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• Change the integration variable ζ = |"b⊥|√x(1− x)

F (Q2) = 2π

∫ 1

0

dx

x(1− x)

∫ ζmax=Λ−1
QCD

0
ζ dζ J0

(
ζQx√

x(1− x)

)∣∣ψ̃(x, ζ)
∣∣2,

• Compare with AdS form factor for arbitrary Q. Find:

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQx√

x(1− x)

)
= ζQK1(ζQ),

the solution for the electromagnetic potential in AdS space, and

ψ̃(x,"b⊥) =
ΛQCD√
πJ1(β0,1)

√
x(1− x)J0

(√
x(1− x)|"b⊥|β0,1ΛQCD

)
θ

(
"b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)

the holographic LFWF for the valence Fock state of the pion ψqq/π .

• The variable ζ , 0 ≤ ζ ≤ Λ−1
QCD, represents the scale of the invariant separation between quarks

and is also the holographic coordinate ζ = z !
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Identical DYW and AdS5 Formulae: Two parton cas"
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Same result for 
LF and AdS5

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)
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ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)              AdS5

κ = 0.77GeV

ψ(x,#b⊥) =
√

x(1− x) φ(ζ)

√
x(1− x)

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

M ∝ ∂2

∂2k⊥
ψγ∗(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥
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Holography: Unique mapping derived from equality of LF 
and AdS  formula for current matrix elements
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from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ[

− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.
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FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)

for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first

orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

Effective conformal 
potential:

Holography: 
Map AdS/CFT  to  3+1 LF Theory

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic radial equation:

G. de Teramond, sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2⊥.

#L = #P × #R

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

Frame Independent
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FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)
for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first
orbital excited state # = 1, k = 1.
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FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)
for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first
orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely
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q + Sz
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Effective radial equation:

General solution:

G. de Teramond and sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2⊥.

#L = #P × #R
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Figure 8: Asymptotic effective partonic density 2πρ(x, b⊥, Q → ∞) in terms of the
longitudinal momentum fraction x, the transverse relative impact variable b⊥ and
momentum transfer Q for the harmonic oscillator model. The figure corresponds to
κ = 0.67 GeV. The distribution is peaked at b⊥ = 0.
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Figure 9: LFWF ψ(x, b) for the truncated space model (left) and for the HO model
(right) in terms of the longitudinal momentum fraction x, the transverse relative
impact variable b⊥. The figures correspond to ΛQCD = 0.32 GeV and κ = 0.76 GeV.
The WF are normalized to Mρ.
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Thus α = L is integer
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ψ(x, b⊥)

x

b⊥

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0
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AdS/QCD G. F. de Téramond

ζ(GeV–1)

ψ(x,ζ)

2-2006
8721A14™

(a) (b) (c)x
00.5

1

x
00.5

1

x
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1

1

2

3

ζ(GeV–1)

1

2

3

ζ(GeV–1)

1

2

3

0

–0.1

0.1

0.2

0

–0.1

0.1

0.2

0

–0.1

0.1

0.2

Two-parton holographic LFWF in impact space ψ̃(x, ζ) for ΛQCD = 0.32 GeV: (a) ground state
L = 0, k = 1; (b) first orbital exited state L = 1, k = 1; (c) first radial exited state L = 0, k = 2.
The variable ζ is the holographic variable z = ζ = |b⊥|√x(1− x).

Caltech High Energy Seminar, Feb 6, 2006 Page 37

AdS/CFT Prediction for Meson LFWF

AdS/QCD G. F. de Téramond

• Change the integration variable ζ = |"b⊥|√x(1− x)

F (Q2) = 2π

∫ 1

0

dx

x(1− x)

∫ ζmax=Λ−1
QCD

0
ζ dζ J0

(
ζQx√

x(1− x)

)∣∣ψ̃(x, ζ)
∣∣2,

• Compare with AdS form factor for arbitrary Q. Find:

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQx√

x(1− x)

)
= ζQK1(ζQ),

the solution for the electromagnetic potential in AdS space, and

ψ̃(x, ζ) =
ΛQCD√
πJ1(β0,1)

√
x(1− x)J0 (ζβ0,1ΛQCD) θ

(
z ≤ Λ−1

QCD

)
the holographic LFWF for the valence Fock state of the pion ψqq/π .

• The variable ζ , 0 ≤ ζ ≤ Λ−1
QCD, represents the scale of the invariant separation between quarks

and is also the holographic coordinate ζ = z !

