\sim 7^{\circ}$	1-2° (*)
$\alpha (B \rightarrow \rho \pi)$	$\sim 12^{\circ}$	2°
α (combined)	$\sim 6^{\circ}$	$1-2^{\circ}$ (*)
$2\beta + \gamma (D^{(*)\pm}\pi^{\mp}, D^{\pm}K^{0}_{S}\pi^{\mp})$	20°	5°
$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
$ V_{cb} $ (inclusive)	1% (*)	0.5% (*)
$ V_{ub} $ (exclusive)	8% (*)	3.0% (*)
$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)
$BR(B \rightarrow \tau \nu)$	20%	4% (†)
$BR(B \rightarrow \mu\nu)$	visible	5%
$BR(B \rightarrow D\tau\nu)$	10%	2%
$BR(B \rightarrow \rho \gamma)$	15%	3% (†)
$BR(B \rightarrow \omega \gamma)$	30%	5%
$A_{CP}(B \rightarrow K^* \gamma)$	0.007 (†)	0.004 († *)
$A_{CP}(B \rightarrow \rho \gamma)$	~ 0.20	0.05
$A_{CP}(b \rightarrow s\gamma)$	0.012 (†)	0.004 (†)
$A_{CP}(b \rightarrow (s + d)\gamma)$	0.03	0.006 (†)
$S(K^0_S \pi^0 \gamma)$	0.15	0.02 (*)
$S(\rho^{0\gamma})$	possible	0.10
$A_{CP}(B \rightarrow K^*\ell\ell)$	7%	1%
$A^{FB}(B \rightarrow K^*\ell\ell)s_0$	25%	9%
$A^{FB}(B \rightarrow X_s \ell \ell) s_0$	35%	5%
$BR(B \rightarrow K\nu\overline{\nu})$	visible	20%
$BR(B \rightarrow \pi \nu \overline{\nu})$	-	possible

Mode Observable <i>B</i> Factories ((2 ab^{-1}) Super B (75 ab ⁻¹)	
$D^0 \rightarrow K^+ K^- \qquad y_{CP} \qquad \qquad 2-3 \times 10^{-3}$	0^{-3} 5×10^{-4}	
$D^0 \rightarrow K^+ \pi^- \qquad y'_D \qquad \qquad 2-3 \times 10^{-3}$	0^{-3} 7×10^{-4}	
x'^{2}_{D} 1-2 × 10	0^{-4} 3×10^{-5}	
$D^0 \rightarrow K_s^0 \pi^+ \pi^- y_D \qquad \qquad 2-3 \times 10^{-3}$	5×10^{-4}	
x_D 2-3 × 10	5×10^{-4}	
Average y_D $1-2 \times 10^{-2}$	0^{-3} 3×10^{-4}	
x_D 2-3 × 10	5×10^{-4}	Sensitivity
E 10	$D^0 \rightarrow e^+e^-, D^0 \rightarrow \mu^+\mu^-$	1×10^{-8}
5-10x	$D^0 \rightarrow \pi^0 e^+ e^-, \ D^0 \rightarrow \pi^0 \mu^+ \mu^-$	2×10^{-8}
	$D^0 \rightarrow \eta e^+ e^-, D^0 \rightarrow \eta \mu^+ \mu^-$	3×10^{-8}
improvement	$D^0 \to K_s^0 e^+ e^-, \ D^0 \to K_s^0 \mu^+ \mu^-$	3×10^{-8}
	$D^+ \rightarrow \pi^+ e^+ e^-, D^+ \rightarrow \pi^+ u^+ u^-$	1×10^{-8}
Process Sansitivity	, , , , , , , , , , , , , , , , , , ,	
1100000000000000000000000000000000000	$D^0 \rightarrow e^{\pm} \mu^{\mp}$	1×10^{-8}
$\mathcal{B}(\tau \to \mu \gamma) = 2 \times 10^{-5}$	$D^+ \rightarrow \pi^+ e^{\pm} \mu^{\mp}$	1×10^{-8}
$\mathcal{B}(\tau \to e \gamma) = 2 \times 10^{-9}$	$D^0 \rightarrow \pi^0 e^{\pm} \mu^{\mp}$	2×10^{-8}
$\mathcal{B}(\tau \to \mu \mu \mu) 2 \times 10^{-10}$	$D^0 \rightarrow ne^{\pm} \mu^{\mp}$	3×10^{-8}
$\mathcal{B}(\tau \rightarrow eee) = 2 \times 10^{-10}$	$D^0 \rightarrow K^0 e^{\pm} \mu^{\mp}$	3×10^{-8}
$\mathcal{B}(\tau \rightarrow \mu n) = 4 \times 10^{-10}$	$D \rightarrow R_s c \mu$	0 × 10
$\mathcal{B}(\tau \to en) = 6 \times 10^{-10}$	$D^+ \rightarrow \pi^- e^+ e^+, D^+ \rightarrow K^- e^+ e^+$	1×10^{-8}
$\mathcal{B}(-)$ ℓV^{0} 2×10^{-10}	$D^+ \rightarrow \pi^- \mu^+ \mu^+, D^+ \rightarrow K^- \mu^+ \mu^+$	1×10^{-8}
$\underline{B(\gamma \to \ell R_s)} 2 \times 10$	$D^+ \to \pi^- e^\pm \mu^\mp, D^+ \to K^- e^\pm \mu^\mp$	1×10^{-8}
+ τ FC physics (CPV,)		
Curren Eleveum Ecotomy	Observable Ev	ror with 1 ab^{-1}
Super Flavour Factory		0.16 ps^{-1}
a "treasure chest"	Г	0.07 ps^{-1}
	β_s from angular analysis	20°
of new	$A^s_{ m SL}$	0.006
physics-	$A_{ m CH}$	0.004
	$\mathcal{B}(B_s \to \mu^+ \mu^-)$	-
sensitive	$\left V_{td}/V_{ts} ight $	0.08
observables	$\mathcal{B}(B_s \to \gamma \gamma)$	38%
	β_s from $J/\psi\phi$	10°

