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                                      Abstract 
 
 Efstratios Manousakis has recently given a quantum mechanical description 
of the phenomena of binocular rivalry that fits the complex empirical data 
very well. It rests heavily upon the quantum Zeno effect, which is a strictly 
quantum mechanical effect that has elsewhere been proposed as the key 
feature that permits the free choices on the part of an observer to influence 
his or her bodily behavior. The intervention by the observer into the physical 
dynamics is an essential feature of orthodox (Copenhagen and von 
Neumann) quantum mechanics. Within the von Neumann dynamical 
framework this intervention can, with the aid of quantum Zeno effect, cause 
a person’s brain to behave in a way that causes the body to act in accord 
with the person’s conscious intent. Atmanspacher, Bach, Filk, Kornmeier 
and Roemer have proposed for the phenomena of bistable (Necker cube) 
perception a theory that rests on an effect that resembles the quantum Zeno 
effect. However, their treatment is based not on quantum theory itself, but on 
what they call weak quantum theory. This is a theory that exhibits a 
quantum-Zeno-like effect but does not involve Planck’s quantum of action, 
which is the quantity that characterizes true quantum effects. The approach 
of Manousakis would therefore seem superior, because it uses the known 
actual quantum Zeno effect that arises from orthodox  quantum theory itself, 
rather than upon a new conjectural unorthodox foundation. On the other 
hand, using the orthodox physics-based approach might seem problematic, 
because it depends on the existence of a true macroscopic quantum effect in 
a warm, wet, noisy, brain, and it has been argued that such effects will be 
destroyed by environmental decoherence.  That often cited argument covers 
many quantum effects, but fails for fundamental reasons described herein to 
upset the quantum Zeno effect at work here.  
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1. Coupled Oscillators in Classical Physics. 

 
It is becoming increasingly clear that our normal conscious experiences are 
associated with local ~40 Hertz oscillations of the electromagnetic fields at 
selected correlated sites on the cerebral cortex. These sites are evidently 
dynamically coupled, and the brain appears to be approximately described 
by classical physics. So I begin by recalling some elementary facts about 
coupled classical simple harmonic oscillators (SHOs).  
 
In suitable units the Hamiltonian for two SHOs of the same frequency is 
 
H0 = ½ (p1

2 + q1
2 + p2

2 + q2
2). 

 
If we introduce new variables via the canonical transformation 
  
P1 = (1/√2)(p1 + q2) 
 
Q1 = (1/√2)(q1 ─ p2) 
 
P2 = (1/√2)(p2 + q1) 
   
Q2 = (1/√2)(q2 ─ p1) 
 
and replace the above H0 by 
 
H = (1+e)( P1

2 +  Q1
2)/2  + (1-e)( P2

2 +  Q2 
2)/2 

 
then this H expressed in the original variables is 
 
H = H0   +  e(p1 q2   -  q1 p2).      
 
If e <<1 then the term proportional to e acts as a weak coupling between the 
two SHOs whose motions for e = 0 would be specified by H0. 
 
The Poisson bracket (classical) equations of motion for the coupled system 
are, for any x,  
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dx/dt = {x, H} = Σj  {∂x/∂qj  ∂H/∂pj – ∂x/∂pj  ∂H/∂qj}. 
 
They give 
 
dp1/dt = ─ q1    +   p2e  
 
dp2/dt = ─ q2    ─  p1 e  
  
dq1/dt =  p1    +   q 2 e 
 
dq2/dt = p2    ─   q 1 e. 
 
For e = 0 we have two uncoupled SHOs, and if they happen to be in phase 
then we have, for any positive constant C, a solution  
 
p1 = C cos t 
   
q1 = C sin t 
 
p2 = C cos t 
 
q1 = C sin t . 
 
These equations specify the evolving state of the full system by a trajectory 
in (p1,  q1,  p2,  q2 ) space that, for each of the two individual systems, is just a 
circular orbit in which the energy of that system flows periodically back and 
forth between the q2 coordinate space (potential energy) and p2 momentum 
space (kinetic energy) aspects of the system.   
 
For the coupled system, the integration of the time derivatives gives, up to 
first order in e and second order in t, 
 
p1 = C (1 –t2 /2 +  et) 
 
p2 = C (1 – t2 /2 –  et) 
 
q1 = C (t  +  et2/2) 
  
q2 = C (t  –  et2/2) . 
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This shows that if the small coupling e is suddenly turned on at t = 0, 
then the first-order deviation of the classical trajectory from its e = 0 form 
will be linear in Cet. This result holds independently of the relative phase or 
amplitudes C > 1 of the two SHOs. 
 