Caltech High Energy Seminar, Feb 6, 2006 Page 36

G. de Teramond
SJB 
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AdS/QCD G. F. de Téramond

• Define effective single particle transverse density by (Soper, Phys. Rev. D 15, 1141 (1977))

F (q2) =
∫ 1

0
dx

∫
d2!η⊥ei!η⊥·!q⊥ ρ̃(x, !η⊥)

• From DYW expression for the FF in transverse position space:

ρ̃(x, !η⊥) =
∑
n

n−1∏
j=1

∫
dxj d2!b⊥j δ(1− x−

n−1∑
j=1

xj) δ(2)(
n−1∑
j=1

xj
!b⊥j − !η⊥)|ψn(xj ,!b⊥j)|2

• Compare with the the form factor in AdS space for arbitrary Q:

F (Q2) = R3
∫ ∞

0

dz

z3
e3A(z)ΦP ′(z) J(Q, z) ΦP (z)

• Holographic variable z is expressed in terms of the average transverse separation distance of the

spectator constituents !η =
∑n−1

j=1 xj
!b⊥j

z =
√

x

1− x

∣∣ n−1∑
j=1

xj
!b⊥j

∣∣

Caltech High Energy Seminar, Feb 6, 2006 Page 3848
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

Construct helicity amplitude using Light-Front 
Perturbation theory;   coalesce quarks via LFWFs

ψ(x,"k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

τ = x+

e+

e−

Event amplitude 
generator
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Diffractive Dissociation of Pion  
into Quark Jets

Measure Light-Front Wavefunction of Pion

Minimal momentum transfer to nucleus
Nucleus left Intact!

E791 Ashery et al.

50

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2
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Key Ingredients in  E791 Experiment

Small color-dipole moment pion not absorbed; 
interacts with each nucleon coherently 

QCD COLOR Transparency

q

q̄

g

π
q

q̄

g

π

q

q̄

g

π
N

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

q̄

Target left intact

Brodsky Mueller
Frankfurt Miller Strikman

Diffraction, Rapidity gap

MA = A MN

dσ
dt (πA → qq̄A′) = A2 dσ

dt (πN → qq̄N ′) F2
A(t)

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

MA = A MN

dσ
dt (πA → qq̄A′) = A2 dσ

dt (πN → qq̄N ′) F2
A(t)

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q
51

A

A′

σ = x− = ct − x3

x+ = ct + x3

x1

x2

log10 Q2(GeV2)

A

A′

σ = x− = ct − x3

x+ = ct + x3

x1

x2

log10 Q2(GeV2)
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Color Transparency

• Fundamental test of gauge theory in hadron physics

• Small color dipole moments interact weakly in nuclei

• Complete coherence at high energies

• Clear Demonstration of CT from Diffractive Di-Jets

Bertsch, Gunion, Goldhaber, sjb
A. H. Mueller,  sjb
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E791 Collaboration, E. Aitala et al., Phys. Rev. Lett. 86, 4773 (2001)

A-Dependence results: σ ∝ Aα

kt range (GeV/c) α α (CT)

1.25 < kt < 1.5 1.64 +0.06 -0.12 1.25

1.5 < kt < 2.0 1.52 ± 0.12 1.45

2.0 < kt < 2.5 1.55 ± 0.16 1.60

α (Incoh.) = 0.70 ± 0.1

53

Measure pion LFWF in diffractive dijet production 
Confirmation of color transparency 

Mueller, sjb; Bertsch et al; 
Frankfurt, Miller, Strikman

Conventional Glauber Theory Ruled Out 
! 

Factor of 7

Ashery E791 
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Key Ingredients in Ashery Experiment

Two-gluon exchange measures the second derivative of the pion
light-front wavefunction

q

q̄

g

π
q

q̄

g

π

q

q̄

g

π
N

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

q̄

N

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

q̄

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2

 Gunion, Frankfurt, Mueller, Strikman, sjb
Frankfurt, Miller, Strikman
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D. Ashery, Tel Aviv University

THE kt DEPENDENCE OF DI-JETS YIELD

dσ

dk2
t

∝
∣∣∣∣αs(k

2
t )G(x, k2

t )
∣∣∣∣2

∣∣∣∣∣∣∣
∂2

∂k2
t

ψ(u, kt)