Theoretical errors

no theory improvements needed	β(J/ψ K), γ(DK), α(ππ)*, lepton FV and UV, S(ρ ⁰ γ) CPV in B->Xγ, D and τ decays zero of FB asymmetry B->X _s ⁺ ⁻	NP insensitive or null tests of the SM or SM already known with the required accuracy
improved lattice QCD	meson mixing , B->D(*)lv,B->π(ρ)lv, B->K*γ, B->ργ, B->lv, B _s ->μμ	target error: ~1-2% Feasible (see below)
improved OPE+HQE	B->X _{u,c} Ιν, B->Xγ	target error: ~1-2% Possibly feasible with SuperB data getting rid of the shape function. Detailed studies required
improved QCDF or SCET or flavour symmetries	S's from TD A _{CP} in b -> s transitions <u>https://agenda.infn.it/getFile.py/access?contribId=6&am</u> <u>p;sessionId=1&resId=0&materiaIId=slides&am</u> <u>p;confId=163</u>	target error: ~2-3% large and hard to improve uncertainties on small corrections. In addition, FS+data can bound the theoretical error

Flavour Physics of Tomorrow

Cross section is not everything

- Hadron machines do have the advantage of an enormously larger B production cross section, BUT...
- SuperB has a super-easy ½ track trigger
- Initial state is coeherent, allowing interference measurements

e

- SuperB can do τ physics.
- Has access to states with a loss of missing energy

B-Beam Method

- Fully reconstruct one the two Bs in hadronic modes
 - □ High efficiency: a few per mille
 - > 10⁷ recoil Bs in 10ab⁻¹
- Obtain a pure B Beam on the other side
 - High purity sample
 - Can look at channels with a lot of missing energy.
 - □ For example BR(B→nothing) measured.

