

Seesaw Mechanism

 Right-handed neutrinos have no weak interactions and thus are not confined to the weak mass scale. Postulate both a GUT-scale right-handed Marjorana neutrino N_R and both Majorana and Dirac mass terms in the Lagrangian:

$$\mathcal{L} = \frac{1}{2} M_{ij} \overline{N}_{R_j} N_{R_j} + \lambda_{ij} \begin{pmatrix} v_L, & e_L \end{pmatrix}_i \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} N_{R_j} + \text{h.c.}$$

Dropping the flavor index, this results in a mass matrix

$$\begin{pmatrix} 0 & m_{|} \\ m_{|} & M \end{pmatrix}$$
, where $m_{|} = \lambda \langle \phi \rangle$,

a "normal" fermionic mass.

Gary Feldman

LBNL

25 January 2007

Gary Feldman

Leptogenesis

- To explain how our matter-dominated universe arose from a matter-antimatter symmetric big bang, we need (Sakharov conditions)
 - Lepton and baryon number violation
 - CP violation (Standard Model quark CP violation not sufficient)
 - Thermal non-equilibrium
- Majorana neutrinos can provide these conditions.

Neutrino Oscillations

- Neutrino oscillations occur because the weak eigenstates and not identical to the mass eigenstates.
- Neutrinos are always produced and detected in weak eigenstates, but they propagate in mass eigenstates.
- To the extent that the masses of the mass eigenstates are different, the phase relations generated by the propagation (e^{-iEt/ħ}) change, producing the oscillation.

What Have We Learned?

- From observing neutrinos from the sun and reactors, we have learned that $v_e \rightarrow v_{\mu}$ and $v_e \rightarrow v_{\tau}$ with *L/E* \approx 15 000 km/GeV, with a large but not maximal mixing angle, θ_{12} .
- From observing neutrinos produced in the atmosphere by cosmic rays and 1st generation accelerator experiments (K2K and MINOS) we have learned that $v_{\mu} \rightarrow v_{\tau}$ with $L/E \approx 500$ km/GeV, with a mixing angle, θ_{23} , consistent with being maximal.

Fractional Flavor Content varying $\cos \delta$

25 January 2007

LBNL

One Anomaly

- A Los Alamos experiment with stopped pions (LSND) has reported evidence for oscillations of $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ with $\Delta m^{2} > 0.1 (eV)^{2}$.
- Such an oscillation requires a sterile neutrino since three active neutrinos admit only two independent ∆m²s.
- Such a neutrino would be only very marginally consistent with solar and atmospheric data.
- This effect is being checked currently by MiniBooNE, a Fermilab experiment.
- A confirmation would be exciting and require rethinking some of our plans.

Gary Feldman

LBNL

1st Generation Long Baseline Experiments

- For the past few years we have been running the first generation of long baseline accelerator experiments
 - K2K: Low statistics experiment in Japan now completed.
 - CNGS: Gran Sasso program started last year.
 - MINOS: Fermilab experiment started in 2005.
- First generation goals:
 - Verify dominant $v_{\mu} \rightarrow v_{\tau}$ oscillations
 - Precise measurement of dominant Δm_{23}^2 and $\sin^2 2\theta_{23}$
 - Search for subdominant $v_{\mu} \rightarrow v_{e}(\sin^{2}2\theta_{13})$ and

 $\nu_{\mu} \rightarrow \nu_{s}$ oscillations

Gary Feldman

MINOS Layout (Main Injector Neutrino Oscillation Search)

Gary Feldman

LBNL

25 January 2007

16

MINOS Far Detector

- 8m octagonal tracking calorimeter
- 484 layers of 2.54 cm Fe plates
- 4.1 cm-wide scintillator strips with WLS fiber readout, read out from both ends
- 8 fibers summed on each PMT pixel; 16 pixels/PMT
- 25,800 m² of active detector planes
- Toroidal magnetic field
 = 1.3 T
- Total mass 5.4 kT

NOvA:

NuMI Off-Axis v_e Appearance Experiment

- NOvA will be a 2nd generation experiment on the NuMI beamline. Its Far Detector will be a 20 kT totally active, tracking liquid scintillator calorimeter located near Ash River, MN, 810 km from Fermilab and 12 km off the center of the NuMI beamline.
- Its main physics goal will be the study of $v_{\mu} \rightarrow v_{e}$ oscillations at the atmospheric oscillation length with an order of magnitude more sensitivity than the MINOS experiment.
- Its unique characteristic is its long baseline, which allows access to matter effects, which can be used to determine the ordering of the neutrino mass states.