     When we introduce the quantum corrections by quantizing this classical 
model we obtain an almost identical quantum mechanical description of the 
dynamics. In the very well known way the Hamiltonian H0  goes over to (I 
use units where Planck’s constant is 2π.) 
 
  H0  =   ½ (p1

2 + q1
2 + p2

2 + q2
2)  =(a1* a1  + 1/2) + (a2* a2  + 1/2) . 

 
The connection between the classical and quantum descriptions of the state 
of the system is very simple: the point in (p1,  q1,  p2,  q2 ) space that represents 
the classical state of the whole system is replaced by a “wave packet” that, 
insofar as the interventions associated with observations can be neglected, 
is a smeared out (Gaussian) structure centered for all times exactly on the 
point that specifies the classical state of the system. That is, the quantum 
mechanical representation of the state specifies a probability distribution 
of the form (exp – d2 ) where d is the distance from a center (of-the-wave-
packet) point (p1,  q1,  p2,  q2 ), which is, at all times, exactly the point (p1,  q1,  
p2,  q2 ) that is the classical representation of the state.      
 
According to quantum theory, the operator ai* ai  = Ni  is the number 
operator that gives the number of quanta of type i in the state. The classical 
constant C appearing in the classical treatment is the classical counterpart of 
√N, in the following sense: if the center of the wave packet lies at distance C 
from the origin (p1,  q1,  p2,  q2 ) = (0, 0, 0, 0), then the “expectation value” of 
N in this state is C2. So the classical and quantum descriptions are almost 
identical: there is, in the quantum treatment, merely a small smearing-out in 
(p, q)-space, which is needed to satisfy the uncertainty principle. 
 
This correspondence persists when the coupling is included. The coupling 
term in the Hamiltonian is 
 
H1 =  e (p1 q2   ─  q1 p2   ─  p2 q1   + q2 p1)/2 =  
   

         = ie/2 (a1* a2   ─  a1 a2 * ─  a2*a1   + a2 a1*) . 
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The Heisenberg (commutator) equations of motion generated by the 
quadratic Hamiltonian H = H0+ H1 gives the same equations as before, but 
now with operators in place of numbers. Consequently, the centers of the 
wave packets will follow the classical trajectories also in the e > 0 case. 
 
 
2. Application 
 
With these essentially trivial calculations out of the way, we can turn to the 
implied physics. The above mathematical deductions show a near identity 
between the classical and quantum treatments. If at t = 0 we suddenly turn 
on the coupling we see that the classical trajectory suddenly departs from the 
unperturbed path in a linear (in time t) fashion. In the classical case that is 
the full small-t story. But in the quantum case there is, in principle, an added 
observer-dependent effect. The observer, in order to get information about 
what is going on about him into his stream of consciousness, must initiate 
probing actions. According to the theory described in references 3, 4, 5, and 
6, the brain does most of the work. It creates, in an essentially mechanical 
way, generated by the quantum equations of motion, a proposed query---or 
perhaps, due to disparate possibilities arising from the initial uncertainties, 
several possible queries. Each possible query is associated with a projection 
into the future that specifies the brain’s computed “expectation” about what 
its state will be after getting the feedback from the query (i.e., feedback from 
the associated act of observation.) The physical manifestation of this act is 
called “process 1” by von Neumann. It is a key element of the mathematics 
associated with the process of observation: i.e., associated with the entry into 
the observer’s stream of consciousness of information about the state of the 
physical world.  
 
In order to focus on the key point, and also to tie the discussion comfortably 
into the understanding of neuroscientists who are accustomed to thinking 
that the brain is well described in terms of the concepts of classical physics, I 
shall consider first an approximation in which the brain is well described by 
classical ideas. Thus the two SHO states that we are focusing on are 
considered to be imbedded in a classically described brain that is providing 
the potential wells in which these two SHOs move. It is the degrees of 
freedom associated with these two SHOs that are, according to theory being 
discussed here, the neural correlates of the consciousness of the observer 
during the period of the experiment. Hence it is they that are affected by von 
Neumann’s process 1. The remaining degrees of freedom are treated in this 
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approximation as providing the background classically described potential 
wells in which these consciousness-related SHOs move. One of these SHOs 
corresponds to the neural correlate of the percept associated with one eye, 
other SHO is the neural correlate of the percept associated with the other 
eye.  This approach reduces the situation to an exactly solvable problem not 
clouded by the infinity of effects whose consideration usually places any 
rational understanding of the connection between mind and brain beyond our 
conceptual reach. 
 
