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Abstract

It is shown that no theory that satisfies certain premises can ex-
clude faster-than-light influences. The premises include neither the
existence of hidden variables, nor counterfactual definiteness, nor any
premise that effectively entails the general existence of outcomes of un-
performed local measurements. All the premises are compatible with
Copenhagen philosophy, and the principles and predictions of rela-
tivistic quantum field theory. The present proof is contrasted with
an earlier one with the same objective. Also described is a partial
many-worlds way of evading this faster-than-light effect by accepting
von Neumann’s Process I, but rejecting collapse.
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1. Introduction.

The premises of Bell’s original hidden-variable theorem[1] postulate the
existence of a substructure that determines in a local manner the outcomes of
a set of alternative possible measurements at most one of which can actually
be performed. The implementation of the locality condition in this way
thus involves a technical “hidden-variable” assumption that goes beyond the
locality condition itself. Consequently, Bell’s proof of the inconsistency of
this local hidden-variable assumption with certain predictions of quantum
theory casts no serious doubt on the locality condition: its implementation
via the assumed hidden-variable substructure would appear to be the more
likely cause of the derived inconsistency.

Bell[2] introduced later a seemingly weaker local hidden-variable assump-
tion. However, this latter form can be shown[3,4] to entail the original one,
apart from errors that tend to zero as the number of experiments tends to
infinity. Thus both forms of the hidden-variable assumption place strong
conditions on the class of theories that are covered by the theorems. These
conditions are essentially equivalent, logically, to the assumption that values
can be pre-assigned conjunctively and locally to all of the outcomes of all of
the alternative possible measurements. That assumption conflicts with what
I believe to be the orthodox quantum philosophical attitude that one should
not make any assumption that effectively postulates the existence of a well
defined outcome of a localized measurement process that is not performed.
Thus these hidden-variable theorems place in no serious jeopardy the locality
idea that a free choice made by an experimenter in one space-time region has
no influence in a second region that is space-like separated from the first.

The present paper shows that this locality idea fails, however, not only
under the hidden-variable assumption (or some closely related presumption
that effectively ensures the existence, within the theory, of outcomes of un-
performed local measurements) but also in a much larger class of theories,
namely those that are compatible with the properties of Free Choice and No
Backward-in-Time Influence on Observed Outcomes, and that yield certain
predictions of quantum theory in experiments of the Hardy type[5]. The first
two of these three properties are now described.



Free Choices.

For the purposes of understanding and applying quantum theory, the choice
of which experiment is to be performed in a certain space-time region can
be treated as an independent free variable localized in that region. Bohr re-
peatedly stressed the freedom of the experimenter to choose between alter-
native possible options. This availability of options is closely connected to
his “complementarity” idea that the quantum state contains complementary
kinds of information pertaining to the various alternative mutually exclusive
experiments that might be chosen. Of course, no two mutually incompati-
ble measurements can both be performed, and an outcome of an experiment
can be specified only under the condition that that particular experiment be
performed.

No Backward-in-Time Influence. (NBITI)

An outcome that has already been observed and recorded in some spacetime
region at an earlier time can be considered fized and settled, independently
of which experiment a far-away experimenter will freely choose to perform
at some later time. This assumption assigns no value to a local measure-
ment except under the condition that this local measurement be performed.
But any such locally observed value is asserted to be independent of which
measurement, will at some later time be freely chosen and performed in a
spacelike separated region.

This NBITI assumption is required to hold in at least one Lorentz frame
of reference, hence forth called LF'.

This NBITT assumption is compatible with relativistic quantum field the-
ory. In the Tomonaga-Schwinger[6, 7] formulation the evolving state is de-
fined on a forward moving space-like surface. Their work shows that this
surface can be defined in a continuum of ways without altering the predic-
tions of the theory, so that no Lorentz frame is singled out as preferred. On
the other hand, their formalism allows the quantum state to be defined by
the constant time surfaces in any one single Lorentz frame that one wishes to
choose, and shows that in this one frame the evolution, including all reduc-
tions associated with specific outcomes of measurements, proceeds forward
in time, with a well defined past that is not influenced either by later free



choices made by experimenters or by the outcomes of the later measure-
ments. Thus this NBITI assumption is compatible with the principles and
predictions of relativistic quantum field theory. (Included in this assumption
is the tacit assumption that if an outcome appears to an observer then the
mutually exclusive alternative does not occur: the many-worlds idea that
both outcomes occur is excluded. This option will be discussed separately.)