Gary Feldman

LBNL

The NOvA Collaboration

135 physicists and engineers from 27 institutions

Argonne, Athens, Caltech, College de France, Fermilab, Harvard, Indiana, ITEP, Lebedev, Michigan State, Minnesota-Twin Cities, Minnesota-Duluth, Munich, Northern Illinois, Ohio State, Rio de Janeiro, South Carolina, SMU, Stanford, Texas-Austin, Texas-Dallas, Texas A&M, Tufts, UCLA, Virginia, Washington, William and Mary

Gary Feldman

LBNL

25 January 2007

20

How Do We Gain an Order of Magnitude in Sensitivity?

- Place the far detector off-axis (more flux and less background).
- Optimize the far detector for electron identification (0.15 X₀ vs. 1.5 X₀ longitudinal segmentation)
- Increase the mass of the far detector by a factor of 4.
- Increase the beam power by a factor of 6 (from the present beam).

Why Ash River?

The Ash River site is the furthest available site from Fermilab along the NuMI beamline. This maximizes NOvA's sensitivity to the mass ordering.

Gary Feldman

Basic Detector Element

To 1 APD pixel

Liquid scintillator in a 4 cm wide, 6 cm deep, 15.7 m long, highly reflective PVC cell.

Light is collected in a U-shaped 0.7 mm wavelength-shifting fiber, both ends of which terminate in a pixel of a 32-pixel avalanche photodiode (APD).

The APD has peak quantum efficiency of 85%. It will be run at a gain of 100. It must be cooled to -15°C and requires a very low noise amplifier.

Gary Feldman

25 January 2007

15.7 m

The Far Detector

The cells are made from 32-cell extrusions.

12 extrusion modules make up a plane. The planes alternate horizontal and vertical.

For structural reasons, the planes are arranged in 31-plane blocks, beginning and ending in a vertical plane.

^C There are 43 blocks = 1333 planes. The detector can start taking data as soon as blocks are filled and the electronics connected.

Gary Feldman

15.7 m

89 n

LBNL

Admirer

25 January 2007

25

Gary Feldman

Event Quality

Longitudinal sampling is 0.15 X0, which gives excellent μ -e separation.

Event 296 Event 194 from /data/minos/oa/tavc_numucc_lowe001.root KStrip//sPlane XStripVaPlane 240 290 190 190 100 100 100 370 $2 \text{ GeV } v_{\mu}$ 2 GeV ve 360 354 344 330 320 310 304 YBrigWsPlane YStripVsPlane 100 E 280 130 275 140 E 274 "Second second s 130 120 265 250 255 180 Et **Gary Feldman** LBNL 25 January 2007 28

A 2-GeV muon is 60 planes long.

v_e CC event

Background NC event

Beam Operation

 Basic operation: The Booster injects
 6 batches into the MI at 15 Hz. The MI then ramps up, extracts the beam and ramps down.

 There is a 8-GeV Recycler ring above the MI, and an Accumulator in the Pbar Rings.

Gary Feldman

LBNL

25 January 2007

Beam Upgrades

- Present: 2 slip-stacked batches to p-bar production and 5 single batches to NuMI (200 kW)
- Proton Plan 1 (2008-9): 2 slip-stacked batches to p-bar production and 8 slip-stacked batches and 1 single batch to NuMI (320 kW). 2.2 s cycle.
- Proton Plan 2 (2010-12): 12 slip-stacked batches to the Recycler, then single shot to the MI running at a 1.33 s cycle. (700 kW)
- SNuMI (Super NuMI): Momentum stack 3 Booster batches into the Accumulator, which injects them into the Recycler (for 18 batches total), then single shot to the MI running at a 1.33 s cycle. (1200 kW)

Gary Feldman

LBNL

A Recent Hiccup

- Proton Plan 2 was to be run as a "campaign." However, the OMB recently directed the DOE to combine Proton Plan 2 and NOvA into a single project.
- This, along with the continuing resolution, will delay us by a few months because now PP2 and NOvA must go through CD-2 together and PP2 is not as far advanced as NOvA, and it must reorganize as a project.