∣∣∣∣∣∣∣
2

With ψ ∼ φ
k2

t
, weak φ(k2

t ) and αs(k2
t ) dependences and G(x, k2

t ) ∼ k1/2
t : dσ

dkt
∼ k−6

t

For low kt:

Gaussian: ψ ∼ e−βk2
t (Jakob and Kroll)

Coulomb: ψ(p) =
(

1
1+p2/p2

a

)2
(Pauli)

High Transverse 
momentum  dependence 

consistent with PQCD, 
ERBL Evolution

55

Two Componentsdσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

E791 Diffractive Di-Jet transverse momentum distribution

Gaussian component similar 
to AdS/CFT HO LFWF



 
 Stan Brodsky,  SLACAdS/QCDAPS Jacksonville

April 16, 2007

Prediction from AdS/CFT: Meson LFWF
ψ(x, k⊥)

ψ(x, k⊥)

0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       Harmonic oscillator 
model

(GeV) de Teramond, sjb
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φM(x, Q0) ∝
√

x(1− x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−
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310 D. Ashery / Progress in Particle and Nuclear Physics 56 (2006) 279–339

Fig. 22. The u distribution of diffractive dijets from the platinum target for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for

1.5 ≤ kt ≤ 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes.

The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

They were identified through the e−bq2t dependence of their yield (q2t is the square of the trans-
verse momentum transferred to the nucleus and b = 〈R2〉

3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:∣∣∣∣∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣2 = |φ(u, k2) − φ(u, k1)|2. (48)
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Fig. 22. The u distribution of diffractive dijets from the platinum target for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for

1.5 ≤ kt ≤ 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes.

The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

They were identified through the e−bq2t dependence of their yield (q2t is the square of the trans-
verse momentum transferred to the nucleus and b = 〈R2〉

3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:∣∣∣∣∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣2 = |φ(u, k2) − φ(u, k1)|2. (48)

x

Narrowing of x distribution at higher jet transverse momentum 

57

Possibly two components:  
Nonperturbative (AdS/CFT) and 

Perturbative (ERBL) 
Evolution to asymptotic distribution

x x

CZ
asympt

Ashery E791 
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γ
*

γ
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FIGURE 10. The matrix element in the integrand of the parton distribution (8), i.e., the handbag diagram of Fig. 8 viewed in
coordinate space (rescattering is not shown). The position of the struck quark differs by x− in the two wave functions (whereas
x+ = x⊥ = 0).

The rhs. of this equation is essentially given by the F2 structure function. Thus we can study the A-dependence of the

parton distribution in coordinate space, defined as

qA(x−,Q2) ≡
∫ 1

0

dxB

xB
FD2 (xB,Q

2)RAF2(xB,Q
2)sin

(
1
2
mxBx

−)
(11)

where RAF2(xB,Q
2) is the experimentally measured ratio of nuclear to deuterium structure functions sketched in Fig. 9.

The corresponding ratio in coordinate space, defined as

RA(x−,Q2) ≡ qA(x−,Q2)

qD(x−,Q2)
(12)

can then be formed using data on structure functions and is shown in Fig. 11a.

A
x-

x-

xB

xB

(a) (b)

FIGURE 11. (a) The coordinate space ratio RA(x−,Q2) (12) obtained by Fourier transforming data on FA2 (xB,Q
2) structure

functions for A = He, C and Ca. (b) The momentum space ratio R̃C(xB,w,Q2 = 5 GeV2) for Carbon, obtained by Fourier
transforming a modified coordinate space distribution in which all nuclear effects are eliminated for x− < w.

Within the ca. 1% error bars [9] the ratio RA(x−,Q2) is consistent with having no A-dependence for x− <∼ 5 fm. At
longer distances x− > 5 (i.e., t = −z > 2.5 fm since x+ = 0) shadowing sets in. Thus viewed from coordinate space
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2) is the experimentally measured ratio of nuclear to deuterium structure functions sketched in Fig. 9.
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(12)
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Within the ca. 1% error bars [9] the ratio RA(x−,Q2) is consistent with having no A-dependence for x− <∼ 5 fm. At
longer distances x− > 5 (i.e., t = −z > 2.5 fm since x+ = 0) shadowing sets in. Thus viewed from coordinate space
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P. Hoyer

Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

Normalized to fπ

σ = 1
2x−P+

x−

Space-time picture of  DVCSIncreases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

Normalized to fπ

σ = 1
2x−P+

Measure x- distribution from DVCS: 
Take Fourier transform of skewness, 
the longitudinal momentum transfer 

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P+

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

,
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Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has
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dζeiσζÃ(b⊥, ζ)

= 2(2π)4
Λ2

QCD

2π2J1(β0,1)2

∫ 1

0
dζeiσζ

∫ 1

ζ
dx F (x, ζ)

√
x(x− ζ)[J0(X1)J0(X2)]

σ

|b⊥|

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)
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Hadron Dynamics at the 
Amplitude Level

• LFWFS are the universal hadronic amplitudes which 
underlie structure functions, GPDs, exclusive processes.