This NBITT assumption is a small part of the larger locality condition in
question here, which is the demand that what an experimenter freely chooses
to do in one region has no effect in a second region that is spacelike sepa-
rated from the first. The no backward-in-time part of the no-faster-than-light
condition can be imposed without generating any difficulties or conflict with
relativistic quantum field theory. But a faster-than-light effect then appears
elsewhere. In particular the following theorem holds:

Theorem. Suppose a theory or model is compatible with the premises:

1. Free Choices: This premise asserts that the choice made in each region
as to which experiment will be performed in that region can be treated as a
localized free variable,

2. No Backward in Time Influence: This premise asserts that experimen-
tal outcomes that have already occurred in an earlier region (in frame LF)
can be considered to be fixed and settled independently of which experiment
will be chosen and performed later in a region spacelike separated from the
first, and

3. Validity of Predicions of QT: Certain predictions of quantum theory
in a Hardy-type experiment are valid.

Then this theory or model violates the following Locality Condition:
The free choice made in one region as to which measurement will be per-
formed there has, within the theory, no influence in a second region that is
spacelike separated from the first.



2. Proof of the Theorem.

The theorem refers to the following Hardy-type [5] experimental set-up.

There are two experimental spacetime regions L and R, which are space-
like separated, with L lying earlier than R in LF. The experimenter is L
freely chooses either L1 or L2, and an outcome, either 4+ or —, then appears
in region L. Then the experimenter in region R freely chooses either R1 or
R2, and one or the other of the two alternative possible outcomes, + or —,
then appears in R.

The detectors are assumed to be 100% efficient, so that for whichever
measurement is chosen in L one of the two alternative possible outcomes
of that measurement, either + or —, will appear in L, with each of these
possibilities occurring about half the time, and for whichever measurement
is then chosen in R, some outcome of that measurement, either + or —, will
appear in R.

For each of the two choices L1 or L2 available to the experimenter in
L, and for each of the two alternative possible outcomes + or — of that
experiment, quantum theory makes predictions for both of the two alternative
choices R1 and R2 available to the experimenter in R.

In the statements that follow the symbol L1 will be an abbreviation of
the statement “Experiment L1 is performed in L”. The symbols L2, R1, and
R2 will have analogous meanings.

The symbol L1+ will stand for the assertion “Experiment L1 is performed
in L and outcome + of that experiment appears in L.” The symbols L1—,
L2+, [2—, R1+, R1—, R2+, and R2— have analogous meanings. Using
these abbreviations the first two pertinent predictions of QT for this Hardy
setup are these(*):

Under the condition that L2 is performed in L,

If R2+ then L2+ (2.1)
and
If (L2+ and R1) then R1—. (2.2)



If, in accordance with our assumption, the choice made in R does not
affect the outcome that has already occurred in L, then these two conditions
entail:

Property 1: Quantum theory predicts that if an experiment of the Hardy-
type is performed then,

L2 implies SR,
where,

SR = If R2 is performed and gives outcome + then if, instead, R1 had
been performed the outcome would have been —.
Proof of Property 1: The concept “instead” is given an unambiguous
meaning by the combination of the premises of “free choice”, and “no back-
ward in time influence”: the choice between R1 and R2 is to be treated,
within the theory, as a free variable, and switching between R1 and R2 is
required to leave any outcome in the earlier region L undisturbed. But then
(2.1) and (2.2) can be joined in tandem to give the result SR.

