

What physics is beyond the Standard Model?

Massive neutrinos

2

• Three flavors: v_e , v_μ , v_τ

- Three flavors: $\nu_e,\,\nu_\mu,\,\nu_\tau$
- Neutral
- Interact via the weak force

Ζ

$$\begin{array}{l} \nu_e \to e \\ \nu_\mu \to \mu \end{array}$$

$$\nu_{ au} \to au$$

- Three flavors: v_e , v_μ , v_τ
- Neutral
- V_{τ} Interact via the weak force electron muon tau Leptons neutrino neutrino neutrino Neutral Current (NC) ν electron tau muon At neutrino energy (E_v) ~1 GeV, σ_{cc} ~ 10⁻³⁸ cm² Mean free path through lead is 1 light year Char lepton νe ν W+/-W boson $\begin{array}{c} \nu_{\mu} \to \mu \\ \nu_{\tau} \to \tau \end{array}$

- Three flavors: v_e , v_μ , v_τ
- Neutral
- Interact via the weak force
- Abundant

- Three flavors: v_e , v_μ , v_τ
- Neutral
- Interact via the weak force
- Abundant

- Three flavors: v_e , v_μ , v_τ
- Neutral
- Interact via the weak force
- Abundant

The amount of neutrinos and antineutrinos affects the formation of elements in the early universe:

$$\nu_e + n \to e^- + p$$

$$\overline{\nu}_e + p \to e^+ + n$$

- Three flavors: v_e , v_μ , v_τ
- Neutral
- Interact via the weak force
- Abundant
- Massive

The total mass of the neutrinos in the universe is about the same as the total mass of the stars

Neutrino mass affects large scale structure formation

- At early times, neutrinos behave like radiation
- At late times, neutrinos behave like matter

Just because a mass is small doesn't mean it is not important...

Center for Cosmological Physics graphic

Neutrino mass is SMALL

H. Murayama graphic

While we know neutrinos have mass, we don't know the origin of neutrino mass • Neutrinos are unlike other particles in the Standard Model because they are neutral and only interact with the weak force (and gravity)

Why is neutrino mass non-zero?

Why is it so much smaller than the other particles?

K Mahn, LBL/RPM seminar

Neutrino mass

The "see saw mechanism" explains the lightness of the neutrino mass by adding a (very heavy) neutrino which doesn't interact

If we have one neutrino which interacts in the Standard Model (m_D) and a heavy partner (m_R) then:

To get the observed neutrino mass, then $m_2 \sim m_R$ is very heavy (10¹⁵ GeV)

Neutrinos and the matter-antimatter asymmetry

? ≠

How do we explain the observed matter-antimatter asymmetry in the universe?

- To create this asymmetry, we need: non-thermal equilibrium, CP violation and baryon number violation
- So far, there is no sufficient source of CP violation in the Standard Model

CP violating decays of the heavy neutrino could create the baryon number violation

 If a decay violates CP, then the rates for neutrinos (matter) and antineutrinos (antimatter) are different

Searching for CP violation with neutrinos may lead to insights about this mechanism

What is neutrino oscillation?

We know neutrinos have mass because of we observe neutrino "oscillation"

This is a purely quantum mechanical effect where the mass eigenstates (v_1, v_2, v_3) are superpositions of the flavor eigenstates (v_e, v_u, v_τ)

If I reached in a jar of ν_2 without looking, I would have about a 1/3 chance to eat:

a green jelly bean (v_e / lime)

or a yellow jelly bean (v_{μ} / lemon)

or a blue jelly bean (v_{τ} / berry)

Example with just 2 neutrinos

If we start with two neutrino flavors (ν_e , ν_μ) and two mass states (ν_1 , ν_2) then:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

The two states are related via a matrix which depends on a mixing angle, θ , exactly like a coordinate system changes under a rotation matrix:

If we want to see how the flavor state changes with time, we evolve the individual mass eigenstates with a phase which depends on their energy

$$\left|\nu_{\mu}(t)\right\rangle = -\sin \theta \ e^{-iE_{1}t} \left|\nu_{1}\right\rangle + \cos \theta \ e^{-iE_{2}t} \left|\nu_{2}\right\rangle$$

Example with 2 neutrinos

The flavor state evolution in time looks like an elliptically polarized wave:

$$\nu_{\mu}(t)\rangle = -\sin \theta \ e^{-iE_{1}t} \left|\nu_{1}\right\rangle + \cos \theta \ e^{-iE_{2}t} \left|\nu_{2}\right\rangle$$

Starting polarized along the x-axis is like starting in the v_{μ} state:

- Some time later, the polarization is along y-axis (v_e)
- Even later, the polarization is back to the x-axis (v_{μ})

No mass, no oscillation!