In the binocular rivalry context, let the unperturbed (e = 0) motions represent 
the computed (expected-by-the-brain) evolution of these two SHO states 
when both eyes are seeing essentially the same scene, and are exciting 
highly similar responses, and let the e > 0 case represent the dynamics of the 
combined system in the binocular rivalry case, where the neural correlates of 
the two possible percepts are dissimilar. The “expectation” follows the 
unperturbed orbit, which corresponds to normal experience, in which both 
eyes view essentially the same scene. But if t = 0 represents the time of the 
last observation, then for small t > 0 the actual brain state, in the rivalry case, 
will diverge from the computed-on-the-basis-of-past-experience state, due to 
the fact that the two excited neural correlates are now dissimilar. In this case, 
according to the equations derived above, the path of the (center of, and 
hence the entire) actual Gaussian wave packet will, like its point classical 
counterpart, diverge linearly in t from the path expected by the brain on the 
basis of past experience. The divergence of the Gaussian wave packet in the 
rivalry case from its “expected” circular orbit is readily visualiziable in a 
two dimensional (p, q) space. 
 
According to the basic statistical law of quantum theory, the probability that 
the actual state of the brain, immediately after the feedback has occurred, 
will be in the “expected” state is equal to the square of the absolute value of 
the overlap (integral) of the actual and “expected” wave functions. The 
collapse action occurs in the subspace that is associated with the occurring 
experience. The overlap of these two Gaussians is (exp ─ (d2 /2)), where d is 
the distance between their centers. Because this distance d increases like Cet, 
the probability that the actual state will be found at time t to be in the 
“expected” state goes to lowest order in t like (1─ (Cet)2). And this result is 
independent of the relative phases of the two oscillators.  The fact that this 
probability is unity minus a correction of order (Cet) squared, means that if 
the probing actions come repetitiously at time intervals δt<<1 such that also 
Ce δt <<1, then the probability that the state will remain on the unperturbed 
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orbit for, say, a second will remain high even though the classical trajectory 
moves linearly away from the unperturbed orbit by an amount of order Ce. If 
δt is of the order of a few milliseconds, then the factor Ce must be less than 
about unity. Because the number of quanta N in the “classical” state is 
presumably very large, and C = √N, the coupling e needs to be less than 
about 1/√N.  The slowing of the divergence of the actual orbit from the 
computed (circular-in-this-case) orbit is a manifestation of the quantum 
Zeno effect. The representation in the brain of the posing of the question of 
whether the state of the neural correlate of the occurring percept is the 
computed/expected state is von Neumann’s famous process 1, which lies at 
mathematical core of von Neumann’s quantum theory of the relationship 
between perception and brain dynamics.  
 
Because this argument is about possibilities that nature could exploit, I shall 
consider the cases where e < 1/√N. In these cases there will be, in this quasi-
classical model, by virtue of the quantum Zeno effect, a large difference 
between the observed path predicted by quantum theory and the path 
specified by the deterministic equations of classical physics.  
 
I have focused here on the leading powers in t, in order to emphasize, and 
exhibit in a very simple and visualizable way, the origin of the key result 
that for small t on the scale, not of the exceedingly short period of the 
quantum mechanical oscillations, nor even on ~25 ms period of the ~40 
hertz scale of the classical oscillations, but on the scale of the difference of 
the periods of the two coupled modes, there will be, by virtue of the 
quantum mechanical effects associated with the process of rapid repeated 
observations, a shift from a linear to a quadratic-in-time departure of the 
state of the system from the state specified by von Neumann’s process 1. 
This deviation from unity corresponds to the factor (cosine et)2 in the more 
complete probability expression. Manousakis’s work is based on these 
factors (cosine et)2 with times t corresponding to intervals between 
conscious perceptions of the same scene, and the complementary factor (sine 
et)2 at the termination of repetitions of the same percept. The success of 
Manousakis’s work is the first quantitative indication that von Neumann’s 
quantum theory of observation works well in actual practice at this level of 
cortical processing. There is of course the powerful indirect evidence 
stemming, firstly, from the massive empirical successes of orthodox 
quantum theory, which uses this collapse theory of observation to overcome 
the huge difficulties stemming from the uncertainty principle, and secondly,  
from fact that it allows us to understand within the framework of orthodox 
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basic physics the evident capacity of our conscious thoughts to influence our 
physical actions, and thereby to enter into the process of natural selection.  
     