 \mathbf{B}_{recoil}

в

 e^+

SuperB and Super LHCb:

SuperB cannot Sensitivity Comparison ~2020 S-LHCb 100 fb⁻¹ vs SuperB 50 ab⁻¹ compete with LHCb on B_s physics. × Only time integrated B_s time dependent measurements analysis only Similar sensitivity for accessible to many common LHCB channels •LHCh •Super B □ SuperB extrapolation Common based on Babar/Belle experience Unique opportunity for channels with neutrals, No IP, Neutrals, v. n, inclusive only measurements accessible to Not accessible at **SuperB** hadronic machines. Preliminary CDF an important player, too. 19 Dec 6, 2007

SuperB Physics

- Physics at a Super Flavor Factory collecting 50 100 ab⁻¹ is exciting:
 - Precision measurements allowing to detec discrepancies from the standard model
 - Theoretical precision allows (or will allow) this in many channels
 - Rare decay measurements
 - Lepton flavour violation
 - Possibility to run at tau/charm threshold
 - □ Polarized e- beam $\rightarrow \tau$ CPV, EDM, g-2
- See for example:
 - The Discovery Potential of a Super B Factory (Slac-R-709)
 - Letter of Intent for KEK Super B Factory (KEK Report 2004-4)
 - Physics at Super B Factory (hepex/0406071)
 - SuperB report (hep-ex/0512235)
 - SuperB CDR (INFN/AE-07/02, SLAC-R-85 LAL 07-15)
 - Many documents available at the URL : <u>www.pi.infn.it/SuperB</u>

© by Ciuchini

e+ e- colliders

How to increase L ? (cont)

Hourglass effect

To squeeze the vertical beam dimensions, and increase L, β_y at IP must be decreased. This is efficient only if at the same time the bunch length is shortened to $\approx \beta_y$ value, or particles in the head and tail of the bunch will see a larger β_y .

Reduced bunch length → increased energy spread → reduced cross section at Y(4S)

P. Raimondi's idea to focus more the beams at IP and have a "large" crossing angle \rightarrow large Piwinski angle

- Ultra-low emittance (ILC-DR like)
- Very small β at IP
- Large crossing angle
- "Crab Waist" scheme

- Small collision area
- Lower β is possible
- NO parasitic crossings
- NO synchro-betatron resonances due to crossing angle

Large crossing angle, small x-size

IP beam distributions for KEKB

Beam Movies

	PEPII	KEKB	SuperB	
current	2.5 A	1.7 A	2.3 A	
betay	10 mm	6 mm	0.3 mm	
betax	400 mm	300 mm	20 mm	
Emity (sigmay)	23 nm	~ the same	1,6 nm	
	(~100µm)	(~80µm)	(~6µm)	
y/x coupling	0,5-1 %	0.1 %	0,25 %	
(sigma y)	(~6µm)	(~3µm)	(0,035µm)	
Bunch length	10 mm	6 mm	6 mm	
Tau I/t	16/32 msec	~ the same	16/32 msec	
ζγ	0.07	0.1	0.16	
L	1.2 10 ³⁴	1.7 1034	1 10 ³⁶	