• Relation of spin, momentum, and other distributions to  
physics of the hadron itself.

• Connections between observables, orbital angular 
momentum

• Role of FSI and ISIs--Sivers effect
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Features of Light-Front Formalism

• Hidden Color Nuclear Wavefunction

• Color Transparency, Opaqueness

• Intrinsic glue, sea quarks, intrinsic char%

• Simple proof of Factorization theorems for hard processes 
(Lepage, sjb)

• Direct mapping to AdS/CFT (de Teramond, sjb)

• New Effective LF Equations (de Teramond, sjb)

• Light-Front Amplitude Generator
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AdS/CFT and Integrability

• Conformal Symmetry plus Confinement: Reduce 
AdS/QCD Equations to Linear Form

• Generate  eigenvalues and eigenfunctions using 
Ladder Operators

• Apply to Covariant Light-Front Radial Dirac and 
Schrodinger Equations

• L. Infeld, “On a new treatment of some 
eigenvalue problems”, Phys. Rev. 59, 737 (1941).
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where

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
− κ2ζ

)
, (66)

and its adjoint

Π†
ν(ζ) = −i

(
d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
, (67)

with commutation relations[
Πν(ζ), Π†

ν(ζ)
]

=
2ν + 1

ζ2
− 2κ2. (68)

Since the Hamiltonian is a bilinear form, its eigenvalues are positive definite.

Consequently

M2 ≥ 0 if ν2 ≥ 0. (69)

For ν2 < 0 we repeat the analysis of Sect. 2.5 to obtain the relation

〈φ ∣∣Hλ
LF

∣∣ φ〉 ≥ 2µ2

∫
dζ
|φ|2
ζ2

. (70)

Consequently for ν2 < 0 the Hamiltonian is not bounded from below and the expec-

tation values of the Hamiltonian are negative. Thus

M2 ≤ 0 if ν2 < 0. (71)

The critical value corresponds to ν = 0. The quantum-mechanical stability condi-

tions for the transverse harmonic oscillator described here are also equivalent to the

stability conditions which follow from the Breitenlohner-Freedman bound [3].

3.1 Ladder Construction of States

The wave equation(
d2

dζ2
+

1− 4ν2

4ζ2
− κ4ζ2 − 2κ2(ν + 1) +M2

)
φν(ζ) = 0, (72)

follows from the eigenvalue equation (64). As in Sect. 2.2 we define the operator

b†ν = −iΠν . Thus

bν =
d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (73)

11
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2.10 Self-Adjoint Operators and Boundary Conditions

The adjoint A† of an operator A is defined by∫
dxφ∗A†χ =

∫
dx(Aφ)∗χ. (60)

For example (
d

dx

)†
= − d

dx
. (61)

Consider the expectation value of the kinetic energy operator T = − d2

dx2 in the

finite interval 0 ≤ x ≤ a∫ a

0

dxφ∗
(
− d2

dx2

)
φ =

∫
dx

∣∣∣∣dφ

dx

∣∣∣∣2 − [
φ∗dφ

dz

]a

0

. (62)

The operator T is self-adjoint or hermitian T = T † if φ or dφ
dx vanishes at x = 0 or

x = a. In an interval 0 ≤ x ≤ ∞ the wave function or its derivative must vanish at

infinity: φ(x)→ 0 or dφ(x)
dx → 0 as x→∞.