In the broader quantum mechanical context, the deterministic quantum 
mechanical generalization of the deterministic classical law of motion 
generates merely the set of possible process 1 actions: it neither chooses 
between the generated possible process 1 actions, nor selects the times t at 
which the chosen process 1 actions will actually occur. Within the pragmatic 
orthodox quantum theory these choices are therefore treated as, and are 
called, “free choices on the part of the experimenter”. The computations 
given above show, in particular, that the choices of the rapidity of the acts of 
observation can, under appropriate physical circumstances, and by virtue of 
the quantum Zeno effect, be causally efficacious in the physically described 
world. 
 
The discussion has focused so far on one very small region of the cortex, 
or rather on one pair of causally linked regions, with one member of the pair 
associated with one possible experience, and the other member of the pair 
associated with the rival possible experience. But each possible experience is 
presumably associated with the excitation of a large collection of such 
localized regions. Following the principles of quantum field theory the 
quantum state is represented by a tensor product of states associated with the 
individual tiny regions. Each such region interacts with its own immediate 
environment. The mechanism under consideration here does not involve 
bringing the “amplitudes” located in different tiny regions of the cortex 
together, and observing interference effects. Consequently, the usual 
argument to the effect that “decoherence” effects will destroy quantum 
effects has no immediate bearing on the situation being discussed here.  
The quantum Zeno effect being examined here arises from the product ---not 
the sum---of the effects associated with different local regions. Hence 
random phase factors attached---by virtue of weak interactions with differing 
individual environments---to the wave packets associated with different 
regions do not affect the quantum Zeno effect described here.  
 
In the language of the description used above, the relevant classical 
trajectories will be in a space of a large number of doublets of variables (pj, 
qj) with many doublets corresponding to cortical sites associated with the 
image from one eye, and many other doublets corresponding to cortical sites 
associated with an image from the other eye, There will be couplings 
between the excited sites associated with one image with sites associated 
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with the other image. But the probability considerations pertaining to powers 
of t that arise from the Gaussian forms of the wave packets carry directly 
over to the higher-dimensional case, due essentially to the multi-dimensional 
generalization of the theorem of Pythagoras. Adding extra environmentally 
induced phase factors to the wave packets in the different regions has no 
effect on the occurring product of probability factors. 
 
In the approximation considered above we have taken into account: (1), the 
effective potential wells in which the presumed-to-be-important correlated 
SHO motions can be considered to move; (2), the interactions with the 
environments that introduce the uncontrolled phase shifts that produce the 
usual environmental decoherence effects; and (3), the coupling between the 
two extended collective modes that are being excited by the strong optical 
stimuli from the two eyes. Within this approximation we have obtained a 
very simple understanding of the origin and relevance of the quantum Zeno 
effect in the phenomenon of binocular rivalry. Of course, the brain is a 
complex system, and this simple approximation cannot be the whole story. 
But the suggestion here is that this relatively simple quasi-classical model 
displays the essence of the mind-brain connection. According to this 
approach, the tight connection in the quantum universe between the structure 
of our experiences and classical concepts arises primarily not from 
environmental decoherence effects, as is often assumed, but rather from the 
close dynamical connection described above between the quantum and 
classical dynamics of the SHO states that enter into the collapse events that, 
according to von Neumann’s quantum theory of perception, occur in our 
brains in association with our conscious experiences. 
 
One might question whether the process 1 actions associated with our 
experiences should single out pure quantum states, as was assumed above. I 
have often suggested 7, 8, 9 that the best candidates for the states associated 
with process 1 actions associated with our experiences are the so-called 
“coherent states” of the electromagnetic (coulomb) fields10. These states, 
localized in the array of excited cortical sites corresponding to the neural 
correlates of the occurring thought/percept, are what have been used here. 
They are dynamically robust7, and as emphasized above, are closely 
connected to classically described aspects of the brain, and thereby to the 
observer’s classical description of her or his perceptions. The quantum-
classical linkage that is so crucial to the pragmatic success of quantum 
theory arises naturally by connecting brain states to associated streams of 
consciousness in the way described here.  
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The question might naturally be asked how particular conscious thoughts 
come to be associated with particular patterns of cortical excitations. Is some 
“miracle” required to fix these connections? No! The process is completely 
natural and rationally understandable. As extensively discussed in reference 
3, and re-emphasized in reference 4, trial and error learning beginning before 
birth and involving feedback loops pertaining to physically effective process 
1 actions that link effortful feelings to subsequent experiences eventually 
produce conscious awareness of, and then application of, correlations 
between controllable efforts and their  feedbacks, and these applications 
automatically strengthen the correlations between intentional and perceptual 
thoughts and the patterns of brain activity that are their causal counterparts 
in the brain. 
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