$P(\nu_{\mu} \rightarrow \nu_{e})$ (in Matter)				
 In matter at a multiplied by multiplied by with normal mass hierard 	mum, P₁ will be approx d P₃ and P₄ will be app re the top sign is for na and antineutrinos with	timately proximately eutrinos n inverted		
$E_R = \frac{\Delta m_{13}^2}{2\sqrt{2}G_F \rho_e} \approx 11 \text{ GeV for the earth's crust.}$				
About a ±30% effect for NuMI, but only a ±11% effect for T2K.				
However, the oscillation m	e effect is reduc aximum and inc	ect is reduced for energies above the num and increased for energies below.		
Gary Feldman	LBNL	25 January 2007	35	

Parameters Consistent with a 2% $\nu_{\mu} \rightarrow \nu_{e}$ Oscillation

 $sin^{2}(2\theta_{13})$ vs. $P(\bar{v}_{e})$ for $P(v_{e}) = 0.02$

 $sin^{2}(2\theta_{13})$ vs. $P(\bar{v}_{e})$ for $P(v_{e}) = 0.02$

 σ Sensitivity to $sin^2(2\theta_{13}) \neq 0$

 σ Sensitivity to sin²(2 θ_{13}) \neq 0

Comment

- There will be an ambiguity in comparing accelerator and reactor experiments if the θ₂₃ mixing is not maximal.
 - Reactor experiments are sensitive to $sin^2(2\theta_{13})$.
 - Accelerator experiments are largely sensitive to $sin^{2}(\theta_{23})sin^{2}(2\theta_{13})$.
 - This is the difference between $v_e \leftrightarrow v_\mu$ mixing (accelerators) and $v_e \leftrightarrow (v_\mu + v_\tau)$ mixing (reactors).
- Resolving this ambiguity is the main complementarity between the two types of experiments. It can be done if the θ₂₃ mixing is sufficiently non-maximal and sin²(2θ₁₃) is sufficiently large. (See next slide.)

Gary Feldman

LBNL

95% CL Resolution of the θ₂₃ Ambiguity

95% CL Resolution of the θ_{23} Ambiguity

(There is some sensitivity to the mass ordering and δ . The blue line represents an average over these parameters.)

Importance of the Mass Ordering

- Window on very high energy scales: grand unified theories favor the normal mass ordering, but other approaches favor the inverted ordering.
- If we establish the inverted ordering, then the next generation of neutrinoless double beta decay experiment can decide whether the neutrino is its own antiparticle. However, if the normal ordering is established, a negative result from these experiments will be inconclusive.
- To measure CP violation, we need to resolve the mass ordering, since it contributes an apparent CP violation that we must correct for.

Gary Feldman

LBNL

95% CL Resolution of the Mass Ordering

95% CL Resolution of the Mass Hierarchy

44

Combining NOvA and T2K

95% CL Resolution of the Mass Hierarchy

95% CL Resolution of the Mass Hierarchy

Combining NOvA II with T2K II

47

Back to NOvA I: δ vs. $sin^2(2\theta_{13})$ Contours 1 σ Contours for Starred Points 1 σ Contours for Starred Points

δ vs. sin²(2θ₁₃) Contours: Normal vs. Inverted Mass

1 σ Contours for Starred Points

1 σ Contours for Starred Points

Measurement of $sin^2(2\theta_{23})$

- Whether the atmospheric mixing is maximal is an important question both practically (comparison of reactor and accelerator measurements) and theoretically (Is there a symmetry that induces maximal mixing?).
- The combination of the narrow-band beam and NOvA's excellent energy resolution allows it to do a high-precision measurement of $\sin^2(2\theta_{23})$ by measuring quasielastic v_{μ} CC events.

Measurement of $sin^2(2\theta_{23})$

Sensitivity Contours (25 kt*60.3E20 pot)

If $\sin^2(2\theta_{23}) = 1$, then it can be measured to 0.004.

Otherwise, it can be measured to ~0.01.

Gary Feldman