Su	perE	B Pa	ran	neters	5

	Nominal Parameters		Upgrade Parameters		Ultimate Parameters		
PARAMETER	LER	HER	LER	HER	LER	HER	
Particle type	e+	e-	e+	e-	e+	e-	
Energy (GeV)	4	7	4	7	4	7	
Luminosity x 10 ³⁶	1	.0	2	2.0		4.0	
Circumference (m) (Polarization							
section 150 m)	1800	1800	1660	1660	1660	1660	
Revolution frequency (MHz)	0.167	0.167	0.181	0.181	0.181	0.181	
Eff. long. polarization (%)	0	80	0	80	0	80	
RF frequency (MHz)	476	476	476	476	476	476	
Harmonic number	2856	2856	2634	2634	2634	2634	
Momentum spread	7.9E-04	5.6E-04	9.0E-04	8.0E-04	9.0E-04	8.0E-04	
Momentum compaction	3.2E-04	3.8E-04	3.0E-04	3.6E-04	3.0E-04	3.6E-04	
Rf Voltage (MV)	7	9	10	14	10	14	
Energy loss/turn (MeV)	1.16	1.94	1.78	2.81	1.78	2.81	
Number of bunches	1251	1251	1251	1251	2502	2502	
Particles per bunch x10 ¹⁰	5.52	5.52	5.52	5.52	5.52	5.52	
Beam current (A)	1.84	1.84	2.00	2.00	3.99	3.99	
Beta y* (mm)	0.22	0.39	0.16	0.27	0.16	0.27	
Beta x* (mm)	35	20	35	20	35	20	
Emit y (pmr)	7	4	3.5	2	3.5	2	
Emit x (nmr)	2.8	1.6	1.4	0.8	1.4	0.8	
Sigma y* (microns)	0.039	0.039	0.023	0.023	0.023	0.023	
Sigma x* (microns)	9.90	5.66	7.00	4.00	7.00	4.00	
Bunch length (mm)	5	5	4.3	4.3	4.3	4.3	
Full Crossing angle (mrad)	48	48	48	48	48	48	
Wigglers (#) 20 meters each	0	0	2	2	2	2	
Damping time (trans/long)(ms)	40/20	40/20	28/14	28/14	28/14	28/14	
Luminosity lifetime (min)	6.7	6.7	3.35	3.35	3.35	3.35	
Touschek lifetime (min)	13.8	20.6	6.9	10.3	6.9	10.3	
Effective beam lifetime (min)	4.5	5.1	2.3	2.5	2.3	2.5	
Injection rate pps (100%)	2.6E+11	2.3E+11	5.1E+11	4.6E+11	1.0E+12	9.1E+11	
Tune shift y (from formula)	0.15	0.15	0.20	0.20	0.20	0.20	
Tune shift x (from formula)	0.0043	0.0025	0.0059	0.0034	0.0059	0.0034	
RF Power (MW)	ver (MW) 17		25	5.2	58	3.2	

Machine summary

- Present parameter set based on ILCDR-like parameters 3.0 Km long rings studied with ILC OCS (Baseline) lattice scaled to 4 and 7 GeV
 - □ Same DR emittances
 - Same DR bunch length
 - 1.5 times DR bunch charges
 - Same ILC-IP betas
 - □ Final focus ILC-like
- Crossing angle and "crab waist" to maximize luminosity and minimize blowup
 - \square Test will start in Nov 2007 on DA $\Phi \rm NE.$
- Design based on recycling all PEP-II hardware, Bends, Quads and Sexts, and RF system
 - $\hfill\square$ Corresponds to a lot of money
- Maximize Luminosity keeping low ∆E and wall power.
 □ Total power: 35 MW, as in PEP-II
- Simulations performed in many places and different codes:
 LNF,BINP,KEK,LAL,CERN,PISA

Dec 6, 2007

Detector

- Babar and Belle designs have proven to be very effective for B-Factory physics
 - Follow the same ideas for SuperB detector
 - Try to reuse same components as much as possible
- Main issues
 - Machine backgrounds somewhat larger than in Babar/Belle
 - Beam energy asymmetry a bit smaller
 - Strong interaction with machine design
- A SuperB detector is possible with today's technology
 - Baseline is reusing large (expensive) parts of Babar (or Belle)
 - Quartz bars of the DIRC
 - Barrel EMC CsI(TI) crystal and mechanical structure
 - Superconducting coil and flux return yoke.