Example with 2 neutrinos

The flavor state evolution in time looks like an elliptically polarized wave:

$$\nu_{\mu}(t)\rangle = -\sin \theta \ e^{-iE_{1}t} \left|\nu_{1}\right\rangle + \cos \theta \ e^{-iE_{2}t} \left|\nu_{2}\right\rangle$$

The probability of observing a v_e state, starting from a v_{μ} state is:

$$P_{\mu e} = \langle \nu_e | \nu_\mu(t) \rangle = \sin^2(2\theta) \, \sin^2(1.27\Delta m_{21}^2 L/E)$$

If neutrinos have no mass, or degenerate masses, no interference is possible

Neutrino oscillation

$$P_{\mu e} = \sin^2(2\theta) \, \sin^2(1.27\Delta m_{21}^2 L/E)$$

Probability to observe v_e after starting in flavor state v_μ depends on:

- θ: Mixing angle
- L (km): Distance the neutrino has travelled
- E (GeV): Energy of the neutrino
- ▲m² (eV²): mass splitting
 Difference of the square of the mass eigenvalues

$$\Delta m_{21}^2 = m_2^2 - m_1^2$$

Neutrino oscillation

$$P_{\mu e} = \sin^2(2\theta) \, \sin^2(1.27\Delta m_{21}^2 L/E)$$

Probability to observe v_e after starting in flavor state v_μ depends on:

- θ: Mixing angle
- L (km): Distance the neutrino has travelled
- E (GeV): Energy of the neutrino
- ▲m² (eV²): mass splitting
 Difference of the square of the mass eigenvalues

$$\Delta m_{21}^2 = m_2^2 - m_1^2$$

Typically, an experiment has L and E determined from the neutrino source and detector setup

and measures Δm^2 , θ

Open questions about neutrino mixing

Flavor eigenstates (coupling to the weak force)

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

Mass eigenstates (definite mass)

Unitary PMNS mixing matrix

Three observed flavors of neutrinos (v_e , v_μ , v_τ) means U is represented by three independent mixing angles (θ_{12} , θ_{23} , θ_{13}) and a CP violating phase δ

$$\theta_{12} = 33.6^{\circ} \pm 1.0^{\circ}$$

$$\theta_{23} = 45^{\circ} \pm 6^{\circ} \quad (90\% \text{CL})$$

$$\theta_{13} = 9.1^{\circ} \pm 0.6^{\circ}$$

Is θ_{23} mixing maximal (45°?)

Open questions about neutrino mixing

Flavor eigenstates (coupling to the weak force)

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

Mass eigenstates (definite mass)

Unitary PMNS mixing matrix

Three observed flavors of neutrinos (v_e , v_μ , v_τ) means U is represented by three independent mixing angles (θ_{12} , θ_{23} , θ_{13}) and a CP violating phase δ

$$\delta_{CP} = ??$$

Is there CP violation in the neutrino sector? Is it large?

Neutrino mass differences

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

Neutrino mass squared (m_i^2)

Three neutrino mass eigenstates mean two independent mass differences

Two observed mass "splittings", determined from atmospheric/accelerator and solar/reactor neutrino experiments, respectively

- Δm^2 (atmospheric) = $|\Delta m^2_{32}| \sim 2.4 \times 10^{-3} \text{ eV}^2$
- Δm^2 (solar) = $\Delta m^2_{21} \sim 7.6 \times 10^{-5} \text{ eV}^2$

Open questions about neutrino mixing

The sign of Δm_{32}^2 , or the "mass hierarchy" is still unknown

- Normal "hierarchy" is like quarks (m₁ is lightest, $\Delta m_{32}^2 > 0$)
- Inverted hierarchy has m_3 lightest ($\Delta m_{32}^2 < 0$)

What is the mass hierarchy?