3 The Transverse Harmonic Oscillator Holographic

Model: Mesons

We consider a transverse oscillator model of holographic confinement where a ζ2 term

is added to the conformal effective potential. We write the effective Hamiltonian

Hν
LF (ζ) = − d2

dζ2
− 1− 4ν2

4ζ2
+ κ4ζ2 + 2(ν + 1)κ2, (63)

The constant term 2(ν + 1)κ2 is introduced so that the Hamiltonian is expressible

exactly as a product of operators. The spectrum of hadronic mass eigenstates is

determined by the eigenvalue equation

Hν
LF φν =M2

νφν . (64)

If ν2 > 0 the light-front Hamiltonian (63) can be expressed as

Hν
LF = Π†

νΠν , (65)
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Bilinear

de Teramond, sjb

LF Hamiltonian

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2)→ α
15π

Q2

m2

Q2 << 4m2
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with hermitian conjugate

b†ν = − d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (74)

and commutation relations

[
bν(ζ), b†ν(ζ)

]
=

2ν + 1

ζ2
− 2κ2. (75)

Since the relation

b†νbν = bν+1b
†
ν+1, (76)

also holds for the Hamiltonian (63), we can repeat the analysis of Sect. 2.2. In

particular the operator b†ν acts as the creation operator of a state with an additional

quantum ν. Thus

b†ν |ν〉 = cν |ν + 1〉, (77)

or (
− d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
φν(ζ) = cνφν+1(ζ). (78)

with cν a constant. Writing

φν(z) = Cz1/2+νe−κ2ζ2/2Gν(ζ), (79)

and substituting in (78) we get

2xGν(x)−G′(x) = xGν+1(x), (80)

with x = κζ, a relation which defines the associated Laguerre function Lν+1
n (x2) in

terms of Lν
n(x2)

2xLν
n(x2)− dLν

n(x2)

dx
= xLν+1

n (x2). (81)

Thus

φν(z) = Cνz
1/2+νe−κ2ζ2/2Lν

n(κ2ζ2). (82)

It can also be shown that

bν |ν + 1〉 ∼ |ν〉, (83)
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Ladder Operator

where
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ν(ζ) = −i

(
d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
, (67)

with commutation relations[
Πν(ζ), Π†

ν(ζ)
]

=
2ν + 1

ζ2
− 2κ2. (68)

Since the Hamiltonian is a bilinear form, its eigenvalues are positive definite.

Consequently

M2 ≥ 0 if ν2 ≥ 0. (69)

For ν2 < 0 we repeat the analysis of Sect. 2.5 to obtain the relation

〈φ ∣∣Hλ
LF

∣∣ φ〉 ≥ 2µ2

∫
dζ
|φ|2
ζ2

. (70)

Consequently for ν2 < 0 the Hamiltonian is not bounded from below and the expec-

tation values of the Hamiltonian are negative. Thus

M2 ≤ 0 if ν2 < 0. (71)

The critical value corresponds to ν = 0. The quantum-mechanical stability condi-

tions for the transverse harmonic oscillator described here are also equivalent to the

stability conditions which follow from the Breitenlohner-Freedman bound [3].

3.1 Ladder Construction of States

The wave equation(
d2

dζ2
+

1− 4ν2

4ζ2
− κ4ζ2 − 2κ2(ν + 1) +M2

)
φν(ζ) = 0, (72)

follows from the eigenvalue equation (64). As in Sect. 2.2 we define the operator

b†ν = −iΠν . Thus

bν =
d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (73)
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with hermitian conjugate

b†ν = − d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (74)

and commutation relations

[
bν(ζ), b†ν(ζ)

]
=

2ν + 1

ζ2
− 2κ2. (75)

Since the relation

b†νbν = bν+1b
†
ν+1, (76)

also holds for the Hamiltonian (63), we can repeat the analysis of Sect. 2.2. In

particular the operator b†ν acts as the creation operator of a state with an additional

quantum ν. Thus

b†ν |ν〉 = cν |ν + 1〉, (77)

or (
− d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
φν(ζ) = cνφν+1(ζ). (78)

with cν a constant. Writing

φν(z) = Cz1/2+νe−κ2ζ2/2Gν(ζ), (79)

and substituting in (78) we get

2xGν(x)−G′(x) = xGν+1(x), (80)

with x = κζ, a relation which defines the associated Laguerre function Lν+1
n (x2) in

terms of Lν
n(x2)

2xLν
n(x2)− dLν

n(x2)

dx
= xLν+1

n (x2). (81)

Thus

φν(z) = Cνz
1/2+νe−κ2ζ2/2Lν

n(κ2ζ2). (82)

It can also be shown that

bν |ν + 1〉 ∼ |ν〉, (83)
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In the ζ light-front coordinate representation