- Some areas require moderate R&D and engineering developments to improve performance
 - □ Small beam pipe technology
 - □ Thin silicon pixel detector for first layer
 - Drift chamber CF mechanical structure, gas and cell size
 - Photon detection for DIRC quartz bars
 - Forward PID system (TOF or focusing RICH)
 - □ Forward calorimeter crystals (LSO)
 - Minos-style scintillator for Instrumented flux return
 - Electronics and trigger need to revise Bfactory "½-track" trigger style
 - Computing large data amount
- More details in:
 - www.pi.infn.it/SuperB/node/159 SuperB Italy Meeting on detector R&D
 - indico.lal.in2p3.fr/conferenceDisplay.py?conf Id=167 – Paris workshop (May 9-11)
 - https://agenda.infn.it/conferenceDisplay.py? confld=163 - Review (Nov 12-13)

Detector Layout – Reuse parts of Babar (or Belle)

Background

To be treated with care, but not a huge problem

Sources: different from PEP-II/Babar

- Beam-gas: ok because of low current
- □ SR fan: can be shielded
- Touschek

QED cross section

-					
		Cross section	Evt/bunch xing	Rate	
	Radiative Bhabha	~340 mbarn (Eγ/Ebeam > 1%)	~680	0.3THz	
	e⁺e⁻ pair production	~7.3 mbarn	~15	7GHz	
	Elastic Bhabha	O(10 ⁻⁵) mbarn (Det. acceptance)	~20/Million	10KHz	
	Υ(4S)	O(10 ⁻⁶) mbarn	~2/million	I KHz	p_+ q_2

Background rates

- Pair production
 - □ Low P_t make magnetic shielding effective
 - Issue for first layer of SVT
 - Rate 15MHz/cm² @ 1.2cm 5MHz/cm² @ 1.5cm
- Radiative Bhabhas
 - Beamline and shielding design are paramount
 - Showering and backscattering extends to large radius
 - □ Rate 100kHz/cm² @ R=1.2 cm

- Touschek Background
 - Produced all along the ring, depending on emittance and bunch volume
 - Beam optics and collimator setting essential in controlling this background

Rate <10 kHz/cm² @ R=1.2 cm

	Flux			Area	time	
Layer	(Hz/cm2)	X(cm)	Y(cm)	(cm2)	resolution	Occupancy
Pixel @ 1.2cm	15.0E+6	0.005	0.005	0.000025	100.0E-9	3.8E-05
Pixel @ 1.5cm	5.0E+6	0.005	0.005	0.000025	100.0E-9	1.3E-05
Striplets @ 1.2cm	15.0E+6	1.8	0.005	0.009	100.0E-9	1.4E-02
Striplets @ 1.5cm	5.0E+6	1.8	0.005	0.009	100.0E-9	4.5E-03
Strip Layer N	10.0E+3	10	0.01	0.1	100.0E-9	1.0E-04

BaBar Silicon Vertex Tracker

Silicon Vertex Tracker

- The Babar SVT technology is adequate for R > 3cm: use design similar to Babar SVT
- LayerO is subject to large backround and needs to extremely thin: > 5MHz/cm2, 1MRad/yr, < 0.5%X_o
 - Striplets option: mature technology, not so robust against background.
 - Marginal with background rate higher than ~ 5 MHz/cm²
 - Moderate R&D needed on module interconnection/mechanics/FE chip (FSSR2)

CMOS MAPS option

- new & challenging technology:
- can provide the required thickness
- existing devices are too slow
- Extensive R&D ongoing on 3-well devices 50x50um²

□Hybrid Pixel Option: tends to be too thick.

- An example: Alice hybrid pixel module ~ 1% X_o
- Possible material reduction with the latest technology improvements
- Viable option, although marginal

Dec 6, 2007

MAPS R&D

- Extensive R&D ongoing (and needed):
- Fast readout architecture
 - Digital to analog xtalk
 - \Box Architecture scalability (4k \rightarrow 64K)
- Pixel cell optimization
 - □ Increase S/N (15→30)
 - reduce power dissipation x2
- Radiation hardness
 - Not fully qualified yet. Irradiation program
- Mechanical issues
 - sensor thinning, module design, low mass cooling
- Test Beam foreseen in Sep 2008
 Prototype MAPS module + striplets

Radius, thickness, resolution

- Technological solutions depend critically on L_o radius, thickness, resolution
- Fast simulation studies for various decays have been performed
- A full, more detailed reassessment is needed for the TDR.