Neutrino oscillation, revisited

 $\Delta m_{32}^2 >> \Delta m_{21}^2$, producing high frequency and low frequency oscillation terms

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{1.27\Delta m_{ij}^{2}L}{E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin\left(\frac{2.54\Delta m_{ij}^{2}L}{E}\right)$$

If choose L, E, such that $sin^2(\Delta m^2_{32}L/E)$ is of order 1, then Δm^2_{21} terms will be small. Then...

$$v_{\mu}$$
 "disappear" into v_{e}, v_{τ}
$$P(v_{\mu} \rightarrow v_{\mu}) \cong 1 - \sin^{2} 2\theta_{23} \sin^{2} \left(\frac{1.27 \Delta m_{32}^{2} L}{E} \right)$$

Only leading order terms shown

A small amount of v_e will "appear" $\Delta m^2_{31} \sim \Delta m^2_{32}$

$$P(v_{\mu} \rightarrow v_{e}) \cong \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{1.27 \Delta m_{31}^{2} L}{E}\right)$$

Neutrino oscillation, revisited

 $\Delta m_{32}^2 >> \Delta m_{21}^2$, producing high frequency and low frequency oscillation terms

Why do we want to make precision measurements of neutrino oscillation?

Probe of new or exotic physics

- Is there CP violation with neutrinos?
- Is θ_{23} maximal?

Is our understanding of neutrino oscillation complete?

Understanding of relationship between quarks and leptons

Oscillation experiments

We infer the values of oscillation parameters from:

- the decreased event rate in ν_µ disappearance (θ₂₃)
- the increased event rate in ν_e appearance (θ₁₃ etc)

Oscillation experiments

We infer the values of oscillation parameters from:

- the decreased event rate in ν_µ disappearance (θ₂₃)
- the increased event rate in v_e appearance (θ_{13} etc)
- and the distortion to the neutrino spectrum (∆m²₃₂)

Oscillation experiments

We infer the values of oscillation parameters from:

- the decreased event rate in ν_µ disappearance (θ₂₃)
- the increased event rate in v_e appearance (θ_{13} etc)
- and the distortion to the neutrino spectrum (Δm_{32}^2

To search for neutrino oscillation, we need:

- 1) An intense neutrino source of muon neutrinos
- 2) A sufficient distance for oscillation to occur
- 3) A measurement of unoscillated v_{μ} (and v_{e} background) rate at L~0
- 4) A measurement of v_{μ} , v_e at L~ oscillation maximum

The Tokai-to-Kamioka (T2K) experiment

``Long baseline" (L~ 295km) neutrino experiment designed to measure v_e appearance (θ_{13} and more) and v_{μ} disappearance (Δm^2_{32} , θ_{23}) Far detector Super-Kamiokande

3/20/2014

K Mahn, LBL/RPM seminar

The Tokai-to-Kamioka (T2K) experiment

``Long baseline" (L~ 295km) neutrino experiment designed to measure v_e appearance (θ_{13} and more) and v_{μ} disappearance (Δm^2_{32} , θ_{23}) Far detector

> ~500 collaborators from 59 institutions 11 countries

KM contributions marked as follows: IC: Intellectual contribution MP: Mahnpower L: Leadership

3/20/2014

Super-Ka

K Mahn, LBL/RPM seminar

Conventional neutrino beam

Advantages of an accelerator based neutrino source:

- 1. >99% muon neutrino flavor, small v_e component from muon, kaon decay
- 2. Intensity of proton beam increases neutrino rate
- 3. Switch magnetic horn polarization to focus π^{-} and produce an antineutrino beam
- 4. Tunable neutrino energy spectrum optimized for oscillation
 - 1. Determined by proton beam energy and position of the detector relative to the proton beam direction

At $E_v \sim 0.6$ GeV, most neutrino interactions are Charged Current Quasi Elastic (CCQE)

Neutrino flavor determined from flavor of outgoing lepton

$$\nu_e \to e$$
$$\nu_\mu \to \mu$$

At $E_v \sim 0.6$ GeV, most neutrino interactions are Charged Current Quasi Elastic (CCQE)

- Neutrino flavor determined from flavor of outgoing lepton
- Infer neutrino properties from the muon (or electron) momentum and angle:

$$E_{\nu}^{QE} = \frac{m_p^2 - {m'}_n^2 - m_{\mu}^2 + 2m'_n E_{\mu}}{2(m'_n - E_{\mu} + p_{\mu} \cos \theta_{\mu})}$$

2 body kinematics Assumes the target nucleon is at rest

Other interactions important for T2K analysis:

- Charged current single pion production (CCπ)
 - Lepton and pion (charged or neutral) produced
 - Oscillation signal (and background if pion is not identified)

$$E_{\nu}^{QE} = \frac{m_p^2 - {m'}_n^2 - m_{\mu}^2 + 2m'_n E_{\mu}}{2(m'_n - E_{\mu} + p_{\mu} \cos \theta_{\mu})}$$

NCπ⁰ ν ν z Ν Δ Ν'

Other interactions important for T2K analysis:

- Neutral current single pion production (NCπ⁰)
 - No lepton in final state (happens for all flavors)
 - Only neutral pion (π⁰) produced in detector
 - Can mimic v_e signal at Super-Kamiokande

v_e appearance analysis

$N(\nu_e) = \Phi(E_{\nu}) \ \sigma(E_{\nu}) \ \epsilon \ P(\nu_{\mu} \to \nu_e)$

Fit the observed rate to determine the oscillation probability, P. Depends on:

Neutrino flux	Neutrino cross section	Far detector selection,
prediction	model	efficiency

v_e appearance analysis

$N(\nu_e) = \Phi(E_{\nu}) \ \sigma(E_{\nu}) \ \epsilon \ P(\nu_{\mu} \to \nu_e)$

Fit the observed rate to determine the oscillation probability, P. Depends on:

We reduce the error on the rate of $\nu_{\rm e}$ with the near detector:

$$N(\nu_{\mu}) = \Phi(E_{\nu}) \sigma(E_{\nu}) \epsilon$$

Neutrino flux prediction

Neutrino cross section model Near detector selection, efficiency

T2K Neutrino flux prediction

FLUKA/Geant3 beam simulation Phys. Rev. D 87, 012001 (2013)

- 3 horn focusing system
- 280m from target:
 - INGRID on-axis ND280 off-axis
- v_{μ} from π^+ , K decay

Prediction and uncertainties determined by external or in-situ measurements of:

- proton beam (30 GeV)
- π, K production from NA61 experiment
 Phys.Rev.C 84, 034604 (2011)
 Phys.Rev.C 85, 035210 (2012)
- alignment and off-axis angle

Neutrino interaction uncertainties

Cross section model (NEUT, GENIE) relates lepton kinematics to neutrino energy:

- Initial interaction of neutrino with nucleon
- Final state interaction model (FSI) of outgoing particles, especially pions

IC: Cross section model uncertainties set from fits to MiniBooNE data ($E_v \sim 1$ GeV) for signal and background (CCQE, CC1 π and NC π^0) interactions

- Single pion (CC and NC) interaction datasets fit simultaneously
- SciBooNE, K2K datasets used as cross check
- IC, MP: Development of software to weight cross section in MC in both near and far detectors simultaneously 3/20/2014

Near detectors (ND280)

Measure unoscillated v_{μ} (CC) rate: Select nothing coming in (neutrino) and muons coming out (v_{μ})

Center of ND280 is the "Tracker":

- 2 scintillator based tracking detectors (FGDs)
- 3 time projection chambers (TPCs)
- Placed inside the UA1 (B=0.2T) magnet
 Additional detectors include:
- POD (π⁰ detector)
- Electromagnetic calorimeters
- Muon range detectors

3/20/2014

Selecting CC v_{μ} interactions

Measure unoscillated $\nu_{\mu}(\text{CC})$ rate

- 1. Neutrino interaction in FGD1
- Veto events with TPC1 tracks
- Events within FGD1 fiducial volume
- 2. Select highest momentum, negative curvature track as $\mu^{\scriptscriptstyle -}$ candidate
- Energy loss of the track in TPC also consistent with muon hypothesis

MP: TPC commissioning, data quality system and alignment

Selecting CC v_{μ} interactions

Measure unoscillated $\nu_{\mu}(\text{CC})$ rate

- 1. Neutrino interaction in FGD1
- Veto events with TPC1 tracks
- Events within FGD1 fiducial volume
- 2. Select highest momentum, negative curvature track as $\mu^{\text{-}}$ candidate
- Energy loss of the track in TPC also consistent with muon hypothesis

Further separate sample into three categories based on final state: $CC0\pi / CC1\pi / CC$ other to increase sensitivity to cross section:

- FGD track: decay electron / π-p dE/dx
- TPC-FGD matched track: π-p dE/dx

Electrons identify π^0 (often from DIS events)