φL(ζ) = cL〈ζ|L〉 = 〈ζ|(b†)L|0〉 (93)

= CL

(
− d

dζ
+

1

2ζ
+ κ2z

)L

ζ1/2e−κ2ζ2/2, (94)

Thus

φL(ζ) = CLζ1/2+Le−κ2ζ2/2, (95)

with

CL = κ1+L

√
2

L!
(96)

The solutions φL are eigenfunctions of the light-front equation [1][
− d2

dζ2
− 1− L2

4ζ2
+ κ4ζ2 + 2κ2(L + 1)

]
φ(z) = M2φ(ζ). (97)

with L = 0,±1,±2, · · · . The same procedure applies for a state with arbitrary n.

3.4 Holographic Meson Spectrum

The normalizable solution to (97) including the radial nodes is

φL(ζ) = κ1+L

√
2n!

(n + L)!
ζ1/2+Le−κ2ζ2/2LL

n

(
κ2ζ2

)
, (98)

with eigenvalues

M2 = 4κ2(n + ν + 1). (99)

To reproduce the data for mesons one has to redefine the vacuum energy by

shifting the values of M2:

M2 →M2 − 2κ2, (100)

thus

M2 = 4κ2(n + ν +
1

2
). (101)

The J = L + 1 leading Regge trajectory for the ρ − ω states is shown in Fig. 3.

The linear prediction from (101) corresponds to κ % 0.54 GeV.

14

Subtract Vacuum 
Energy
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Figure 3: J = L + 1 vector meson Regge trajectory for κ ! 0.54 GeV.

4 Truncated-Space Holographic Model: Baryons

We consider an effective light-front Dirac equation to describe a baryonic state in

holographic QCD. In the conformal limit

αΠ(ζ)ψ(ζ) = Mψ(ζ), (102)

where Π is the matrix valued (non-hermitian) generalized momentum

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γζ

)
. (103)

If the operator αΠ is self-adjoint then its eigenvalue M is real. The conditions

(αΠ)† = αΠ, (104)

(αΠ)2 = M2, (105)

imply that

α† = α, α2 = 1, (106)

γ†
ζ = γζ , γ2

ζ = 1, (107)

{α, γζ} = 0. (108)

Consequently the matrices α and γζ are four dimensional Dirac matrices.
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We consider an effective light-front Dirac equation to describe a baryonic state in

holographic QCD. In the conformal limit

αΠ(ζ)ψ(ζ) = Mψ(ζ), (102)

where Π is the matrix valued (non-hermitian) generalized momentum

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γζ

)
. (103)

If the operator αΠ is self-adjoint then its eigenvalue M is real. The conditions

(αΠ)† = αΠ, (104)

(αΠ)2 = M2, (105)

imply that

α† = α, α2 = 1, (106)

γ†
ζ = γζ , γ2

ζ = 1, (107)

{α, γζ} = 0. (108)

Consequently the matrices α and γζ are four dimensional Dirac matrices.
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New Perspectives for QCD from AdS/CFT

• LFWFs:  Fundamental frame-independent description of 
hadrons at amplitude level

• Holographic Model from AdS/CFT : Confinement at large 
distances and conformal behavior at short distances

• Model for LFWFs, meson and baryon spectra: many 
applications!

• New basis for diagonalizing Light-Front Hamiltonian

• Physics similar to MIT bag model, but covariant. No 
problem with support 0 < x  < 1.

• Quark Interchange dominant force at short distances

69
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Quark Interchange
(Spin exchange in atom-

atom scattering)

Gluon Exchange
(Van der Waal -- 

Landshoff)
dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
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ut2

σ
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A(σ, b⊥) =
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∫
dζeiσζÃ(b⊥, ζ)

MIT Bag Model (de Tar), large  NC,  (‘t Hooft), AdS/CFT
 all predict dominance of quark interchange:
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CIM: Blankenbecler, Gunion, sjb
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AdS/CFT explains why  
quark interchange is 

dominant 
interaction at high 
momentum transfer 

in exclusive reactions

Non-linear Regge behavior:

αR(t)→ −1

z = ζ

κ4

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

71

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

Quark Interchange
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Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Quarks travel freely within cavity as long as
separation z < z0 = 1

ΛQCD

LFWFs obey conformal symmetry producing
quark counting rules.