- MAPS low mass solution would leave more flexibility for radius (ie background) and resolution
- Hybrid pixels will force to use the smallest radius and/or better resolution
- Striplets (same MAPS material) require larger radius, performance marginal

The SuperB Process

- International SuperB Study Group formed in Dec 2005 on Physics, Machine, Detector
- International steering committee established, chaired by M.A.Giorgi. Members from

Canada, France, Germany, Italy, Russia, Spain, UK, US

- □ Regular interaction with Japan, although not formalized
- Regular workshops
 - Since 2005 five workshops held (2 in Frascati, 1 in SLAC, 1 Villa Mondragone, 1 Paris), SuperB Meeting at Daresbury
 - □ Accelerator retreat at SLAC in 2006 and 2007
 - □ Physics retreat in Valencia Jan 7-15, 2008
 - Detector R&D Workshop at SLAC Feb 14-16, 2008
- Conceptual Design Report
 - □ Ready, printed and distributed.
 - Describe Physics case, Accelerator, Detector, including costing
 - □ International review ongoing
- More information: <u>www.pi.infn.it/SuperB</u>

Conceptual Design Report

The CDR of SuperB is ready! INFN/AE-07/02, SLAC-R-856,

LAL 07-15

Available at:

www.pi.infn.it/SuperB

arxiv.org/abs/0709.0451

476 pages

Printed and available

Copies can be requested from Lucia.Lilli@pi.infn.it

CDR Signatures: some numbers

320 Signatures; 85 institutions

The people on the following list have indicated interest in and support for the SuperB project. It includes a subset who have been directly involved with the preparation of this document, as well as individuals who have contributed in other ways or plan on future involvement.

174 Babar members

F.Forti - SuperB Project

Signatures breakdown by country

CDR Cost Estimate

A full cost estimate of the SuperB project has been done

- Based on Babar/PEP-II actual costs
- □ Escalated from 1995 to 2007
- □ Bottom-up for almost all elements

Separate new components from reused elements

Replacement value of reused components = how much would it cost today to rebuild those components (extrapolated from Babar/PEP-II costs)

□ New costs: everything that's needed today, including refurbishing

□ Transport is not included, but disassembly and reassembly is.

Keep separate categories:

□ EDIA: engineering, design, inspection and administration (man-months)

□ Labour: technicians (man-months)

□ Materials and Services: 2007 Euros.

	EDIA	Labor	M&S	Rep.Val.
ltem	mm	mm	kEuro	kEuro
Accelerator	5429	3497	191166	126330
Site	1424	1660	105700	0
Detector	3391	1873	40747	46471

CDR Review

- An International Review Committee has been appointed by INFN.
 - John Dainton UK/Daresbury, chair
 - □ Jacques Lefrancois F/Orsay
 - Antonio Masiero I/Padova
 - □ Rolf Heuer D/ Desy
 - Daniel Schulte CERN
 - □ Abe Seiden USA/UCSC
 - Young-Kee Kim USA/FNAL
 - Hiroaki Aihara Japan/Tokyo

(*)Slides available at: https://agenda.infn.it/conferenceDi splay.py?confld=163

- First meeting with the review committee was in LNF on Nov 12-13(*)
- Interaction with the committee will continue through the first months of 2008.
 - The final report foreseen in April 2008
 - After the results of the LNF test of crab waist idea
- CDR presented to ECFA in the summer 2007
 - □ Very positive reaction
- Presentation to the CERN strategy group expected in spring 2008
 - Coordinates all projects in european HEP for research infrastructure

Where can we build SuperB?

