FIRST RESULTS FROM THE DARKSIDE-50 DARK MATTER EXPERIMENT AT GRAN SASSO

> Maria Elena Monzani Research Progress Meeting LBNL, March 5th, 2015

SOMETHING FISHY WITH SPIRAL GALAXIES

SOMETHING FISHY WITH GALAXY CLUSTERS

SOMETHING FISHY WITH THE UNIVERSE

KNOWN DARK MATTER PROPERTIES

- Gravitationally interacting
- Not short-lived
- Not hot
- Not baryonic

UNAMBIGUOUS EVIDENCE FOR NEW PARTICLES

Adapted from J. Feng

THE WIMP MIRACLE

Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

STRATEGIES FOR DARK MATTER HUNTING

Indirect Detection

Direct Detection

Collider Searches

3 WAYS TO DETECT WIMPS

χ

q

Indirect Detection

Scattering

χ

q

Production

Colliders

THE PRINCIPLE OF DIRECT DETECTION

WIMPs and Neutrons scatter from the Atomic Nucleus

> Photons and Electrons scatter from the Atomic Electrons

NOBLE LIQUID DETECTORS FOR WIMPS

- ✓ Liquids provide a variety of targets (Xe, Ar, Ne)
- ✓ Easily scalable to ton-scale detectors + self-shielding
- ✓ Easy to purify for both electro-negative and radioactivity
- \checkmark Large signals (high photon yield and high charge yield)
- ✓ Several background rejection techniques (S2/S1, PSD)

Example: WIMP interaction rates in five different DM targets

- m_x: 100 GeV
- σ_{χ-n}: 10⁻⁴⁵ cm²
- 1 ton-year

THE XENON-10 EXPERIMENT AT GRAN SASSO

- Operated in 2006-2007
- 15 kg Liquid Xenon target
- σ<4.5·10⁻⁴⁴ cm² @30 GeV

THE LARGE UNDERGROUND XENON EXPERIMENT

- world's most sensitive experiment
- σ<7.6·10⁻⁴⁶ cm² @33 GeV (2013)

STATE OF THE ART IN DIRECT DETECTION

THE DARKSIDE PROGRAM AT LNGS

- Dual-phase argon TPC
- Underground argon, depleted in ³⁹Ar
- Three-fold discrimination (S1 pulse shape, S2/S1, 3D reconstruction)
- TPC immersed in active neutron and muon vetoes

- DS-50: took data with atmospheric Argon in 2014 (presented here)
- sensitivity goal 10⁻⁴⁵ cm²

DUAL-PHASE NOBLE LIQUID TPC

DUAL-PHASE NOBLE LIQUID TPC

S1 SIGNAL SHAPE IN ARGON

Nuclear and electron recoils produce ionization and excitation along their tracks. Excited Ar_2^* are formed and their deexcitation leads to the emission of scintillation light with two separate components, fast and slow (associated to Ar_2^* singlet and triplet state). The distribution of light on the two components is very strongly dependent on dE/dx.

S1 PULSE SHAPE DISCRIMINATION

S2 SIGNAL GENERATION

The ionization electrons surviving the recombination are drifted towards the liquid-gas interface (E_{drift}=200 V/cm). A field of 2.8 kV/cm is applied to fully extract electrons to the gas phase. Electroluminescence in gas produces a secondary scintillation signal (S2) proportional to the ionization signal. The ratio S2/S1 depends very strongly on the probability of surviving the initial recombination, and therefore on dE/dx.

S2/S1 DISCRIMINATION

3D EVENT LOCALIZATION

The time difference between S1 and S2 corresponds to the e^{-} drift time and it is used to estimate the z coordinate of the interaction. Drift speed in Argon at 200 V/cm is about 1 mm/µs.