72
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Use AdS/CFT orthonormal LFWFs 
as a basis for diagonalizing

the QCD LF Hamiltonian

• Good initial approximant

• Better than plane wave basis

• DLCQ discretization -- highly successful 1+1

• Use independent HO LFWFs, remove CM 
motion

• Similar to Shell Model calculations

Vary, Harinandrath, sjb

74

Pauli, Hornbostel, Hiller, 
McCartor, sjb
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 333

Heisenberg Equation
Light-Front QCD

Pauli, Pinsky, sjb

DLCQ

Use AdS/QCD  basis functions
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 

3+1 space 
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD
Conformal behavior at short 

distances
+ Confinement at large 

distance

Counting rules for Hard 
Exclusive Scattering
Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level

76
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77

• New initial approximation to QCD based on conformal 
invariance, and confinement

• Underlying principle:  Conformal Window

• AdS5: Mathematical representation of conformal gauge 
theory

• Systematically improve using DLCQ

• Successes: Hadron spectra, LFWFs, dynamics

• QCD at the Amplitude Level

AdS/QCD
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AdS/QCD G. F. de Téramond

AdS/CFT and QCD

Bottom-Up Approach

• Nonperturbative derivation of dimensional counting rules of hard exclusive glueball scattering

for gauge theories with mass gap dual to string theories in warped space:

Polchinski and Strassler, hep-th/0109174.

• Deep inelastic structure functions at small x:

Polchinski and Strassler, hep-th/0209211.

• Derivation of power falloff of hadronic light-front Fock wave functions, including orbital angular

momentum, matching short distance behavior with string modes at AdS boundary:

Brodsky and de Téramond, hep-th/0310227.

• Low lying hadron spectra, chiral symmetry breaking and hadron couplings in AdS/QCD:

Boschi-Filho and Braga, hep-th/0212207; de Téramond and Brodsky, hep-th/0501022; Erlich, Katz,

Son and Stephanov, hep-ph/0501128; Hong, Yong and Strassler, hep-th/0501197; Da Rold and Po-

marol, hep-ph/0501218; Hirn and Sanz, hep-ph/0507049; Boschi-Filho, Braga and Carrion, arXiv:hep-

th/0507063; Katz, Lewandowski and Schwartz, arXiv:hep-ph/0510388.
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• Gluonium spectrum (top-bottom):

Csaki, Ooguri, Oz and Terning, hep-th/9806021; de Mello Kock, Jevicki, Mihailescu and Nuñez,

hep-th/9806125; Csaki, Oz, Russo and Terning, hep-th/9810186; Minahan, hep-th/9811156; Brower,

Mathur and Tan, hep-th/0003115, Caceres and Nuñez, hep-th/0506051.

• D3/D7 branes (top-bottom):

Karch and Katz, hep-th/0205236; Karch, Katz and Weiner, hep-th/0211107; Kruczenski, Mateos,

Myers and Winters, hep-th/0311270; Sakai and Sonnenschein, hep-th/0305049; Babington, Erd-

menger, Evans, Guralnik and Kirsch, hep-th/0312263; Nuñez, Paredes and Ramallo, hep-th/0311201;

Hong, Yoon and Strassler, hep-th/0312071; hep-th/0409118; Kruczenski, Pando Zayas, Sonnen-

schein and Vaman, hep-th/0410035; Sakai and Sugimoto, hep-th/0412141; Paredes and Talavera,

hep-th/0412260; Kirsh and Vaman, hep-th/0505164; Apreda, Erdmenger and Evans, hep-th/0509219;

Casero, Paredes and Sonnenschein, hep-th/0510110.

• Other aspects of high energy scattering in warped spaces:

Giddings, hep-th/0203004; Andreev and Siegel, hep-th/0410131; Siopsis, hep-th/0503245.

• Strongly coupled quark-gluon plasma (η/s = 1/4π):

Policastro, Son and Starinets, hep-th/0104066; Kang and Nastase, hep-th/0410173 . . .
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Thanks to my collaborators, especially

• Paul Hoyer

• Sid Drell

• Chueng Ji

• Dae Sung Hwang

• John Hiller

• Ivan Schmidt

• Kent Hornbostel
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I thought I had 
discovered the 

Theory of Everything 
But everything 
canceled out !

A Theory of Everything Takes Place

SCIENCE  VOL  265 15 SEPTEMBER 1995

String theorists have broken an impasse and may be 
on their way to converting this mathematical 

structure -- physicists’ best hope for unifying gravity 
and quantum theory -- into a single coherent theory.
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