- The SuperB conceptual design is largely site independent
- The natural site for SuperB is an existing accelerator laboratory
 - □ Large sites such as SLAC have different programs at this time
 - □ KEK has its own adiabatic upgrade plan
 - □ LNF site is too small to host SuperB
- A possible site is on the Università di Roma Tor Vergata campus
 - □ Close enough to make use of LNF facilities
 - University with schools of economics, law, engineering, humanities, medicine and science and 41.000 students
 - □ Big Campus (1,480 acre) with still a lot of available space:a 5000 m2 sport village is also under construction
 - □ Favorable building codes
 - □ A FEL project SPARX approved and funded
 - □ Strong interest of INFN and University
- Setup INFN/Tor Vergata engineering group to prepare feasibility study

SuperB Location

SuperB Footprint

SuperB Summary and Outlook

- The physics case for a high luminosity B Factory is clearly established
- The SuperB accelerator concept allows to reach and exceed the 10³⁶ threshold
- There is a growing international interest and participation
- A conceptual design report is under review
- R&D is proceeding on various items
- Next steps are:
 - Secure funding sources
 - Formalize SuperB project in 2008
 - Technical Design Report by 2010

Let's start digging...

DA Φ **NE test expected results**

- The upgrade of DAONE run with a new collision scheme with large Piwinski angle and small beam sizes will allow for peak luminosities in excess of 10³³ cm⁻² s⁻¹ even without the "crabbing" sextupoles
- The use of "crab waist" sextupoles will add a bonus for suppression of dangerous resonances
- Brand new IRs layout and equipments have been designed and constructed and will be ready by next Fall to start commissioning
- The test will have the fundamental function of validating the simulation

How to increase L ? (example Super-KEKB)

We have an IR design coping with main BKG source

Asymmetry and beam pipe radius

- Lower boost advantegeous for machine design
 - □ Babar: 9 + 3.1 $\beta\gamma$ =0.56 , Belle: 8 + 3.5 $\beta\gamma$ =0.45
 - **SuperB: 7 + 4** βγ**=0.28**
- we can afford to have a lower boost only if the vertexing resolution is good:

Beam pipe

- 1.0 cm inner radius
- Be inner wall
 - □ ≈ 4um inside Au coating
- 8 water cooled channels (0.3mm thick)
 - □ Power ≈ 1kW
- Peek outer wall
- Outer radius ≈ 1.2cm
- Thermal simulation shows max ≈ 55°C
- Issues
 - □ Connection to rest of b.p.
 - Be corrosion
- Outer wall may be required to be thermally conductive to cool pixels

aBar Silicon Vertex Tracker

- Baseline: use an SVT similar to the Babar one, complemented by one or two inner layers.
 - Question on whether it would possible/economical to add a layer between SVT and DCH, or move L5 to larger radius
- Cannot reuse because of radiation damage
- Beam pipe radius is paramount
 - □ inner radius: 1.0cm,
 - layerO radius: 1.2cm,
 - thickness: 0.5% XO

The BABAR Detector

SVT: 97% efficiency, 15 μ m z hit resolution (inner layers, perp. tracks) SVT+DCH: $\sigma(p_T)/p_T = 0.13 \% \times p_T + 0.45 \%, \sigma(z_0) = 65 @ 1 GeV/c$ DIRC: K- π separation 4.2 σ @ 3.0 GeV/c \rightarrow 2.5 σ @ 4.0 GeV/c EMC: $\sigma_E/E = 2.3 \% \cdot E^{-1/4} \oplus 1.9 \%$

Pair production

- Huge cross section (7.3 mbarn)
- Produced particles have low energy and loop in the magnetic field

Most
 particles are
 outside the
 detector
 acceptance

Why not an all-silicon tracker

Central Silicon Tracker Performance

		EDIA	Labor	<i>M</i> \&S	Rep.Val.
WBS	Item	mm	mm	kEuro	kEuro
1	Accelerator	5429	3497	191166	126330
1.1	Project management	2112	96	1800	0
1.2	Magnet and support system	666	1199	28965	25380
1.3	Vacuum system	620	520	27600	14200
1.4	RF system	272	304	22300	60000
1.5	Interaction region	370	478	10950	0
1.6	Controls, Diagnostics, Feedback	963	648	12951	8750
1.7	Injection and transport systems	426	252	86600	18000

		EDIA	Labor	M\&S	Rep.Val.
WBS	Item	mm	mm	kEuro	kEuro
2.0	Site	1424	1660	105700	0
2.1	Site Utilities	820	1040	31700	0
2.2	Tunnel and Support Buildings	604	620	74000	0

Note: site cost estimate not as detailed as other estimates.