Since S2 production occurs very close to the top PMTs, the signal distribution will be strongly not uniform and can be used to locate the ionization event in the x-y plane 3D localization allows the implementation of fiducial volume cuts (thereby removing external background)

UNDERGROUND ARGON: DEPLETION FACTOR > 100

DARKSIDE-50 WITHIN ITS VETO DETECTORS

TPC CONSTRUCTION – SUMMER 2013

NEUTRON VETO DETECTOR DURING INSTALLATION

NEUTRON VETO WITH TPC CRYOSTAT

MUON VETO, RIGHT BEFORE WATER FILLING

DARKSIDE-50 TIMELINE

- Nov. 2013: All 3 detectors filled
 - Coordinated data taking started Nov. 6
 - TPC filled with atmospheric argon (AAr)
 - LSV filled with high-radioactivity TMB
- Nov. Jan. 2014: mainly DAQ/trigger improvements
 - accumulated 6 live-days (exposure 280 kg·day)
 - equivalent to ~3 years with underground argon
 - PSD performance presented at UCLA-DM 2014
- Nov. June 2014: dataset discussed here
 - High ¹⁴C TMB: degraded veto performance
 - 47.1 live days exposure (1422 kg·day fiducial)
 - ³⁹Ar statistics corresponds to 19.4 years of UAr
- Jun. 2014 Feb. 2015: veto scintillator operations
- Oct. 2014 Feb. 2015: source calibration campaign

ALL SYSTEMS CHECK OUT!

TPC COMMISSIONING: PURITY

- Closed loop argon recirculation (~30 slpm)
- Gaseous phase purification using commercial getter
- Cryogenic charcoal trap to remove Rn contamination

TPC COMMISSIONING: LIGHT YIELD

- TPC filled with atmospheric argon (1 Bq/kg)
- ^{83m}Kr gas deployed into detector (41.5 keV_{ee})

- Light yield at zero field: (7.9 ± 0.4) PE/keV
- Light yield at 200 V/cm: (7.0 ± 0.3) PE/keV
- Exceeding design requirements of 6.0 PE/keV

NEUTRON VETO COMMISSIONING: LIGHT YIELD

- Neutron veto setup to trigger on events in the LAr TPC
- High energy coincident ⁶⁰Co events from cryostat steel
- LY was measured by combining ⁶⁰Co and ¹⁴C spectra
- LY = (0.54 ± 0.04) PE/keV (exceeding design specs.)

- High ¹⁴C rate in (biogenic) TMB
 ~98% LSV efficiency in this dataset
- TMB replaced with low-¹⁴C (fossil) batch
- ¹⁴C content measured at LLNL via AMS prior to filling

ANALYSIS CUTS: DAQ & QUALITY

	Cut	R	esidual Livetime		
Run	Usable runs		$(53.8 \pm 0.2) \mathrm{d}$		
	Automated selection		$(51.1 \pm 0.2) d$		
	Single run		$(48.8 \pm 0.2) \mathrm{d}$		
uality	Baseline found		$(48.8 \pm 0.2) \mathrm{d}$		
	Time since previous trigger		$(48.7 \pm 0.2) \mathrm{d}$		
	Large gap		$(48.1 \pm 0.2) \mathrm{d}$		
α	Veto data present	$(47.1 \pm 0.2) d$			
Total $(47.1 \pm 0.2) d$					
	9.3% of livetime removed 3.5% of by run-level quality cuts by ever		t-level quality cuts		
	Uncertainty dominated by the accuracy of the trigger board				

ANALYSIS CUTS: PHYSICS CUTS

	Cut	Acceptance	Fiducial Mass		
ıysics	Number of pulses	$0.95\substack{+0.00\\-0.01}$			
	First pulse time	$1.00\substack{+0.00\\-0.01}$			
	No S1 saturation	1.00			
	S2 pulse shape	1.00			
	Minimum S2	$0.99^{+0.01}_{-0.04}$			
Ē	Max S1 fraction per PMT	0.99			
	Prompt LSV	0.95			
	Delayed LSV and WCD	0.94			
	Drift time fiducialization		$(36.9 \pm 0.6) \mathrm{kg}$		
Total		$0.82\substack{+0.01\-0.04}$	$(36.9 \pm 0.6) \text{kg}$		
	82% global acceptance, 20% of exposure sacrificed		cposure sacrificed		
	Mass uncertainty dominated by Teflon contraction at 87K				