Near detector rate constraint

IC: Tune flux, cross section models with a likelihood fit

• $p - \theta$ distribution is sensitive to rate ($\Phi \times \sigma$)

$$E_{\nu}^{QE} = \frac{m_p^2 - {m'}_n^2 - m_{\mu}^2 + 2m'_n E_{\mu}}{2(m'_n - E_{\mu} + p_{\mu} \cos \theta_{\mu})}$$

 Fit includes information on flux, cross sections from external measurements (e.g. beam monitors, neutrino cross section measurements)

Results of near detector rate fit

 Shared flux, similar CC cross section composition of near and far detector selections result in substantial reduction to CC cross sections, ν_μ flux uncertainties

Uncertainties	v _e sig+bkrd	v _e background
v flux+xsec (before) after ND280 constraint	(25.9%) ±2.9%	(21.7%) ±4.8%
v xsec (unconstrained by ND280)	±7.5%	±6.8%
Far detector	±3.5%	±7.3%
Total	±8.8%	±11.1%

$$N(\nu_e) = \Phi(E_{\nu}) \ \sigma(E_{\nu}) \ \epsilon \ P(\nu_{\mu} \to \nu_e)$$
$$N(\nu_{\mu}) = \Phi(E_{\nu}) \ \sigma(E_{\nu}) \ \epsilon$$

3/20/2014

K Mahn, LBL/RPM seminar

Far detector

Measure v_e (CC) rate from v_μ oscillation Select nothing coming in (neutrino) and an electron coming out (v_e)

Super-Kamiokande: 22.5kton fiducial volume water Cherenkov detector

Charged leptons emit Cherenkov light

- Ring is imaged by 11,129 PMTs; ring is used used to determine the electron direction and momentum (relative to the neutrino)
- Entering (non-neutrino) events are rejected by outer veto region
- Select v_e events from ring shape and topology

K Mahn, LBL/RPM seminar

Expected number of v_e candidates

After ND280 tuning, expect 21.6 events with expected v_{μ} to v_{e} oscillation

Rate, p-θ kinematics of events distinguishes signal from background

Signal (v_{μ} to v_{e} osc)		# events
@sin ² 2θ ₁₃ =0.1,δcp=0		16.7
v_e signal@ Δm_{32}^2 = 2.4 x 2 Excludes θ_{12} component	10 ⁻ t	³ eV ² , sin ² 2 θ_{23}
Background	#	events
beam v_{e}	3	.2
$ u_{\mu}$ (mainly NC) background	1	.1
osc through $\theta_{\rm 12}$	0	.6
total assuming sin²2θ ₁₃ =0	4	.92±0.55

Discovery of v_e appearance!

Appearance probability depends on δ_{CP} and all other oscillation parameters, including:

- Δm_{21}^2 , θ_{12} and θ_{13} from solar, reactor experiments
- Δm_{32}^2 , θ_{23} from atmospheric, accelerator-based experiments

First observation of CC v_e appearance:

- 28 candidate events observed
 (expected 21.6 with sin²2θ₁₃=0.1)
- 7.3 σ significance for non-zero θ_{13}
- Phys. Rev. Lett. 112, 061802 (2014)

Discovery of v_e appearance!

K Mahn, LB

 $Reconstructed \ \nu \ Energy \ (GeV)$ Disappearance distorts energy spectrum and rate of ν_{μ} candidates

- Select CCQE v_{μ} candidates at SK with ring info, decay electron tag
- Reconstruct neutrino energy from muon kinematics
- Apply same near detector tuning as for v_e appearance

NEW: v_u disappearance results

Sensitivity to the octant through sub-leading terms (θ_{23} >45°? <45°?)

• Best constraint on θ_{23} , still consistent with maximal (45°) mixing

NEW: joint $v_{\mu} - v_{e}$ analysis results

90%CL exclusion of δ_{CP} values (~ π /2) when constraints on Δm_{32}^2 , θ_{23} , Δm_{21}^2 , θ_{12} and θ_{13} are included

- Fit includes T2K ν_µ, ν_e samples and correlations
- $\sin^2 \theta_{13} = 0.095 \pm 0.010$
- PDG2013 based on reactor experiments

NEW: joint $v_{\mu} - v_{e}$ analysis results

90%CL exclusion of δ_{CP} values (~ π /2) when constraints on Δm_{32}^2 , θ_{23} , Δm_{21}^2 , θ_{12} and θ_{13} are included

- Fit includes T2K ν_{μ} , ν_{e} samples and correlations
- $\sin^2\theta_{13} = 0.095 \pm 0.010$
- PDG2013 based on reactor experiments

Complementary Baysian joint analysis is a Markov Chain Monte Carlo approach

- Simultaneous fit of ND280, SK samples
- Can compare probabilities for each combination of octant, mass hierarchy

Probability	Δm_{32}^{2} >0	$\Delta m_{32}^{2} < 0$	Sum
$\sin^2\theta_{23} \le 0.5$	18%	8%	26%
$\sin^2 \theta_{23} > 0.5$	50%	24%	74%
Sum	68%	32%	

Why long baseline neutrino experiments, like T2K?