		EDIA	Labor	M\&S	Rep.Val.
WBS	ltem	mm	mm	kEuro	kEuro
1	SuperB detector	3391	1873	40747	46471
1.0	Interaction region	10	4	210	0
1.1	Tracker (SVT + L0 MAPS)	248	348	5615	0
1.1.1	SVT	142	317	4380	0
1.1.2	L0 Striplet option	23	33	324	0
1.1.3	L0 MAPS option	106	32	1235	0
1.2	DCH	113	104	2862	0
1.3	PID (DIRC Pixilated PMTs + TOF)	110	222	7953	6728
1.3.1	DIRC barrel - Pixilated PMTs	78	152	4527	6728
1.3.1	DIRC barrel - Focusing DIRC	92	179	6959	6728
1.3.2	Forward TOF	32	70	3426	0
1.4	EMC	136	222	10095	30120
1.4.1	Barrel EMC	20	5	171	30120
1.4.2	Forward EMC	73	152	6828	0
1.4.3	Backward EMC	42	65	3096	0
1.5	IFR (scintillator)	56	54	1268	0
1.6	Magnet	87	47	1545	9623
1.7	Electronics	286	213	5565	0
1.8	Online computing	1272	34	1624	0
1.9	Installation and integration	353	624	3830	0
1.A	Project Management	720	0	180	0

Note: options in italics are not summed. We chose to sum the options we considered most likely/necessary.

Schedule

- Overall schedule dominated by:
 - Site construction
 - PEP-II/Babar
 disassembly,
 transport, and
 reassembly
- We consider possible to reach the commissioning phase after 5 years from TO.

Figure 5-1. Overall schedule for the construction of the SuperB project.

What money ?

- The SuperB budget model still needs to be fully developed. It is based on the following elements (all being negotiated)
 - Italian government ad hoc contribution
 - Regione Lazio contribution
 - INFN regular budget
 - EU contribution
 - □ In-kind contribution (PEP-II + Babar elements)
 - Partner countries contributions
- Clearly the SuperB project is inherently international and will need to be managed internationally

LFV at SuperB to discriminate among models

What's in store: Physics reach at SuperB

From '05 T.I ijima talk

K^(*)I⁺I⁻ for NP

ℓℓ pair forward-backward asymmetry
vs q2 is sensitive to NP in the loop,
altering the helicity structure

zero crossing predicted with very little theoretical uncertainties

γ, Ζ

2 In

0.4

-0.2

W

b

 \overline{q}

 1^{-}

22

S

 \overline{q}

W

b

 \overline{q}

S

 \overline{q}

 1^{+}

τ Richness

- τ are an incredibly rich laboratory
- SuperB will produce as many τ 's as B's
- **Beam polarization** possible
- τ magnetic moment measurement

Lepton Universality

Lepton Flavour Violation direct signal of new physics

Dec 6, 2007

F.Forti - SuperB Project

D° mixing

Updated Limit Plots: PDG07

- Recent measurements from Babar and Belle demonstrated Bfactory capabilities in charm physics
- Possibility to measure CP violation in the charm sector

Projected Sensitivity

- Trojected Densitivity							
Exp't / 1 o	y _{CP} (10-3)	y' (10-3)	x'² (10-4)	cosô			
B-factories (2ab ⁻¹)	2-3	2-3	1-2				
SuperB (50 ab ⁻¹)	0.5	0.7	0.3	-			
LHCb (10 fb-1) Only B->D*	?	0.7	0.7				
LHCb (100 fb ⁻¹) Prompt D*	?	?	?	-			
CLEO-c (750 pb ⁻¹)	10	-	2-3	0.1-0.2			
BESIII (20 fb ⁻¹)	4	-	0.5-1	0.05			
SuperB - 4 GeV (0.2 ab ⁻¹)	1-2	-	<0.2	<0.05			