The second two pertinent predictions of QT for this Hardy setup are:

Under the condition that L1 is performed in L,

If (L1— and R2) then R2+ (2,3)
and
If (L1— and R1) then sometimes R1+ (2.4).

If our premises are valid then these two predictions entail:
Property 2. Quantum theory predicts that if an experiment of the Hardy-
type is performed then:

L1 implies that SR is false.



Proof of Property 2: Quantum theory predicts that if L1 is performed
then outcome — appears about half the time. Thus if L1 is chosen then there
are cases where L1— is true. But in a case where L1— is true prediction (2.2)
asserts that the premise of SR is true. But (2.3), in conjunction with our two
premises that give meaning to “instead”, implies that the conclusion of SR
is not true: if R1 is performed instead of R2 the outcome is not necessarily
R1—, as it was in case L2.

Any theory or model that makes SR true or false according to whether
L2 or L1 is freely chosen in region L entails the existence of faster-than-light
effects. This conclusion is discussed in the next section.

3. Connection to Earlier Works.

The aim of this work is similiar to that of an earlier work of this author[8|.
That work was criticized by Unruh[9], by Mermin[10], and by Shimony and
Stein[11] on various grounds. I have answered these objections [12, 13, 14].
However, the very existence of those challenges shows that the approach used
in [9] has serious problems, which originate in the fact that it is based on
classical modal logic.

That approach provides the possibility of a concise logically rigorous proof
based on an established logic. However, that virtue is overshadowed by the
following drawbacks:

1. Although the symbolic proof is concise and austere, that brevity is based
on a background that most physicists lack. This means that most physicists
cannot fully understand it without a significant investment of time.

2. The question arises as to whether the use of classical modal logic begs
the question by perhaps being based in implicit ways on the deterministic
notions of classical physics.

3. Classical modal logic itself is somewhat of an open question, and it is not
immediately clear to what extent these issues undermine the proof.

For these reasons I have in the present formulation relied only on quantum
thinking and language thoughout: there is no appeal to concepts unfamiliar
to physicists.

But the present proof differs from the 1997 version by more than just the
use of the language of physicists. The earlier proof introduced an assumption



LOC2. That assumption was introduce in order to set up a reducio ad absur-
dum argument: it was meant to be proved false. But a lot of the discussion
my earlier augument was whether I had adequately justified this “assump-

)

tion,” which, however, I was trying to prove false. The present version gives
is a straightforward proof of the key properties 1 and 2, without introducing
the false assumption LOC2.

The key objection to the earlier argument was stated most clearly by
Shimony and Stein: Although the explicit condition for the truth of SR is
specified entirely by the truth or falsity of statements about possible events
localized in region R—and hence the proven dependence of the truth of SR
upon which experiment is freely chosen in L seems manifestly to require an
influence in R of that choice made in L—the word “instead” that occurs in
SR harbors an tmplicit dependence of SR upon the choice made in L, and
that implicit dependence upon L that upsets the “manifest” conclusion.

I do not believe that objection is valid. The word “instead” does bring
in the explicitly stated assumption that the free choice between R1 and R2
made in R has no influence on the outcome in L. But the combination of
this ezxplicit denial of the existence of an influence from R to L coupled with
a denial of any influence from L to R would leave one at a loss as to how to
understand the proven dependence of the truth of SR upon the free choice
made in L.

4. Comparison to Orthodox Ideas.

The conclusion obtained here about faster-than-light influences parallels
Bohr’s reply to the paper of Einstein, Podolsky, and Rosen[15]. The as-
sumption of those authors was that there was no faster-than-light influence
of any kind. Bohr’s response[16] was a partial rejection of that assumption:
he granted that there was no faster-than light “mechanical disturbance” ,
but argued that “there is an influence on the very conditions that define the
possible types of predictions regarding the future behavior of the system.”

A “mechanical disturbance” would be one capable of transmitting a sig-
nal, whereas the others pertain to “predictions”, and hence to the theoretical
structure, which from Bohr’s point of view, was primarily a tool for making
predictions about what outcomes will be observed under various alternative



conditions.