Discovery of CC v_e appearance is the first step towards searches of CP violation in the lepton sector

World's best constraint on θ_{23} from v_{μ} disappearance • Will θ_{23} continue to be maximal?

• If not, what is the θ_{23} octant?

What will we learn from T2K/NOvA?

NOvA's higher energy (peak $E_v \sim 2$ GeV) and longer baseline ($L \sim 810$ km) has a different dependence on mass hierarchy than T2K through the matter effect

- Left: Increased sensitivity to value of δ_{CP} , with for fixed values of θ_{13} , θ_{23} and with (dashed) and without (solid) systematic uncertainties applied
- Right: Gray regions are where the mass hierarchy can be determined to 90%2CLafor T2K(red), NOvA (blue), and T2K+NOvA (black)

What is needed to measure δ_{CP} ?

Compare v_e appearance to \overline{v}_e appearance to determine an asymmetry:

$$A_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})} \simeq \frac{\Delta m_{12}^{2}L}{4E_{\nu}} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot \sin \delta$$

With θ_{13} "large", then A_{CP} is small (~20-30%), so a measurement of δ_{CP} will need systematic uncertainties of <5% or better

- T2K's current statistics: 28 events (v_e appearance probability)
- Need more raw event rate, with a larger detector and/or intense beam

Long Baseline Neutrino Experiment

- Wide band (on-axis) beam can be used to see energy dependence of oscillation
- 1300km distance (Fermilab to South Dakota) for mass hierarchy, δ_{CP} physics
- Goal: 1% signal uncertainties / 5% background uncertainties
- Other LBL experiments, like Hyper-Kamiokande, assume similar uncertainties v_{μ} CC spectrum at 1300 km, $\Delta m_{31}^2 = 2.4e-03 \text{ eV}^2$

57

How do we achieve <5% systematics?

The largest systematic uncertainties currently on the T2K oscillation analyses are from uncertainties on the CCQE, CC1 π neutrino interaction models

- Disagreements between models and existing neutrino experiment data (e.g. MiniBooNE, SciBooNE)
- Differences between new theoretical models and those currently used by T2K

CCQE and multinucleon interactions

"Multinucleon" processes may explain the enhanced CCQE cross section observed by MiniBooNE, SciBooNE experiments

- Effort to include multinucleon models into neutrino generators used by T2K (NEUT)
 - Currently working with Nieves et al model (PRC 70, 055503 (2004)) combined with Sobczyk multinucleon ejection model (PRC 86, 015504 (2012))
 - Further details at recent Dec 2013 INT workshop:

_{3/20/201} http://www.int.washington.edu/talks/WorkShops/int_13_54W/

Multinucleon processes and T2K

IC: Understand the potential effect of multinucleon processes on the osc analysis

• Multinucleon processes create a shift between true and reconstructed E_v , similar to CC1 π , especially (already simulated) pionless delta decay ("PDD")

PDD is a dominant uncertainty (6.2%) on the overall CCQE v_{μ} event rate at SK

 Uses simulated events at near detector and full near to far extrapolation machinery and oscillation fit.

Includes ND280 rate constraint and different true/reconstructed Enu association

Still limited (only 1 model, proton FSI not simulated at SK, etc)

T2K efforts to understand neutrino interactions

- IC, L: Test the agreement of new models with ND280, as ND280-XSEC co-convener:
- Provide measurements of inclusive, exclusive CC cross sections

3/20/2014

Direct (final state) and indirect (below) information about multinucleon processes

Produced T2K's first xsec measurement:

CC inclusive double differential cross section [PRD 87, 092003 (2013)]

Current generation long baseline programs are yielding exciting results! From T2K with 8% of the design POT: • Discovery of CC v_e appearance • World's best measurement of θ_{23} • CC inclusive cross section measurement

> Challenge for future δ_{CP} searches, such as LBNE, will be to build a neutrino interaction model understood at the few percent level