ANALYSIS CUTS: PUTTING IT ALL TOGETHER

	Cut	Residual Livetime	Acceptance	Fiducial Mass
Run	Usable runs Automated selection Single run	$(53.8 \pm 0.2) d$ $(51.1 \pm 0.2) d$ $(48.8 \pm 0.2) d$		
Quality	Baseline found Time since previous trigger Large gap Veto data present	$egin{aligned} (48.8\pm0.2)\mathrm{d}\ (48.7\pm0.2)\mathrm{d}\ (48.1\pm0.2)\mathrm{d}\ (47.1\pm0.2)\mathrm{d}\ \end{aligned}$		
Physics	Number of pulses First pulse time No S1 saturation S2 pulse shape Minimum S2 Max S1 fraction per PMT Prompt LSV Delayed LSV and WCD		$\begin{array}{c} 0.95\substack{+0.00\\-0.01}\\ 1.00\substack{+0.00\\-0.01}\\ 1.00\\ 1.00\\ 0.99\substack{+0.01\\-0.04}\\ 0.99\\ 0.95\\ 0.94 \end{array}$	
	Drift time fiducialization Total	$(47.1 \pm 0.2) \mathrm{d}$	0.82 ^{+0.01}	$(36.9 \pm 0.6) \text{ kg}$ $(36.9 \pm 0.6) \text{ kg}$

Total Exposure for this run: (1422 \pm 67) kg·d

NEUTRON CALIBRATIONS WITH SCENE

NEUTRON CALIBRATIONS WITH SCENE

Source	Energy [keV]	$\mathcal{L}_{\mathrm{eff},\mathrm{^{83m}Kr}}$	S1 _{DS-50} [PE]
^{83m} Kr	41.5		298 ± 9
7 Li(<i>p</i> , <i>n</i>)	16.9	0.202 ± 0.008	27.0 ± 1.8
7 Li(p,n)	20.5	0.227 ± 0.010	36.8 ± 2.7
7 Li(<i>p</i> , <i>n</i>)	25.4	0.224 ± 0.010	45.0 ± 3.3
7 Li(p,n)	36.1	0.265 ± 0.010	75.7 ± 5.0
$^{7}\mathrm{Li}(p,n)$	57.2	0.282 ± 0.013	127.6 ± 9.1

Scintillation yield extrapolated to DS-50 using ^{83m}Kr

Nuclear Recoil Acceptance Curves also extrapolated from SCENE data

Neutron source calibration in DS-50 just completed

arXiv:1406.4825

WIMP search plot. All analysis cuts except for veto.

arXiv: 1410.0653

No candidates in search region after all analysis cuts.

EXCLUSION PLOT FROM DS-50

SUMMARY AND OUTLOOK

• Background-free exposure of (1422 ± 67) kg·d

- ³⁹Ar background in a ~20-years UAr run would be rejected
- Future ton-scale LAr TPCs can be free of ³⁹Ar background
- Most sensitive DM search ever performed with an argon target
- Only background-free detector to reach 10⁻⁴⁴ cm² sensitivity
- We finally have better calibrations!
 - Deploy calibration sources, perform calibration campaign
 - Calibrate veto and TPC using gamma and neutron sources
 - Calibrations completed in February, results coming soon

Vastly improved detector sensitivity in 2015

- LSV scintillator replaced with low-14C (fossil) TMB
- Fill TPC with underground argon in the next weeks
- Begin dark matter search with underground argon
- Expected sensitivity for a 3-years run is 10⁻⁴⁵ cm²