Bohr’s conclusions about the existence of faster-than-light influences, like
the one obtained here, was made completely within the framework of the
Copenhagen interpretation of quantum theory. But the present argument is
more direct: it complements the philosophically subtle argument of Bohr.

All the premises of the present nonlocality theorem are compatible with
orthodox quantum philosophy, and both the premises and conclusions are
compatible with relativistic quantum field theory. The theorem therefore
covers orthodox quantum theory as a special case.

The locality condition whose violation is demonstrated here is similar to
the one occurring in Bell’s theorems in that: (1), the dependence in ques-
tion is on an experimenter’s free choice of which measurement to perform
in a certain region, and (2), the property that depends on this free choice
are predictions about both of the alternative possibilities between which the
experimenter in the other region is free to choose. But the present argument
is carried out without using any combination of properties that are logically
equivalent to Bell’s hidden-variable assumptions: the premises used here are
significantly weaker than those of Bell’s theorems, and hence the class of
models covered is significantly larger.

By dispensing in this way with the hidden-variable substructure, the
present theorem evades challenges to Bell’s theorems of the kind that re-
cently appeared in the Proceedings of the National Academy of Science[17].
5. A Partial Many-Worlds Way Out.

The significance of this faster-than-light theorem is that it places a strong
and anti-intuitive condition on any model or theory that seeks to reproduce
the predictions of quantum theory. However, there is a interesting way out.
The proof given above depends tacitly upon the orthodox idea of the collapse
of the wave function. It was first pointed out in reference 18 that if one rejects
the collapse idea then the physical conditions that define the correlated states
and associated amplitudes do not come into existence until the (essentially
classical) signals carrying the information about the outcomes in the two
regions R and L come together in a region that lies in the intersection of
the forward light cones from these two regions. This is the region where the



experimenters compare and correlate the data coming from the two regions.
But there is no violation of any faster-than-light condition if the region in
which the pertinent correlation information comes into being is confined to
the intersection of those two forward light cones. Also, the basic locality
condition, which asserts that the choice of outcome in one region does not
depend upon which experiment is chosen in the faraway region, cannot be
imposed if no choice is ever made between the two possible outcomes.

This consideration casts some weight in favor of adopting a many-worlds
(or many-minds) type of ontology. On the other hand, a serious difficulty
with the usual many-worlds/minds approach was recently described in refer-
ence 19. The problem, basically, is that the traditional full many-worlds/minds
approach generates continua of overlapping states, rather than the sharp di-
visions entailed by von Neumann’s Process I, and this lack of sharply defined
alternatives creates problems in constructing well defined probabilities.

This situation suggests the approach of accepting the objective reality of
von Neumann’s Process I, but never mentioning the subsequent collapse to
one or the other of the two alternatives. Von Neumann[20] himself postulated
Process 1, and also the Schroedinger Process II, but made no commitment
to Process III, the collapse to one of the several nonoverlapping branches
specified by Process I. I view this omission as significant. By postulating
the existence of Processes I and II, but rejecting Process III, one can avoid
the difficulties described in reference 19, and avoid also the faster-than-light
effects entailed by the analysis done here. An important point is that the
“state” of a subsystem is defined by tracing over “other” variables, and there-
fore Process I, unlike Process III, has no effect on faraway systems. Thus
von Neumann’s approach seems to offer a way to get both the definiteness
that the many-minds/worlds theories lack, and the absence of long-range
faster-than-light influences that many-minds/worlds theories provide.



*INB: To obtain these four predictions from Hardy’s paper, one trans-
forms my notation into Hardy’s using

(L,R) — (1,2)

(1,2) = (D,U)
(+, _)L — (0.1)

and uses the three zero’s connecting my pairs of states (R1+, L1—), (L2—, R1—)
and (L1+4, R2+) that arise from his Eqgs. (13.a,b, ¢) to obtain my (2.1),(2.2),
and (2.3), respectively, and uses his (13.d), which says that my matrix ele-
ment (L2—, R2+) is positive, to obtain my (2.4).]
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